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is paper proposes a method to address the problem of the joint direction of departure (DOD) and direction of arrival (DOA)
estimation with augmented coprime array (CPA) bistatic multiple input multiple output (MIMO) radar using interpolating
sensors. At �rst, we deduce the regular pattern of hole positions in the virtual array and interpolate a small number of sensors to
augmented CPA to form a partially contiguous virtual array. en, we use the diversity smoothing algorithm to reconstruct the
Toeplitz matrix to obtain a spatial smoothing matrix. Finally, we combine the RD-MUSIC algorithm with the spatial smoothing
matrix to estimate the spatial spectrum and achieve automatic matching of DODs and DOAs for the targets. Simulation results
clearly illustrate the superiority of the method.

1. Introduction

Direction of arrival (DOA) estimation and Kalman �lter
algorithm for target tracking [1] are signi�cant areas of
research in array signal processing. It can estimate the
angular position of di�erent signals in a certain airspace and
plays a key role in radar, sonar, and other target detection
�elds. Since the last century, DOA estimation has gone
through three stages, which are beamforming [2], subspace
�tting [3–6], and compressed sensing [7], and made a great
contribution to the development of the DOA estimation
algorithm. Bistatic multiple input multiple output (MIMO)
radar has the advantages of waveform diversity [8] and
spatial separation; it estimates target angle including DOA
and direction of departure (DOD), so the joint estimation of
DOD andDOA [9, 10] has also become the focus of research.
Although the uniform linear array (ULA) can also solve the
related problems of DOA estimation, it still has certain
limitations. For example, the number of physical array
sensors usually cannot be less than the number of signal
sources; otherwise, the estimation accuracy will be badly
a�ected, and thus the degree of freedom (DOF) is limited by
physical array elements and other factors [11]. In order to

solve these problems, a sparse array is introduced by
scholars.e di�erence between the sparse array [12, 13] and
the traditional uniform array mainly includes that the sparse
array is formed by setting di�erent interelement spacings in
the array to form a sparse array structure, and part of the
sparse array has a larger element spacing, so it forms longer
virtual array to increase DOF. Coprime array (CPA) [14, 15]
has been widely studied by scholars because of its larger
element spacing. us, the CPA has a low mutual coupling
e�ect and high accuracy of target angle estimation. More-
over, the CPA can construct a longer virtual array through
its own di�erential coarray [16] and use its equivalent vector
to estimate DOA. However, although the virtual array
formed by CPA has a long virtual array aperture [17], there
are array holes that make the virtual array discontinuous,
which limits the expansion of DOF. Scholars have conducted
a series of studies to settle the question.

A method was advanced to �ll the virtual array hole by
moving the sparse array in [18], and it used the di�erential
coarray of the original array and the di�erential coarray of
the moved array to form a composite array without holes to
estimate DOA e�ectively. But this method has a small es-
timated error that originated from array movement distance
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and signal source movement distance, and its theoretical
feasibility is insufficient. Interpolated virtual array element
was considered in [19] and solved the problem of virtual
array discontinuity caused by virtual array holes, but the
method will be affected when there are continuous virtual
holes, and its DOF will reduce. Some scholars utilize the
virtual array element interpolation theory [19] to the joint
estimation of DOD and DOA of bistatic radar targets; this
method reduces redundancy of the virtual array and im-
proved DOF and estimated target resolution, but this
method required more calculations. Combined with the
traditional ESPRIT algorithm [20], Li et al. proposed a joint
estimation of target DOD and DOA with bistatic CPA
MIMO radar based on virtual aperture expansion in [21].
,is method achieved better estimation performance than
the traditional method, but it did not use discrete virtual
array elements. Recently, a method which interpolated array
elements in CPA was proposed to solve the virtual array hole
problem in [22], but augmented CPA which the method
used cannot nicely reflected the advantage of the interpo-
lated array elements to expand the virtual array aperture. We
propose a joint DOD and DOA estimation of bistatic MIMO
radar for coprime array based on array elements interpo-
lation. ,e method uses augmented CPAs as the transmit
array and receive array and interpolates a small number of
sensors to the particular holes in the virtual array to expand
the aperture. ,en, the method uses the selection matrix to
reconstruct the Toeplitz matrix based on diversity
smoothing to estimate the DODs and DOAs of the sources.

,e remaining sections are as follows: in Section 2, we
reduce the math model of the bistatic CPAMIMO radar. We
deduce the law of hole position and propose a diversity
smoothing algorithm for reconstructing the Toeplitz matrix
to estimate the DODs and DOAs of the targets in Section 3.
We perform the same simulation experiments with the
proposed method and other methods, which clearly illus-
trates the superiority of the method in Section 4. Finally, we
present conclusions for this paper in Section 5.

Notations: we use italicized boldface characters to rep-
resent vectors and matrices in this paper. Superscripts (.)T

and (.)H represent transpose and conjugate-transpose, re-
spectively, diag [·] denotes diagonal matrix, and ⊗ and ∘
denote the Kronecker product and the Hadamard product,
respectively.

2. Mathematical Model

,e conventional bistatic CPA MIMO radar model is pre-
sented in Figure 1. Transmit array and receive array in the
model are augmented CPA which consists of two uniform
linear arrays (ULA).OneULAhas 2M1 − 1 sensors in transmit
array, and red circles represent sensors of subarray 1; another
ULA of transmit array has N1 sensors, and the black circle
represents sensors of subarray 2. Similarly, receive array
contains two ULAs, which, respectively, have 2M2 −1 sensors
andN2 sensors,whereM1 andN1 are twocoprime integers and
M2 andN2 are two coprime integers.,enumber of sensors of
arrays are, respectively, M� 2M1 +N1 − 1 and N� 2M2 +
N2 −1.,eunit interelement spacing of the array is d, which is

thehalfwavelength (λ/2).,esensorpositions are givenby the
following equation:

St � −mN1d|0≤m≤ 2M1 − 1 ∪ 2nM1d|0≤ n≤N1 − 1 ,

Sr � −mN2d|0≤m≤ 2M2 − 1 ∪ 2nM2d|0≤ n≤N2 − 1 .

(1)

Suppose there areK uncorrelated signals in the space, the
DOD and DOA of signals are given by φ � [φ1,φ2, . . . ,φK]

and θ � [θ1, θ2, . . . , θK]. pt � [pt1, pt2, . . . , ptM] represents
the position of the sensors in the transmit array, and pr �

[pr1, pr2, . . . , prN] denotes the position of the sensors in the
receive array. Set the reflection coefficient of signals as
s(t) � [s1(t), s2(t), . . . , sK(t)]T, t � 1, 2, . . . , L, and L rep-
resents the number of snapshots. ,e received signal after
matched filtering is given by the following equation:

x(t) � at φ1( ⊗ ar θ1( , . . . , at φK( ⊗ ar θK(  s(t) + n(t)

� At ∘Ar( s(t) + n(t)

� As(t) + n(t),

(2)

where n(t) represents a matrix composed of Gaussian white
noise and it follows the Gaussian distribution n(t) ∼ (0, σ2).
At and Ar are also given by the following equation:

Ar � ar θ1( , ar θ2( , . . . , ar θk( , . . . , ar θK(  ,

At � at φ1( , at φ2( , . . . , at φk( , . . . , at φK(  ,
(3)

where at(φk) and ar(θk), respectively, denote manifold
matrices, and they are given by the following equation:

at φk(  � e
− j(2π/λ)pt1 sin φk , . . . , e

− j(2π/λ)ptM sin φk 
T
,

ar θk(  � e
− j(2π/λ)pr1 sin θk , . . . , e

− j(2π/λ)prN sin θk 
T
.

(4)

,erefore, the covariance matrix of the received signal R
is given by the following equation:

d

(2M1-1) sensors

k-th target

φk

θk

N1 sensors

N2 sensors (2M2-1)sensors

Receive array

Transmit array

Figure 1: Conventional bistatic CPA MIMO radar model.
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R � E x(t)xH
(t)  � ARsA

H
+ σ2nIMN, (5)

where IMN represents an MN×MN dimensional identity
matrix and Rs denotes the covariance matrix of the received
target.

Rs � E s(t)sH
(t)  � diag σ21, σ

2
2, . . . , σ2k, . . . , σ2K , (6)

where σ2k represents the power of the kth target signal.

3. Joint Diversity Smoothing DOD and DOA
Estimation Algorithm Based on
Interpolated Sensors

3.1. Expansion of Virtual Array by Interpolating Sensors to
CPA Holes. In this section, we will interpolate sensors to
CPA holes to expand a longer virtual array aperture and then
we can obtain a new equivalent vector to execute transmit-
receive diversity smoothing. Assume transmit array and
receive array are identical augmented CPA, and taking
transmit array as an example, sensors distribution is illus-
trated in Figure 2.

,e virtual array is formed by the sum-difference array
of CPA, and the position of virtual sensors Sc is given by the
following equation:

Sc � Sc|Sc � Sct + Scr − Sct + Scr , Sct,
Sct ∈ St, Scr,

Scr ∈ Sr 

� Sc|Sc � Sct − Sct  + Scr − Scr , Sct,
Sct ∈ St, Scr,

Scr ∈ Sr .

(7)

According to (8), the virtual sensors are only generated
by the difference coarray of transmit array and the difference
coarray of receive array when DOD and DOA are estimated,
respectively. ,erefore, (Sct − Sct) corresponds to parameter
φk and (Scr − Scr) corresponds to parameter θk.

,e position of the virtual sensors that are formed by the
difference coarray of transmit array is given by the following
equation:

Std � Std|Std � ± M1nd + N1md( , 0≤m≤ 2M1

− 1, 0≤ n≤N1 − 1},
(8)

where the value range of Std is [−(3M1N1 −M1 −N1),
3M1N1 −M1 −N1].

Similarly, the position of the virtual sensors that are
formed by the difference coarray of receive array is given by
the following equation:

Srd � Srd|Srd � ± M2nd + N2md( , 0≤m≤ 2M2

− 1, 0≤ n≤N2 − 1},
(9)

where the value range of Srd is [−(3M2N2 −M2 −N2),
3M2N2 −M2 −N2].

For transmit array, M1 and M2 can determine the dis-
tribution of the virtual sensors and the length of the virtual
array aperture, and the distribution of virtual sensors that
are formed by augmented CPA is shown in Figure 3.

InFigure3,blackfilledcircles representvirtual sensors and
dotted circles represent virtual holes. Although augmented

CPA can form more virtual sensors than traditional CPA,
some virtual holes are located next to the center point.
,erefore, other continuous virtual sensors cannot form a
virtual array with a larger aperture.

With the purpose of settling the question, we present a
method that utilizes a small number of sensors to interpolate
a part of virtual holes. ,e originally discontinuous virtual
array will become continuous to achieve more DOF.

We can know a special kind of holes next to the center
point in Figure 3 and call them central virtual holes. Central
virtual holes are continuous virtual holes which locate next
to the center point. When M1 � 2 and M2 � 3, there are two
central virtual holes in the virtual array; when M1 � 3 and
M2 � 4, there are four central virtual holes in the virtual
array; and when M1 � 3 and M2 � 5, there are four central
virtual holes in the virtual array.

Assume we use sensors to interpolate the virtual central
holes where next to the center point completely. ,en, a new
distribution of virtual sensors emerges in Figure 4.

From Figure 4, black filled circles represent virtual
sensors, dotted circles represent virtual holes, red filled
circles represent sensors, and red circles represent new
formed virtual sensors. We found that we only need to
interpolate the virtual holes located next to the center point
to make the virtual array continuous. For example, when
M1 � 3 and M2 � 4, we use two sensors to interpolate the
virtual central holes which are located in {1d,2d}. ,en, the
array can form additional new virtual sensors which are
located in {−1d,−2d,±5d}. Most of the original virtual holes
are interpolated. Comparing Figure 3 with Figure 4, it can be
found that the interpolated virtual array is a continuous
virtual array that all the central virtual holes are replaced
with sensors or new virtual sensors, and the DOF is 47.
,erefore, we deduce the number of central virtual holes and
DOF for different augmented CPAs from continuous ex-
periments and find that the number of virtual holes to be
interpolated is only related to M1. ,e derived regular
pattern and formulas are shown in Table 1.

In general, we interpolate (M1 − 1) sensors into the
virtual holes which located next to the center point, the
original virtual array becomes continuous, virtual array
apertures become larger to (4M1N1 − 1), and DOF also
becomes larger to (4M1N1 − 1).

3.2. Reconstructing Toeplitz Matrix Algorithm Based on Di-
versity Smoothing. In recent years, scholars have proposed
some spatial smoothing algorithms for bistatic radars in
[23–25]. ,is paper chooses an algorithm that reconstructs
the Toeplitz matrix based on diversity smoothing.

N1d

M1d-(2M1-1)
…

…

N1-1

0

0 1 2

-1-2

Figure 2: Sensors distribution of augmented CPA.
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After the sensors shave been interpolated, there are M

continuous virtual sensors in the virtual array of transmit
and N continuous virtual sensors in the virtual array of
receive, and pt � [pt1, pt2, . . . , p

t M] denotes the sensors’
position in the virtual transmit array and
pr � [pr1, pr2, . . . , p

rN] denotes the sensors’ position in the
virtual receive array. ,erefore, the steering matrices of
transmit and receive virtual array are given by the following
equation:

At � at φ1( , at φ2( , . . . , at φk(  ,

Ar � ar θ1( , ar θ2( , . . . , ar θk(  ,
(10)

where at
(φk) and ar(θk), respectively, denote manifold

matrices, and they are given by the following equation:

at φk(  � e
− j(2π/λ)pt1 sin φk , . . . , e

− j(2π/λ)p
tM

sin φk
 

T

,

ar θk(  � e
− j(2π/λ)pr1 sin θk , . . . , e

− j(2π/λ)p
rN

sin θk
 

T

.

(11)

A new covariance matrix R of the received signal can be
formed by processing continuous virtual sensors. However,
the ideal R is hard to get in practice, so R is usually estimated
by using L available snapshots and it is given by the following
equation:

Virtual sensor
Virtual holes

1 2-10-2 5-5-24 24

M1=2, N1=3

M1=3, N1=4

M1=3, N1=5

-30-37 0 3730

-26 26

-10-12 12

Figure 3: Distribution of virtual sensors and virtual holes.

M1=2, N1=3

M1=3, N1=4

M1=3, N1=5
1-10-2 5-5-24 24

-30-37 0 3730

-26 26

Virtual sensor
Virtual holes

Antenna sensor
New virtual sensor

1-10-12 12

2

Figure 4: ,e new distribution of virtual array after interpolating sensors.

Table 1: Number of elements for augmented CPA.

M1 N1 M Hs Hf M DOF

N1 �M1 + 1

2 3 6 2 1 23 23
3 4 9 4 2 47 47
4 5 12 6 3 79 79

. . . . . . . . . . . . . . . . . . . . .

N1�M1 + 2

3 5 10 4 3 59 59
5 7 16 8 4 139 139
7 9 22 12 6 251 251

. . . . . . . . . . . . . . . . . . . . .

N1 �M1 + 3

4 7 14 6 3 111 111
5 8 17 8 4 159 159
7 10 23 12 6 279 279

. . . . . . . . . . . . . . . . . . . . .

N1 �M1+ L M1 N1 2M1 +N1 − 1 2(M1 − 1) M1 − 1 4M1N1 − 1 4M1N1 − 1
M denotes the number of array sensors,Hs denotes the number of central virtual holes located next to the center point,Hf denotes the number of interpolated
sensors, M denotes the number of continuous virtual sensors, and DOF denotes the DOF after interpolating the holes.
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R �
1
L



L

i�1
x(t)x

H
(t), (12)

where x(t) is the new received signal of the virtual array.
,e new covariance matrix is now vectorized to obtain a

new equivalent vector as follows:

r � Ap + σ2ni � At ∘ Ar p + σ2ni, (13)

where p � [σ21, σ22, . . . , σ2K] andi is a ( M N × 1) vector whose
elements are all zeros except for the ( M N + 1)/2th row.

In fact, we regard vector r as the received signal of a
single snapshot in bistatic MIMO radar. According to the
principles of spatial smoothing algorithms, the number of
smoothing times should be no less than the number of
overlapping subarrays to form a full rank covariance matrix.
Since the number of virtual sensors is always an odd number,
the best smoothing results are achieved when the number of
smoothing times is equal to the number of overlapping
subarrays. ,erefore, we divide the virtual array of transmit
into Ms overlapping subarrays to carry out Ms smoothing
and divide the virtual array of receive into Ns overlapping
subarrays to carry out Ns smoothing. ,us, M � 2Ms − 1
and N � 2Ns − 1.

Next, suppose there are two selection matrices St
m and Sr

n

corresponding to the virtual array of transmit and the virtual
array of receive, which are given by the following equations:

St
m � OMs× Ms−m( )IMs×Ms

OMs×(m−1) , (14)

Sr
n � ONs× Ns−n( )INs×Ns

ONs×(n−1) , (15)

where m � 1, . . . , Ms and n � 1, . . . , Ns. OMs×(Ms−m) denote
the Ms × (Ms − m) zero matrix, IMs×Ms

denote Ms × Ms

identity matrix, andOMs×(m−1) denote the Ms × (m − 1) zero
matrix. Sr

n is similar.
Utilize selection matrices St

m and Sr
n to form the

transmission smoothing and receiving smoothing on the
equivalent vector r. ,en, we can change the values ofm and
n to achieve the smoothing of overlapping subarrays in the
virtual array, m and n represent smoothing times. So sub-
vector r(m, n) is given by the following equation:

r(m, n) � St
m ⊗ S

r
n r

� St
m

At  ∘ Sr
n

Ar p + σ2ni(m,n)

� At ∘Ar( Ψm−1
t Ψn−1

r p + σ2ni(m,n),

(16)

where At � St
1

At, Ψt � diag[e− jπ sin φ1 , . . . , e− jπ sin φk ],
Ar � Sr

1
Ar, Ψr � diag[e− jπ sin θ1 , . . . , e− jπ sin θk ], and i(m,n) is

the corresponding noise vector. ,e reconstructed Toeplitz
matrix is given by the following equation:

RT � r(1,1), r(1,2), . . . , r 1,Ns( ), r(2,1), . . . , r Ms,Ns( ) 

� At ∘Ar( Rs At ∘Ar( 
H

+ σ2nIMsNs

� AsRsA
H
s + σ2nIMsNs

,

(17)

where As represents the new steering matrix.
,erefore, the covariance matrix of each sub-array is

given by the following equation:

R(m,n) � r(m,n)r
H
(m,n)

� AsΨ
m−1
t Ψn−1

r ppHΨ1−m
t Ψ1−n

r AH
s + σ4ni(m,n)

i
H

(m,n)

+ σ2nAsΨ
m−1
t Ψn−1

r pi
H

(m,n) + σ2ni(m,n)p
HΨm−1

t Ψn−1
r AH

s .

(18)

,e values ofm and n are changed to achieve the effect of
spatial smoothing in the virtual array and the spatial
smoothing algorithm is used to solve the single snapshot
problem caused by the vectorized covariance matrix. ,e
spatial smoothing matrix is given by the following equation:

R �
1

MsNs



Ms

m�1


Ns

n�1
R(m,n)

�
1

MsNs

AsRsA
H
s AsRsA

H
s + σ4nIMsNs

+ 2σ2nAsRsA
H
s .

(19)

,rough comparison, we find that R and Toeplitz matrix
RT have the same form, so the spatial smoothing matrix R is
also given by the following equation:

R �
1

MsNs

R2
T. (20)

When performing spatial spectrum estimation, we
choose the RD-MUSIC algorithm instead of the ESPRIT
algorithm. Although we use the ESPRITalgorithm for spatial
spectrum estimation to effectively reduce the complexity of
the algorithm, the estimated DODs and DOAs of multiple
targets need to be matched manually, whereas the RD-
MUSIC algorithm can automatically match the DODs and
DOAs of targets.

,e RD-MUSIC algorithm is combined with R to esti-
mate the spatial spectrum, and the spatial spectrum function
is given by the following equation:

fmusic �
1

at(φ)⊗ ar(θ) 
HEnE

H
n at(φ)⊗ ar(θ) 

, (21)

where En denotes signal subspace of the covariance matrix.
at(θ) ⊗ ar(θ) is also given by the following equation [25]:

at(φ)⊗ ar(θ) � at(φ)⊗ IN ar(θ). (22)

,erefore, the spatial spectrum function is also given by
the following equation:

fmusic �
1

ar(θ)
H

at(φ)⊗ IN 
HEnE

H
n at(φ)⊗ IN ar(θ)

�
1

ar(θ)
HV(φ)ar(θ)

,

(23)

where V(φ) � [at(φ)⊗ IN]HEnEH
n [at(φ)⊗ IN]. ,e DOA of

the kth signal is given by the following equation:

Mathematical Problems in Engineering 5



θk � argmin
1

eT
1V

− 1 φk( e1
� argmax eT

1V
− 1 φk( e1 , (24)

where e1 � [1, 0, . . . , 0]T.
Similarly, ,e DOD of the kth signal is given by the

following equation:

φk � argmin
1

eT
1V

− 1 θk( e1
� argmax eT

1V
− 1 θk( e1 . (25)

,e steps of the proposed Algorithm 1 are as follows.

4. Simulation Results

We assume the distance of array sensors M1 �M2 � 2,
N1 �N2 � 3, the number of transmit and receive array
sensorsM�N� 6, and the original positions of transmit and
receive sensors are [−9d, −6d, −3d, 0d, 2d, 4d]. ,e number
of central virtual holes to be interpolated is Hf � 1, and the
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Figure 5: Results of detecting 15 targets by different methods: (a) CPA with DSIAS algorithm, (b) CPA with IVAE algorithm in [19], (c)
CPA with CDS algorithm in [21], and (d) ULA with RD-MUSIC algorithm in [26].

Input: receive signal: x(t)�As(t)+n(t), t� 1,2, . . ., L;
Output: DODs and DOAs: φk, θk , k � 1, 2, . . . , K;
Step:

(1) estimate covariance matrix R based on continuous virtual array as in (12);
(2) build the selection matrix of the transmit array St

m as in (14) and the selection matrix of receive array Sr
n as in (15);

(3) rebuild a new Toeplitz matrix RT as in (17);
(4) form a spatial smoothing matrix R as in (18);
(5) utilize the RD-MUSIC algorithm, to estimate DODs and DOAs φk, θk ;

ALGORITHM 1: Array elements interpolation algorithm.
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positions of transmit and receive sensors after interpolating
the holes are [−9d, −6d, −3d, 0d, 1d, 2d, 4d]. ,ere are
continuous virtual sensors in transmit array and receive
array, overlapping subarrays of transmit and receive array,
and smooth times are Ms�Ns� 12. ,e signals in the
simulation are incoherent.

Compare the performance in target estimation of four
methods which include diversity smoothing algorithm based
on interpolating sensors (DSIAS) in this article, interpola-
tion virtual array element algorithm (IVAE) in [19], con-
ventional CPA diversity smoothing algorithm (CDS) in [21],
and conventional ULA RD-MUSIC algorithm in [26]. It
includes three specific simulation experiments, namely,
target number detection and angular resolution. In the
simulation of root mean square error (RMSE), we not only
compared the above-given methods, we also added a unitary
dual-resolution ESPRIT (U-ESPRIT) method [27] to the
comparative simulation.

4.1. Number of Detectable Targets. In this part, the signal-to-
noise ratio (SNR) is set as 10 dB and the number of snapshots
is set as 200. ,ere are 15 signal targets distributed over the
range [−70°, 70°], where located at φ � [−70°， −60°, −50°,
−40°, −30°, −20°, −10°, 0°, 10°, 20°, 30°, 40°, 50°, 60°,70°] and

θ � [−70°, −60°, −50°, −40°, −30°, −20°, −10°, 0°, 10°, 20°, 30°,
40°, 50°, 60°,70°]. Figure 5 shows the results of DOD and
DOA joint estimation of targets. ,e four pictures in Fig-
ure 5 represent the algorithms in this article, [18, 20], and
[25], respectively. As shown in Figure 5, it shows the contour
map of the spatial spectrum peak, red circles represent the
true direction of 15 targets and the spectral peak contour
represents the estimated direction of 15 targets. ,e spectral
peak contour completely overlaps in the red circle in
Figure 5(a), so the DSIAS algorithm can accurately estimate
15 targets. Other methods’ spectral peak contours do not
overlap completely in the red circle. ,e DSIAS algorithm is
better than other methods for a number of detectable targets.

4.2. Angular Resolution. In this part, with the purpose of
comparing the performance of the four algorithms in an-
gular resolution, assume that the SNR is 10 dB and the
number of snapshots is 200. Figure 6 shows situations of the
angular resolution comparison of different algorithms. ,e
position of two adjacent targets are (φ1, θ1) � (11∘, 11∘) and
(φ2, θ2) � (13∘, 13∘), and the red line denotes the real target’s
direction. From the simulation results, we can also see that
the MIMO radar which uses the DSIAS algorithm can es-
timate the targets well under the condition of two targets
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Figure 6: Results of the angular resolution of different methods: (a) CPA with DSIAS algorithm, (b) CPA with IVAE algorithm in [19], (c)
CPA with CDS algorithm in [21], and (d) ULA with RD-MUSIC algorithm in [26].
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close to each other, and the other three algorithms cannot
accurately distinguish two similar targets.

4.3. Root Mean Square Error (RMSE). We compare the
RMSEs of different algorithms. RMSE is a common standard
that reflects the accuracy of angle estimation, and the average
RMSE is defined by the following equation:

RMSE �

���������

1
2 × QK



Q

i�1






K

k�1
φi

k − φk 
2

+ θ
i

k − θk 
2

  , (26)

where Q denotes Monte Carlo simulation times, K denotes
the number of targets, and (φi

k, θ
i

k) denotes the joint esti-
mated DOD and DOA of the kth target for the ith Monte
Carlo simulation, i� 1,2, . . ., Q. Estimation number of
targets will affect the estimation accuracy. In order to reflect
the comprehensiveness of the simulation results, we carried
out simulation experiments for two targets and four targets,
respectively, and the results of the simulation experiments
are shown in Figures 7 and 8.

Figure 7 shows the relationship of RMSEwith SNRand the
number of snapshots under the condition of detecting two
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Figure 7: RMSE versus SNR and number of snapshots for different methods (two targets): (a) RMSE versus SNR for different methods and
(b) RMSE versus a number of snapshots for different methods.
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Figure 8: RMSE versus SNR and number of snapshots for different methods (four targets): (a) RMSE versus SNR for different methods and
(b) RMSE versus a number of snapshots for different methods.
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targets, and the targets locate at (φ1, θ1) � (10∘, 15∘),
(φ2, θ2) � (20∘, 25∘). Figure 7(a) depicts the variation of the
RMSEcurvewith SNR,where the number of snapshots is set as
200. ,e DSIAS algorithm has a higher estimation accuracy
than other methods at low SNR but has similar performance
with the other two methods [19, 21] at high SNR. Figure 7(b)
depicts the variation of the RMSE curve with a number of
snapshots,where theSNR is set as 10.,eDSIASalgorithmhas
high estimation accuracy at a different number of snapshots.

As shown in Figure 7, the accuracy of all four algorithms
is high when estimating two target angles, and the estimation
accuracy of the DSIAS algorithm proposed in this paper is
only slightly higher than the others. Figure 8 presents the
relationship of RMSE with SNR and the number of snap-
shots under the condition of detecting four targets, and the
targets locate at (φ1, θ1) � (10∘, 15∘), (φ2, θ2) � (20∘, 25∘),
(φ3, θ3) � (30∘, 35∘), and (φ4, θ4) � (40∘, 45∘). Figure 8(a)
depicts the variation of the RMSE curve with SNR, where
the number of snapshots is set as 200. In contrast to the
previous experiments, the DSIAS algorithm clearly performs
better than other methods in estimation accuracy.
Figure 8(b) depicts the variation of the RMSE curve with a
number of snapshots, where the SNR is 10. It can be found
that the DSIAS algorithm estimates more targets with
greater accuracy by comparing two experiments which
detects a different number of targets.

5. Conclusions

We propose a joint estimation of the DOD and DOA
method that interpolate a small number of sensors to a
specific location in an augmented CPA virtual array. ,e
method can expand the aperture of the virtual array and
maintains the maximum DOF of augmented CPA despite
the virtual holes which cannot be exploited in the virtual
array. Meanwhile, we reconstructed the Toeplitz matrix
based on diversity smoothing to obtain a spatial smoothing
matrix. Finally, we combined the RD-MUSIC algorithm
with the spatial smoothing matrix to estimate the spatial
spectrum and accurately estimate the DOD and DOA of the
targets. Simulation results illustrate the proposed method
has better performance than other methods.
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