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*is work presents the splitting dynamics of low-viscous fingers inside the single bifurcating channel through the surface
wettability of daughter branches. *e propagation of low-viscous fingers inside branching microchannels have importance in
many applications, such as microfluidics, biofluid mechanics (pulmonary airway reopening), and biochemical testing. Several
numerical simulations are performed where a water finger propagates inside the silicon oil-filled bifurcating channel, and at the
bifurcating tip, it splits into two fingers and these fingers propagate into the separate daughter branches. It is noticed that the
behaviour of finger splitting at the bifurcating tip depends upon numerous parameters such as surface wettability, capillary
number, viscosity ratio, and surface tension. *is study aims to trigger the behaviour of finger splitting through the surface
wettability of daughter branches (θ1, θ2). *erefore, a series of numerical simulations are performed by considering four different
surface wettability configurations of daughter branches, i.e., (θ1, θ2) ∈ [(78°, 78°); (78°, 118°); (78°, 150°); (150°, 150°)]. According
to the results obtained from numerical simulations, finger splittingmay be categorized into three types based on splitting ratio (λ),
i.e., symmetrical splitting, nonsymmetrical splitting, and reversal (no) splitting. It is noticed that the surface wettability of both
daughter branches is either hydrophilic (78°, 78°) or superhydrophobic (150°, 150°), providing symmetrical splitting. *e surface
wettability of one of the daughter branches is hydrophilic and another is hydrophobic (78°, 118°), providing nonsymmetrical
splitting. *e surface wettability of one of the daughter branches is hydrophilic and another is superhydrophobic (78°, 150°),
providing reversal splitting.*e findings of this investigationmay be incorporated in the fields of biochemical testing and occulted
pulmonary airways reopening as well as respiratory diseases such as COVID-19.

1. Introduction

Viscous fingering (VF) is a hydrodynamic interfacial in-
stability that is inherently evolved at the interface of two
fluids when a low-viscous fluid displaces another more
viscous fluid in the porous medium or Hele-Shaw cell [1–3].
*ese two fluids may be miscible or immiscible. *e low-
viscous fluid may be invaded radially or linearly in the
results; radial or rectilinear linear displacement of more
viscous fluid is observed. According to these displacements,
VF is categorized into two groups, radial VF [4–7] and
rectilinear VF[8–11].*e displacement of more viscous fluid
by less viscous fluid leads to be unstable due to viscosity
differences (viscous force) and density differences (gravity
force) so that finger-shaped instability appears at the

interface of two fluids. It is so-called viscous fingering.
Viscous fingering is seen in many natural and industrial
processes such as oil recovery [12], mixing of fluids in
microfluidic devices [13], drugs delivery [14], pulmonary
biomechanics [15], and complicated branching channels of
biochemical testing [16]. In two-phase displacement flows,
where fluid-1 and fluid-2 are represented displaced
(defending) fluid and displacing (invading) fluid, respec-
tively. *e physical properties of fluid-1 and fluid-2, i.e.,
densities and viscosities, are represented by ρ1, μ1 and ρ2, μ2,
respectively. It is assumed that the viscosity of fluid-1 is more
than fluid-2 (μ1 > μ2). Saffman and Taylor [17] conducted
first experiments in 1958 on viscous fingering instability.
*ey performed experiments on Hele-Shaw cell (HSC) by
considering the less viscous fluid-2 displaces more viscous
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fluid-1. *e fluid-2 was invaded linearly with constant ve-
locity in HSC, after that fluid-2 was penetrated in the fluid-1
in the form of finger shape. Again, Taylor [18] performed
experiments on the fluid-fluid displacement in the micro-
tube. It was noticed that more viscous fluid was displaced by
less viscosity fluid from the middle portion of the microtube
but near the wall was not displaced by it. *erefore, the
displacement front looked finger-shaped. Reinelt et al. [19]
numerically investigated linear penetration of low-viscous
fingers into the more viscous fluid inside the channel and
tube. It has been found that viscous fingering instabilities are
driven by three forces, i.e., viscous force (driven by viscosity
differences), gravity force (driven by density differences),
and surface tension force. But gravity force may be neglected
in the horizontal channel and surface tension force may also
be neglected in miscible fluids. It is observed that viscous
fingering instability appears on the fluids interface inher-
ently when the viscosity ratio (μr � μ2/μ1) is less than unity
and it is called an unfavourable or an adverse viscosity
ratio(μr < 1).

VF is again classified into two groups according to the
nature of fluids, i.e., miscible VF [20–22] and immiscible VF
[23–25]. In the miscible VF, fluid pair is miscible to each
other and the effect of surface tension is neglected at the
interface of two fluids because surface tension is considered
to be zero in this VF. In immiscible VF, fluid pair is im-
miscible to each other, and pressure jump at the interface of
two-fluid interface occurs due to surface tension. Sahu et al.
[20] examined the linear stability analysis of miscible two-
phase flow inside the horizontal rectangular channel. *ey
used both the direct numerical simulationmethod and linear
stability theory for investigation. *e convective-diffusion
equation was coupled with transport equations because the
viscosity was a function of the concentration gradient. *ey
performed numerical simulations at high Reynolds numbers
and they assumed that the density of fluids is constant
(neutrally buoyance fluids). *e operating parameters of
investigations were Reynolds number, viscosity ratio, and
Schmidt number. *ey explored the roll-up phenomena as
well as intense convective mixing. *ey found these phe-
nomena are very noticeable at high flow rates and a large
viscosity ratio. Sahu et al. [21] investigated the effect of
buoyancy on the miscible displacement flow inside an in-
clined channel. *ey adopted the direct numerical simula-
tions method for the study. *ey assumed that both density
and viscosity are dependent upon the concentration gra-
dients. *e miscible displacement flows were driven by
viscous force (due to viscosity gradient) and gravity force
(due to density gradient). Numerical experiments were
conducted at moderate Reynolds numbers and viscosity
ratio. *is investigation was based on these parameters-
density ratio, channel inclination, and Froude number. *ey
found that the rate of mixing and displacement may be
enhanced by increasing the density ratio and Froude number
as well as inclination angle. Mishra et al. [22] investigated the
impact of double-diffusion on miscible displacement flow in
a horizontal channel. If a liquid solution has two solutes,
then the viscosity of the liquid solution depends upon the
diffusing rate of solutes. *ey considered that viscosity is an

exponential function of the concentration gradient of sol-
utes. *ey also assumed that density of both fluids is equal.
*ey reported different types of instability patterns for-
mation on the fluid interface when two solutes diffuse at
various rates. *ey found instability increases with in-
creasing the diffusivity ratio between the faster-diffusing and
the slower-diffusing solutes. *ey also studied the effect of
Reynolds number and Schmidt number on instability pat-
terns formation. Several experimental, numerical, and the-
oretical studies have been performed on controlling viscous
fingering. Because viscous fingering is beneficial in some
engineering applications (mixing of two fluids in micro-
channel) and detrimental in some engineering applications
(enhance oil recovery). Controlling (enhancing or damping)
the viscous fingering is studied into two parts: active control
and passive control. In the active control [23–26], external
surface forces such as electric field force and magnetic field
force are imposed against hydrodynamic interfacial insta-
bilities to control the viscous fingering. Flament et al. [23]
investigated the effect of the magnetic force on radial viscous
fingering. *ey observed that hydrodynamic instability
between magnetic fluid and air may be suppressed by ex-
ternal magnetic force. Sinzato and Cunha [24] imposed an
external magnetic field against the rectilinear viscous fin-
gering. *ey found that finger-shaped instability may be
damped by magnetic force. Mirzadeh and Bazant [25] in-
vestigated theoretically the effect of external electric fields on
linear viscous fingering. *ey used two immiscible elec-
trolytes and performed a theoretical study. *ey found that
viscous fingering may be hindered by the electric field. *ey
also found that after the critical injection ratio, interfacial
stability is a function of the relative direction of flow and
current, regardless of the viscosity ratio. Gao et al. [26]
performed experiments and found that radial viscous fin-
gering may be suppressed or enhanced by the external
electric force. *ey also found that radial viscous fingering
may be generated by an electric field when the viscosity ratio
is favourable (μr > 1).

In the passive control, the external surface forces are
absent and it is achieved through varying the operating
parameters such as injection rate [27, 28], surface tension
[29, 30], viscosity ratio [31, 32], surface wettability [33, 34],
and geometry [35–40]. Kozlov et al. [27] performed ex-
periments on controlling immiscible radial viscous fingering
through flow rate. *ey were injected low-viscous fluid
radially with harmonic flow rate. *ey found that stable
radial displacement may be achieved only at small ampli-
tudes of oscillations. Li et al. [28] reported damping of radial
viscous fingering through the injection rate of the less vis-
cous fluid. *ey performed a numerical and experimental
investigation and found that the morphology of viscous
fingering may be precisely controlled by injection rate.
McLean and Saffman [29] reported the effect of surface
tension on the shape of immiscible rectilinear viscous fin-
gers. *ey included surface tension in numerical modeling.
After the linear stability analysis, they found that surface
tension does not stabilize two-dimensional fingers. Saffman
[30] reported a theoretical study on the shape and stability of
immiscible fingers in HSC cells. *ey explained various
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possible shapes of immiscible rectilinear fingers. *ey in-
cluded surface tension in this theoretical study. Bischof-
berger et al. [31] reported morphology of radial miscible
viscous fingering at various viscosity ratios. *ey performed
experiments and found that miscible VF may be damped by
increasing the viscosity ratio. *ey developed empirical
relation between viscosity ratio and finger lengths. *e
surface tension was considered to be zero. Varges et al. [32]
performed experiments on the rectilinear immiscible dis-
placement. *ey found that immiscible displacement
strongly depends upon the viscosity ratio. *ey observed
that unstable displacement is sifted into stable displacement
when the viscosity ratio is approaching unit value. It means
that stable displacement (no fingering) occurs inherently
when the viscosity ratio is more than one. *ey also found
that a more stable interface appears when the Newtonian
liquids displace the shear-thinning liquids. Jackson et al. [33]
analyzed the effect of wettability on immiscible radial VF.
*ey noticed that wettability may be affected by interfacial
pressure drop dynamically. *ey found that wettability may
delay finger splitting at high capillary numbers and finger
shielding may be also reduced by it. Hu et al. [41] reported
the effect of wettability on immiscible fluid-fluid displace-
ment in porous media. *ey used a theoretical model for
study.*ey described briefly the impact of contact angle and
capillary number on stable and unstable displacements.
Primkulov et al. [34] examined the effect of wettability and
capillary number on the dynamics of immiscible displace-
ment in porous media. *ey used the moving-capacitor
dynamic network model which captured the motion of each
fluid interface by pore geometry. *ey analyzed viscous-
dominated and capillary-dominated flow domains for a wide
range of capillary numbers. Controlling the viscous fingering
through HSC geometry has been extensively studied. Al-
Housseiny et al. [35] performed experiments on hindering
the immiscible rectilinear VF by tapering the geometry.*ey
provided decreasing constant depth gradient along the
length of HSC (converging HSC). *ey observed that the
interface of oil and air becomes stable (no finger) when HSC
was converged along the length. *ey concluded that stable
immiscible displacement may be achieved by tapering the
HSC. Again, Al-Housseiny et al. [36] reported a theoretical
study on controlling VF in radial and rectilinear displace-
ments by tapering the HSC in the direction of displacements.
*ey collectively investigated the effect of depth gradient and
capillary number. Anjos et al. [37] examined the role of
capillary numbers on fingering instability in tapered radial
HSC. *ey observed that stable displacement may be
achieved at low capillary numbers in converging HSC, and at
high capillary numbers, it may be achieved in diverging
HSC. *e results are altered at high capillary numbers.

Bongrand and Tsai [38] tuned the radial VF in a non-
uniform channel by injection rate. *ey experimentally
investigated the collective effect of gap gradient and injection
rate on VF. *ey found that radially converging cells may
damp VF viscous fingering. Morrow et al. [39] studied
suppressing the growth of the fingering instability in non-
standard HSC. *ey injected inviscid fluid with time-de-
pendent injection rates in various configurations of HSC.

*ey recorded various morphologies of fingering instability.
Lu et al. [40] reported theoretical and numerical studies on
immiscible fingering instability in tapered HSC. *ey
adopted two types of tapered HSC, i.e., diverging cells with a
positive depth gradient and converging cells with a negative
depth gradient. *ey discussed various regions of dis-
placement accordingly critical capillary number.

Pihler-Puzovic et al. [42] performed experiments on
suppressing the radial fingering instability in the narrow gap
between two parallel plates. *ey were replaced one of the
rigid plates with an elastic membrane and performed the
experiments. *ey observed that fingering instability may be
suppressed by replacing one of the rigid plates with elastic
membrane. Again, Pihler-Puzovic et al. [43] reported radial
VF in HSC where the top boundary was replaced with a thin
elastic sheet. *ey observed that elastic sheet provides sta-
bility. Redapangu et al. [44] reported the displacement flow
of two immiscible fluids inside an inclined channel. *ey
used the lattice Boltzmann method for investigation. Here,
displacement flow was driven by both viscous force (due to
viscosity differences) and gravity force (due to density dif-
ferences). *ey analyzed the effect of viscosity ratio, Froude
number, capillary number, Atwood number, and inclination
angle on the interfacial instability patterns formation. *ey
found that by increasing the viscosity ratio or decreasing the
inclination angle, the displacement rate decreases. *ey also
observed lock-exchange flow. Kang et al. [45] numerically
investigated the effects of viscosity ratio, capillary number,
and wettability on immiscible fluid displacement in a 2D
rectangular channel. *ey used the lattice Boltzmann model
for interface tracking. *ey found that slip distance, as well
as the width of a finger, decreases, but finger length increases
with increasing the capillary number or viscosity ratio. *ey
also found that slip distance decreases, but finger length
increases with decreasing wettability of the displacing fluid.

It is found that from the above literature, immiscible
fingers propagation and splitting dynamics depend upon the
numerous parameters such as surface tension (σ), surface
wettability (θ), viscosity ratio (μr), and capillary number
(Ca). *e splitting of the fingers is more fascinating in
pulmonary biomechanics because occulted pulmonary air-
ways are reopened by air fingers propagation into pulmonary
airways. Numerous respiratory diseases such as respiratory
distress syndrome as well as COVID-19 occur due to blockage
of the pulmonary airways. *e blockage pulmonary airways
may be reopened through low-viscous finger propagation.
Gaver et al. [46] experimented first time on the reopening of
the occulted airway through the air finger. *e limitation of
this work was that they investigated the reopening of the
occulted pulmonary airway by considering the single-channel
pulmonary airway. But pulmonary airways exist inherently in
the form of branching networks. Later on, several authors
investigated the reopening of occulted bifurcation or
branching type pulmonary airways through the low-viscous
finger propagation [47]. *e low-viscous finger may be also
relevant for starving tumour cells in cancer treatment
methods such as gas embolotherapy [48, 49].

Numerous experimental and numerical research works
[50–53] have been done on the splitting dynamics of the
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droplet into the bifurcating channels. Recently, Dekha et al.
have performed computation work on the splitting dy-
namics of the droplet in a Y-shaped channel. *ey tuned the
splitting dynamic of the droplet through surface wettability.
*ey used the volume of fluid model (VOF) for the tacking
of the interface. VOFmodel follows the conservation of mass
and it is used to capture the interface of both continuous-
continuous phases and continuous-discrete phases [54, 55].
VOF model provides the sharp and accurate interface of two
fluids. But, the limitation of this model is that both fluids
must be immiscible. Very few research works have been
done on the low-viscous fingers propagation in the bifur-
cating channels or displacement flows in the branching
channels. To our best of knowledge, we first time tune the
spitting dynamics of the low-viscous finger inside a single
bifurcating channel through the surface wettability of
daughter branches. *e motivation of this work has come
from Baroud et al.’s [56] work.

In this paper, splitting behaviour of a water finger is
investigated inside the two-dimensional single bifurcating
(Y-shaped) channel. Here, fluid-fluid displacement is driven
by shear or pressure-driven flow in the absence of gravity
force and inertial force. *e entire Y-shaped channel is
saturated with silicon oil after that water is invaded with a
constant velocity V into the Y-shaped saturated channel.*e
parent channel walls are considered perfectly nonwetting in
each simulation. But daughter branches are considered a
combination of different wall surface wettability configu-
rations such as hydrophilic, hydrophobic, and super-
hydrophobic. A low-viscous fluid displaces another much
more viscous fluid in the microchannel, then the interface of
fluids moves in the displacement direction in the form of
finger shape due to viscosity differences. We report the
propagation of water fingers in the silicone oil filled
Y-shaped channel and splitting of a water finger at bifur-
cating tip is triggered by the surface wettability of daughter
branches.

2. Numerical Method

2.1. Problem Formulation. In this work, we investigate the
effect of surface wettability on the splitting dynamics of a
low-viscous finger in the single bifurcating channel. A
schematic diagram of a two-dimensional (2D) single bi-
furcating channel with inlet and outlet boundaries condi-
tions is shown in Figure 1(a). *e parent channel is
bifurcated into two identical daughter branches which are
shown in Figure 1(a) as branch-1 and branch-2. *e size of
each daughter branch (Ld1 × Wd1 � Ld2 × Wd2) is equal and
it is taken as 5mm × 0.75mm.*e length ratio (Lr � Ld/Lp)

and width ratio (Wr � Wd/Wp) of the bifurcating channel
are taken as 1 and 0.75, respectively. *e bifurcation angle
(β) is taken as 39°. *e snapshot of meshed computational
domain with proper dimensions is shown in Figure 1(b).*e
meshing of the computational domain has been done by the
meshing module of ANSYS FLUENT software. *e fine
structural meshing has been adopted for precise results.
Initially, the entire Y-shaped channel is filled with high
viscous fluid-1 (red) after that fluid-2 is invaded through the

inlet with the velocity, V. *e orientation of the Y-shaped
channel is considered as horizontal. *erefore, the effect of
gravity force due to density difference may be neglected in
this investigation. *e nature of both fluids is considered
immiscible and incompressible. *e fluid-2 is injected into
the bifurcating channel with a constant velocity of 0.015m/s.
*e pressures at the outlets of the daughter branches are
considered as atmospheric pressure (P= 0Pa). *e wall
surface wettability is governed by the wetting contact angle
and it is defined by Young’s equation, i.e.,
cos(θ) � (σw1 − σw2)/σ, where θ denotes the wall wetting
contact angle and σw1 denotes interfacial tension between
wall and fluid-1, σw2 denotes interfacial tension between wall
and fluid-2, and σ denotes interfacial tension between fluid-1
and fluid-2. After several investigations, four different wall
surface wettability configurations of daughter branches are
taken, keeping the parent channel as strongly hydrophobic
or nonwetting (θp � 180°). *ese surface wettability con-
figurations are created by incorporating hydrophilic, hy-
drophobic, and superhydrophobic wettability conditions.
All surface wettability configurations are shown in Figure 2.
In these figures, θp, θ1, and θ2 are representing wall wetting
contact angle of parent channel, daughter branch-1, and
daughter branch-2, respectively. *e surface wettability
configurations of daughter branches are as follows:

(i) *e surfaces of both daughter branches are taken as
hydrophilic (θ1, θ2 � 78°, 78°)

(ii) *e surfaces of branch-1 and branch-2 are taken as
hydrophilic and hydrophobic (θ1, θ2 � 78°, 118°),
respectively

(iii) *e surfaces of branch-1 and branch-2 are taken as
hydrophilic and superhydrophobic
(θ1, θ2 � 78°, 150°), respectively

(iv) *e surfaces of both daughter branches are taken as
superhydrophobic (θ1, θ2 � 150°, 150°)

2.2. Mathematical Model. ANSYS FLUENT commercial
CFD (computational fluid dynamic) software has been used
for numerical simulations. *e numerical simulations have
been performed by considering a pressure-based solver with
unsteady fluid displacement in the two-dimensional
Y-shaped channel. *e shape of the moving interface is
tracked by using the volume of fluid (VOF) method. *e
VOF method is one of the numerical tools of interface
tracking which is used to track the interface of two or more
immiscible fluids in the multiphase flows [57]. It is more
renowned among interface tracking methods because it
follows the conservation of mass. In the VOF method, the
transport equations are solved simultaneously for each phase
with a single set of continuity and momentum equations in
the entire flow field. In the present two-phase displacement
flow, the volume fraction of primary and secondary phases is
represented by α1 and α2, respectively. *e sum of the
volume fractions of two phases must be unity (α1 + α2 � 1)

in each cell as well as the entire computational domain. *e
volume fractions are a function of space and time. *e
volume fraction equation is solved only for the second phase
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in the VOF model and the result; we get the value of α2. *e
value of α1 is calculated from the conservation equation of
volume fraction, i.e., α1 � (1 − α2). *e moving interface is
constructed in the computational domain on the value of
volume fractions. *e fluids inside the computational do-
main are defined by values of α2 in the following manner:

α2 �

0 ⇒fluid1;

1 ⇒fluid2;

0< α2 < 1 ⇒interface.

⎧⎪⎨

⎪⎩

We assume that unsteady laminar flow occurs in the
entire investigation and primary and secondary phases, i.e.,
fluid-1 (silicon oil) and fluid-2 (water) are immiscible and
incompressible.

*e governing equations of immiscible and incom-
pressible fluid flows can be expressed by the following
mathematical expressions:

Continuity equation:

∇ · V � 0. (1)

Momentum conservation equation (equation (2)):
A single set of momentum equations is solved in entire

the computational domain, and the obtaining velocity is
shared between the immiscible fluids. *e mathematical
form of the momentum equation can be expressed in the
following manner:

ρ
zV

zt
+ (V · ∇)V􏼢 􏼣 � −∇p + ∇ · τ + ρg + Fs, (2)

where V denotes the velocity vector field and t denotes the
time. p denotes the pressure field and g denotes the grav-
itational acceleration vector and τ � [(µ)(∇V + ∇VT)] de-
notes the stress tensor. Fs denotes the volumetric surface
tension force, and it is defined by the continuum surface
force (CSF) model [58]. *e surface tension force is con-
sidered as volumetric body force in the CSF model and

pressure jump on the fluid interfaces due to surface tension
is included in this model. It is defined by the following
mathematical expression in the CFS model:

Fs � σk∇ α2( 􏼁, (3)

where σ denotes the surface tension and k � ∇ · (∇α2/|∇α2|)
denotes the curvature of the interface.

Volume fraction equation:
In the VOF model, the volume fraction of the secondary

phase (α2) is a function of space and time. It can be
expressed by the following mathematical expressions:

zα2
zt

+ ∇ · α2V( 􏼁 � 0. (4)

Mixture property equations:
*e average mixture properties (i.e., density, ρ, and

viscosity, μ) of two phases can be calculated by the following
mathematical expressions:

µ � α2µ2 + 1 − α2( 􏼁µ1, (5)

ρ � α2ρ2 + 1 − α2( 􏼁ρ1. (6)

*e average mixture properties, i.e., apparent viscosity
and density μ, ρ, are calculated by the above equations (5)
and (6), respectively.*ese properties are used to solving the
transport equations.

2.3. Solution Methodology. *e VOF method is adopted to
capture the moving interface of the two immiscible fluids by
solving a single set of momentum equations in the entire
flowing field. VOF method calculates the value of volume
fractions of each fluid in each cell in the computational
domain and fluid interface in each cell is defined through the
value of volume fractions of fluids. *e transport equations

θp=180°

θ1=78°

θ2=78°

(a)

θp=180°

θ1=78°

θ2=118°

(b)

θp=180°

θ1=78°

θ2=150°

(c)

θp=180°

θ1=150°

θ2=150°

(d)

Figure 2: Different wall surface wettability configurations of daughter branches keeping parent channel as the nonwetting (θp � 180°).
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Meshed computational domain
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Figure 1: (a) Schematic diagram of the two-dimensional single bifurcating channel. (b) Snapshot of the meshed computational domain.
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(1) and (2) are coupled with the volume fraction equation
(equation (4)). *e pressure implicit with the splitting of
operators (PISO) scheme is adapted for coupling the
pressure and velocity. *e momentum equation is dis-
cretized by a second-order upwind scheme. *e volume
fraction equation is discretized by a geometrical-recon-
struction scheme. It works on linear interpolation and the
precise interface of immiscible fluids are traced by this
scheme. *e gradients present in the governing equations
are spatially discretized by the least-square scheme and the
pressure terms are discretized by the PRESTO scheme. *e
dynamic behaviour of the two-phase fluids flow is furnished
within a time step 10−4 s. It is taken fixed for each simulation.
Each numerical simulation is initialized from the inlet. *e
transient formulations are handled by a first-order implicit
scheme. *e convergence of numerical simulation is based
on 10−6 relative error criteria. Numerical solutions are
stabilized by using Courant-Friedrichs-Lewy (CFL) crite-
rion, i.e., courant number must be less than one (0.5) in each
iteration.

2.3.1. Boundary Conditions. *e results of numerical sim-
ulations are based on initial boundary conditions. Here,
velocity inlet and pressure outlet are selected as inlet and
outer boundary conditions.*e stationary walls with no-slip
criteria are adopted as walls boundary conditions. Initially,
the entire computational domain is filled with more viscous
fluid-1 (i.e., silicon oil). After that, fluid-2 (i.e., water) is
invaded with the velocity of 0.015m/s through the inlet into
the silicon oil-saturated Y-shaped channel. *e pressure at
the outlets is considered as constant ambient pressure.

2.3.2. Physical Properties of Fluids. *e high viscous fluid-1,
i.e., silicon oil, is considered as displaced (defending) fluid
because it is used in vitreoretinal surgery and many more
clinical applications [59].*e low-viscous fluid-2, i.e., water,
is considered as displacing fluid. Silicon oil is more viscous
than water and both are immiscible. *e physical properties
of working fluids are given in Table 1.

2.4. Assumptions. *e following assumptions have been
taken to perform numerical simulations:

(i) *e fluid pair should be Newtonian
(ii) *e fluid pair should be immiscible and

incompressible
(iii) Flow should be unsteady and laminar
(iv) Reynolds’s number should be very low
(v) *e viscosity ratio should be less than one
(vi) Inertia and gravity forces should be absent

2.5. Grid-Independent Test. Before the primary investiga-
tion, a grid-independent test has been performed to ensure
that the numerical results do not depend on the grid size or
the number of grids. *e optimum number of grids at which
the numerical results do not alter is found to be 98600. All

numerical simulations have been performed at the optimum
number of grids.

3. Results and Discussion

3.1. Validation of Numerical Method. Before presenting
numerical results, validation of the numerical method is
needed to ensure that the numerical solver is valid for the
current investigation. Here, the numerical method is vali-
dated with the experimental study of Baroud et al. [56]. We
have numerically replicated the experimental setup of
Baroud et al. by assuming perfluorodecalin (PFD) as a
displacing fluid and silicone oil as a displaced fluid inside a
single bifurcating channel. *ey considered that fluids were
immiscible and incompressible. *ey took the viscosity of
PFD and silicon oil as 2.9 cP and 100 cP, respectively. *ey
took surface tension at the fluid interface, 50mN/m. *ey
took the size of the single bifurcating channel as
200 μm× 100 μm. *e entire Y-shaped channel was filled
with silicon oil, after that displacing fluid was injected
through a syringe pump with the range of flow rates,
1–60 nls−1. *e image of the experimental result, i.e.,
propagation of low-viscous finger inside the single bifur-
cation channel, is shown in Figure 3(a). Numerical simu-
lation has been performed by considering the same setups as
well as the same working fluids which were used in the
experimental investigation. We have used the VOF model
for tracking the interface. *e numerical result of the
propagation of the low-viscous finger inside the single bi-
furcation channel is shown in Figure 3(b). *e numerical
result is compared with the experimental result and a good
agreement is to be found. Figure 3 shows a good agreement
between the numerical result and experiment result so that
the numerical method is valid for the current investigation
and the accuracy of this method is also appropriate.

3.2. Mechanism of Low-Viscous Fingers Formation in the
Horizontal Channel. We have assumed that inertia and
gravity forces are absent (tend to be zero) because quasistatic
flow (creep flow) occurs in the horizontal channel. *erefore,
the momentum equation for one-dimensional flow in the
parent channel can be written in the following manner [60]:

V �
−h

2

12µ
dp

dx
􏼠 􏼡

�
−k

µ
dp

dx
􏼠 􏼡,

(7a)

where h2/12 is equal to a constant k and h denotes channel
height.

We can rewrite the momentum equation in the form of a
pressure gradient in the following manner:

dp

dx
􏼠 􏼡 �

−µV

k
(7b)

*enet pressure force, (p2 − p1), is exerted by displacing
fluid-2 on displaced fluid-1. *en, stationary fluid-1 is
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virtually displaced, dx, from the initial position in the parent
channel.

*e net pressure force exerted by fluid-2 on fluid-1 can
be expressed by the following mathematical expression:

p2 − p1 � µ1 − µ2( 􏼁
V

k
􏼔 􏼕dx . (7c)

Here, if the net pressure force is positive, then any small
displacement of fluid-1 will be created viscous fingering
instability on the interface of fluid-1 and fluid-2. We have
already assumed that fluid-1 is more viscous than fluid-2 so
that (µ1 − µ2) will be positive. In equation (7c), each term of
right hand side is positive. *erefore, the net pressure force
must be positive. We can say that viscous fingering insta-
bility is always evolved on the fluid interface at any velocity
when less viscous fluid displaces another more viscous fluid
in the horizontal channel (gravity force absent). In other
words, if the more viscous fluid is being driven out by a less
viscous fluid in horizontal channel, then fingering instability
always appears on the fluid interface at any velocity. If the
viscosity of both fluids is equal or fluid-2 is more viscous
than fluid-1, then the interface will be always flat or stable
(no fingering instability). Note down, the above information
is only valid for displacement flow in horizontal channel (not
for inclined channel), because in this flow, density changes
do not play any role in fingering instability formation. *e
physical explanation of viscous fingering instability is that
the effective viscosity is always lower in a thin band, hence it
moves faster; therefore, low-viscous finger-shaped instability
appears on fluid interface in the displacement flow.

In the present study, fluid-fluid displacement flows are
quasistatic because the Reynolds number (Re � ρ1VWp/μ1)
in the entire flows domain is considered to be less than one
(Re � 0.25). In quasistatic flows, the effect of the inertia
force may be neglected. *e impact of gravity force may be
ignored when displacement flow occurs in the horizontal
microchannel. Here, the effects of inertia force and the
gravity force are neglected because quasistatic flow occurs in
the horizontal Y-shaped channel. Immiscible displacement

flow is driven by two forces, i.e., viscous force and surface
tension force. In another way, viscous force is responsible for
the overall pressure gradient, but surface tension force is
responsible for pressure jump on the interfaces. *e ratio of
viscous force and surface tension force is called the capillary
number (Ca � µ1V/σ). It measures the relative importance
of viscous force as compared to surface tension force.

Here, we investigate the dynamics of water finger prop-
agation and the behaviour of finger splitting inside the single
bifurcating channel using the VOF model. Numerical sim-
ulations have been performed by considering four different
surface wettability configurations of daughter branches, i.e.,
(i) θ1, θ2 � 78°, 78°, (ii) θ1, θ2 � 78°, 118°, (iii)
θ1, θ2 � 78°, 150°, and (iv) θ1, θ2 � 150°, 150°. *e capillary
number is taken, 0.025, in each simulation.*e primary phase
(silicon oil) is initially filled into the entire Y-shaped channel
by patching the volume fraction of the secondary phase
(water) which is zero (α2 � 0). It is shown in Figure 4(a) and
the red color represents the silicon oil in this figure. After that,
water is injected through the inlet with a velocity of 0.015m/s.
*e viscosity of displacing fluid, i.e., water, is less than the
viscosity of the displaced fluid, i.e., silicon oil, so that unstable
displacement flow occurs, and as a result, a finger of water
appears on the fluid interface. *e water finger propagates
towards the displacement direction inside the parent channel.
Displacement of silicon oil by water from the parent channel
or propagation of water finger in the silicon oil-saturated
parent channel is shown in Figure 4. Propagation of water
finger is captured at equal time steps.*e unit of time steps (t)
is taken in seconds (s). *e shape of blue color in each figure
represents water finger.

3.3. Splitting Dynamics. From the numerical results, finger
splitting is categorized into three types based on splitting
ratio: symmetrical splitting, nonsymmetrical splitting, and
reversal splitting (no splitting). *e splitting ratio (λ) is
defined as the ratio of finger lengths in branch-2 and
branch-1.

Experimental result

Q
Branch 1

Branch 2

Branch 1

Branch 2

Present work

(a) (b)

Figure 3: Validation: comparison of propagation of low-viscous finger inside the single bifurcating channel: (a) experimental snapshot [56]
and (b) computational snapshot of volume fraction.

Table 1: Physical properties of fluids.

Fluids Density (kg/m3) Viscosity (Pa-s) Surface tension (N/m) Viscosity ratio, μr � μ2/μ1
Fluid-1 (silicone oil) 850 0.050 0.030 0.02
Fluid-2 (water) 1000 0.001

Mathematical Problems in Engineering 7



λ � Lf2/Lf1, (8)

where, λ denotes the splitting ratio. Lf1 and Lf2 denote the
finger lengths in branch-1 and branch-2. According to the
splitting ratio, fingers splitting dynamics are classified in the
following manner:

λ �

1, ⇒Symmetrical splitting,

0< λ< 1, ⇒Nonsymmetrical splitting,

0, ⇒Reversal(no)splitting.

⎧⎪⎪⎨

⎪⎪⎩
(9)

*e physical significance of the splitting ratio is that
whenever finger lengths in branch-1 and branch-2 are the
same, then it looks symmetrical so that it is called sym-
metrical splitting. It has one splitting ratio value (λ � 1).
Finger lengths are not the same in both the branches, i.e.
finger length in branch-2 is less compared to the finger
length in branch-1. It is called nonsymmetrical splitting. It
has less than one splitting ratio value (λ< 1). *e finger
length in branch-2 is zero or the finger length in branch-2 is
zero compared to finger length in branch-1. It is called
reversal (no) splitting. It has zero splitting ratio value
(λ � 0).

3.3.1. Symmetrical Splitting. Figures 5 and 6 depict sym-
metrical splitting. An immiscible single finger of water
propagates into the parent channel. At the bifurcating tip, it
splits into two fingers and each finger propagates into each
daughter branch. It is observed that finger splitting be-
haviour depends upon the surface wettability of the daughter
branches. Figures 5 and 6 show the symmetrical finger
splitting behaviour inside the single bifurcating channel
when both the daughter branches are hydrophilic, i.e., (i)
θ1, θ2 � 78°, 78° and superhydrophobic, i.e., (iv)
θ1, θ2 � 150°, 150°, respectively. It is noticed that in both
cases, symmetrical splitting occurs. *e splitting ratio in
both cases is unity (λ�1). In the symmetrical splitting,
fingers propagate into the daughter branches with the same

velocity because the surface wettability of daughter branches
is the same. It is concluded that symmetrical splitting may be
achieved when the surface wettability of both the daughter
branches is either hydrophilic or superhydrophobic.*e tips
of the fingers are slightly concave when the surfaces of
daughter branches are hydrophilic and convex when the
surfaces of daughter branches are superhydrophobic. *e
velocities of fingers are approximately the same in both
cases.

3.3.2. Nonsymmetrical Splitting. Figure 7 depicts nonsym-
metrical splitting. Nonsymmetrical splitting occurs when the
finger velocities and finger lengths in both the daughter
branches are different. If the surface wettability of both
daughter branches is different, then resistance offered by the
displaced fluid against the displacing fluid inside daughter
branches is also different. *erefore, finger velocities in both
the daughter branches are not the same and finger lengths in
both daughter branches are also not equal. It can be seen in
Figure 7. Here, the surface of branch-1 is hydrophilic and
branch-2 is hydrophobic, i.e., (ii) θ1, θ2 � 78°, 118°. *e
finger velocity in branch-1 is more than the finger velocity in
branch-2, so the finger length in branch-1 is more than the
finger length in branch-2. *e reason is that the net effect of
hydraulic resistance and intermolecular resistance is less in
branch-1 with respect to branch-2. *e intermolecular force
appears due to surface wettability and it provides additional
resistance against finger propagation. *e splitting ratio is
calculated less than one (λ< 0.20) in nonsymmetrical
splitting. It is observed that the finger velocity and finger
length are more in hydrophilic daughter branch-1. Non-
symmetrical splitting is found when the surface wettability of
one of the daughter branches is hydrophilic and another is
hydrophobic.

3.3.3. Reversal Splitting. Figure 8 depicts the reversal (no)
splitting. Here, the surface of daughter branch-1 is hy-
drophilic and daughter branch-2 is superhydrophobic,

Silicon oil (red)

(a)

Parent channel

(b)

Water finger (blue)

(c)

Bifurcating tip

(d) (e) (f )

Figure 4: Water finger (blue) propagation inside the parent channel at equal time steps (seconds): (a) t� 0.00, (b) t� 0.05, (c) t� 0.10, (d)
t� 0.15, (e) t� 0.20, and (f) t� 0.25.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Symmetrical finger splitting (λ�1) inside the single bifurcating channel when the surfaces of both the daughter branches are
superhydrophobic (θ1, θ2 � 150°, 150°). (a) t � 0.30, (b) t � 0.35, (c) t � 0.38, (d) t � 0.40, (e) t � 0.45, (f ) t � 0.50, (g) t � 0.52, (h) t � 0.55.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 7: Nonsymmetrical finger splitting (λ< 1) inside the single bifurcating channel when the surfaces of daughter branches are hy-
drophilic and hydrophobic (θ1, θ2 � 78°, 150°). (a) t � 0.30, (b) t � 0.35, (c) t � 0.38, (d) t � 0.40, (e) t � 0.45, (f ) t � 0.50, (g) t � 0.52, (h)
t � 0.55.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Symmetrical finger splitting (λ�1) inside the single bifurcating channel when the surfaces of both the daughter branches are
hydrophilic (θ1, θ2 � 78°, 78°). (a) t � 0.30, (b) t � 0.35, (c) t � 0.38, (d) t � 0.40, (e) t � 0.45, (f ) t � 0.50, (g) t � 0.52, (h) t � 0.55.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 8: Reversal finger splitting (λ� 0) inside the single bifurcating channel when the surfaces of daughter branches are hydrophilic and
superhydrophobic (θ1, θ2 � 78°, 150°). (a) t � 0.30, (b) t � 0.35, (c) t � 0.38, (d) t � 0.40, (e) t � 0.45, (f ) t � 0.50, (g) t � 0.52, (h) t � 0.55.

Table 2: Finger splitting dynamics with four distinct wettability configurations of daughter branches at Ca� 0.025, Re� 0.25, and μr � 0.02.

S. no. Wettability configuration of daughter branches, (θ1, θ2) Splitting ratio, λ Type of splitting

(i) 78°, 78° 1 Symmetrical splitting
(ii) 78°, 118° 0.20 Nonsymmetrical splitting
(iii) 78°, 150° 0 Reversal (no) splitting
(iv) 150°, 150° 1 Symmetrical splitting

Type of Splitting Splitting behaviour at t = 0.55 s Splitting ratio, λ

Symmetrical splitting (78°,78°)

(150°,150°)

1

Non-symmetrical splitting

(78°,118°)

0.20

Reversal (No) splitting

(78°,150°)

0

Figure 9: Different types of splitting behaviour of a water finger through the surface wettability of daughter branches at Ca� 0.025,
Re� 0.25, and, V.R� 0.02.
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i.e., (iii) θ1, θ2 � 78°, 150°. It can be seen that the water
finger propagates toward the bifurcating tip but it does not
split at bifurcating tip. It passes completely through the
daughter branch-1 without splitting. Hydrophilic surface
provides more affinity to fluid-wall interaction as com-
pared to superhydrophobic. *e net effect of hydraulic
resistance and intermolecular resistance is very large in
branch-2 compared to branch-1 because super-
hydrophobic surface offers strong additional resistance
against water finger propagation. *erefore, the water
finger passes completely through hydrophilic branch-1
without splitting. It can be concluded that reversal
splitting evolves when the surface wettability of one of the
daughter branches is hydrophilic and another is super-
hydrophobic. *e low-viscous finger always passes
through the hydrophilic daughter branch. *e splitting
ratio is zero in this splitting behaviour.

In Figure 9, all finger splitting behaviours are incor-
porated. Numerical simulations are performed at Ca� 0.025,
Re� 0.25, and μr � 0.02. It is seen that the splitting ratio is
one when the daughter branches have surface wettability
configurations, i.e., (θ1, θ2 � 78°, 78°) and
(θ1, θ2 � 150°, 150°). *is splitting behaviour is called
symmetrical splitting. *e splitting ratio is 0.20 when the
daughter branches have surface wettability configurations,
i.e., (θ1, θ2 � 78°, 118°). *is splitting behaviour is called
nonsymmetrical spitting. It is noticed that the splitting ratio
is zero when the daughter branches have surface wettability
configurations (θ1, θ2 � 78°, 150°). *is splitting behaviour
is called reversal splitting.

4. Conclusions

In the present work, the splitting dynamics of a water finger
is tuned by the surface wettability of daughter branches
inside the 2D single bifurcating channel. *e splitting of a
water finger is captured by using the VOF method. *is
method is applicable for only tracking the interfaces of
immiscible fluids. In this numerical study, the effects of
inertia force and the gravity force are neglected because
quasistatic or creep flow occurs in the horizontal channel.
Here, low-viscous fluid-2 (water) drives more viscous fluid-1
(silicon oil) with a velocity of 0.015m/s in the parent
channel. Due to an unfavourable viscosity ratio (0.020), a
finger-like interfacial instability evolves on the fluids in-
terface. It is called the viscous fingering phenomenon. It is
driven by mainly viscous force (due to viscosity differences)
and surface tension force. *e ratio of these forces is called
the capillary number. A fixed capillary number, 0.025, and a
fixed Reynolds number, 0.25, are taken in each numerical
simulation.

Initially, bifurcating channel is filled with a stationary
more viscous fluid-1 (silicon oil). After that, low-viscous
fluid-2 (water) is invaded through the inlet. It penetrates into
silicon oil in the form of finger shape. *e water finger
continuously moves toward the bifurcating tip and displaces
silicon oil from the parent channel. But, silicon oil near the

wall offered strong hydraulic resistance, therefore it is not
displaced by water. It is shown in Figure 4(f). Generally, a
single finger splits into two fingers at the bifurcating tip and
each finger propagates into each daughter’s branches, but we
found finger splitting may be triggered by surface wettability
of daughter branches. *e numerical investigation has been
carried out by considering four different surface wettability
configurations of daughter branches (θ1, θ2), i.e., (i)
θ1, θ2 � 78°, 78°, (ii) θ1, θ2 � 78°, 118°, (iii) θ1, θ2 � 78°, 150°,
and (iv) θ1, θ2 � 150°, 150. From the numerical results, we
found three distinct behaviours of finger splitting. *ese
finger splitting behaviours are classified into three types
based on splitting ratio: symmetrical splitting, nonsym-
metrical splitting, and reversal (no) splitting. It is observed
that a water finger splits at bifurcating tip into two similar
fingers when the surface wettability of both daughter branches
is either hydrophilic (θ1, θ2 � 78°, 78°) or superhydrophobic
(θ1, θ2 � 150°, 150°). *ese fingers propagate into the
daughter branch-1 and daughter branch-2. *e lengths of
both the fingers are the same so that the value of the spitting
ratio is one. *is type of splitting behaviour is called sym-
metrical splitting. It is noticed that a water finger splits into
two dissimilar fingers at bifurcating tip when the surface
wettability of branch-1 is hydrophilic and branch-2 is hy-
drophobic (θ1, θ2 � 78°, 118°). *e lengths of both the fingers
are not the same. *e length of a finger in branch-1 is more
than the length of a finger in branch-2 so that the value of the
splitting ratio is less than one (0.20). *is type of splitting
behaviour is called nonsymmetrical splitting. It is observed
that a water finger does not split at bifurcating tip when the
surface wettability of branch-1 is hydrophilic and branch-2 is
superhydrophobic (θ1, θ2 � 78°, 150°). *e water finger
passes through the hydrophilic branch-1 without splitting so
that value of the spitting ratio is zero. *is type of splitting
behaviour is called reversal splitting.We have summarized the
outcomes of finger splitting dynamics of four distinct wet-
tability configurations of daughter branches in Table 2.

*e outcomes of this work may be incorporated in many
engineering and biomedical applications where fluid dis-
placement flows occur inside branching microchannels such
as biochemical testing, occulted pulmonary airways
reopening, starving the tumour cells in embolotherapy
cancer treatment, and respiratory diseases such as COVID-
19 [61].

5. Future Scope

Further investigation on splitting dynamics of the low-
viscous finger may be performed by considering multi-
bifurcating (networking) channels instead of single bifur-
cating channels. *is work may be also extended by
considering distinct viscosity ratio and surface tension of
fluid pairs as well as varying the inlet velocity. *e di-
mensionless terms such as length ratio, width ratio, and
bifurcating angle may be used in the future for optimizing
the dimensions as well as the effect of these terms on splitting
ratio.
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Nomenclature

Ca: Capillary number
Fs: Volumetric surface tension force
k: Curvature of the interface
Ld1: Length of daughter branch-1
Ld2: Length of daughter branch-2
Lf1: Length of finger in branch-1
Lf2: Length of finger in branch-2
Lp: Length of parent channel
Lr: Length ratio
p: Pressure
t: Time
Re: Reynolds number
V: Velocity
Wd1: Width of daughter branch-1
Wd2: Width of daughter branch-2
Wp: Width of parent channel
Wr: Width ratio
α1: Volume fraction of fluid-1
α2: Volume fraction of fluid-2
β: Bifurcation angle
σ: Surface tension
λ: Splitting ratio
τ: Stress tensor
ρ: Average mixture density
ρ1: Density of fluid-1
ρ2: Density of fluid-2
μ: Average mixture viscosity
μ1: Viscosity of fluid-1
μ2: Viscosity of fluid-2
μr: Viscosity ratio
θ: Wetting contact angle
θp: Wetting contact angle of parent channel
θ1: Wetting contact angle of daughter branch-1
θ2: Wetting contact angle of daughter branch-2.
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