
Research Article
Three-Dimensional Fluctuating Flow of a Second-Grade
Fluid along an Infinite Horizontal Plate with Periodic Suction

Mehwish Zafar ,1 Muhammad Afzal Rana ,1 and Atifa Latif 1,2

1Department of Mathematics and Statistics, Riphah International University, Sector I-14, Islamabad 44000, Pakistan
2Department of Mathematics, GC University Faisalabad, Faisalabad, Pakistan

Correspondence should be addressed to Muhammad Afzal Rana; mafzalrana@gmail.com and Atifa Latif; aatifalatif@gmail.com

Received 10 June 2022; Revised 31 August 2022; Accepted 3 October 2022; Published 29 October 2022

Academic Editor: Amer Rasheed

Copyright © 2022Mehwish Zafar et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Laminar �ow control plays a vital role in reducing drag resulting enhancement in the vehicle power by a signi�cant amount.
�eoretical and experimental studies have proven that the transition from laminar to turbulent �ow (causing the drag coe�cient
to enhance) may be delayed/prevented by the suction of the �uid from the boundary layer to the wall. �e purpose of this work is
to study the e�ects of periodic suction on the unsteady 3-dimensional �uctuating �ow of a second grade incompressible �uid
�owing laminarly over a horizontal porous in�nite plate.�e plate is subjected to a sinusoidal transverse suction velocity while the
free stream velocity oscillates in time about a constant mean. �e �ow turns out to be 3-dimensional because of transverse
direction of the periodic suction velocity. By the series expansion method, analytic expressions for transient velocity, skin friction
components, and pressure are attained. Impact of nondimensional parameters evolving in the mathematical model of the problem
on these physical quantities are visualized graphically and discussed analytically. �e velocity component u is found to be rising
with a growth in suction parameter α. �e pressure is noted to be growing with a growth in Reynolds number Re. Further, due to
suction at the plate and transient free stream velocity, the pressure increases near the plate and then reaches to a steady value far-
o� the plate. �e skin friction along the main �ow is noticed to be decreasing with the rise in α for 0.5≤Re≤ 1.4, however, an
exponential rise is observed for Re> 1.4.�e skin friction along the cross �ow is noted to be enhancing for the rising values of
suction parameter and elastic parameter. �e present results have excellent agreement with previous published results in the
limiting sense. �is study is bene�cial in designing and manufacturing laminar �ow control system to enhance the vehicle
power requirement.

1. Introduction

Studies are in progress to develop a laminar control system
for the purpose of tumbling vehicle power requirements [1].
It has been proved experimentally and theoretically that the
laminarization of the boundary layer over a pro�le lessens
the drag resulting enhancement in the vehicle power re-
quirement by a very substantial amount. For the sake of
arti�cially controlling the boundary layer, many methods
have been developed sinceWorldWar II [1].�eoretical and
experimental studies have proven that the transition from
laminar to turbulent �ow (causing the drag coe�cient to
enhance) may be delayed/prevented by the suction of the
�uid from the boundary layer to the wall. Geometry and

con�guration of the slits through which the suction takes
place is very important and has been deliberated broadly by
various scholars. Holes of numerous sizes and slots have
received extensive consideration. �ere is an impervious
segment between the suction openings for all con�gurations,
and it is hypothetically apposite to imagine such an area with
openings as a region of changing continuous suction. �e
transverse sinusoidal suction velocity approach is one of the
possible suction distributions. �is work is oriented with the
behavior of such a sinusoidally changing suction distribu-
tion over a surface and its impact on the �ow.

�e oscillatory �ows are ever momentous from the
technological point of view and hence possess various real-
world applications. Oscillatory unsteady �ows, therefore,
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play a vital role in aerospace technology, chemical engi-
neering, and turbo machinery. Lighthill [2] initiated the
study of such flows in 1954 and presented the free stream
oscillations effects on an incompressible viscous fluid flow
over an infinite plane. In 1955, Stuart [3] extended further
this work for an oscillatory 2-dimensional laminar flow over
an infinite porous plane with constant suction. It was ob-
served that the flow in the neighbor of the plate is reversed
constructing the boundary layer to detach from it. Further,
in 1966, Messiha [4] analyzed oscillatory two-dimensional
flow when suction depending on time is subjected to the
plane. Soundalgekar [5] investigated the effects of free
convection on the flow past an infinite vertical oscillatory
plate with the wall temperature in 1979. Raptis [6], in 1985,
explored the unsteady flow problem through a porous
medium circumscribed by a porous infinite plane subjected
to a temperature (variable) but on a constant suction. Singh
and Rana [7] performed study of the heat transfer and a
viscous fluid flow through a porous medium circumscribed
by a plane at constant temperature and presented effects of
periodic suction velocity on the heat transfer in 1992. Singh
[8] analyzed an incompressible viscous fluid flow through a
porous medium circumscribed by a porous infinite plane in
the presence of periodic suction with free stream velocity
oscillating with respect to time about a nonzero constant
mean in 1992. Considerable prevention of separation in the
porous medium was noted. Later on, in 1993, Helmy [9]
explored the electrically conducting fluid flow across an
infinite plate wall with variable suction. In 2006, Guria and
Jana [10] analyzed Couette unsteady flow of an incom-
pressible viscous fluid when the upper plate (moving uni-
formly) is subjected to injection (uniform) while the lower
plate (stationary) is subjected to a periodic suction. Decrease
in flow velocity (main) with an increase in frequency pa-
rameter was noted. However, a rise in cross flow velocity
magnitude with a grow in frequency parameter was pre-
sented. In 2010, Ahmed [11] studied unsteady three-di-
mensional flow of an incompressible viscous fluid past a
porous vertical infinite plate with heat transfer and viscous
dissipation. Workers [12–14] scrutinized transient 3-di-
mensional flow of viscous fluid under different physical
conditions. Gersten and Gross [15] examined heat flow
along a plane wall with periodic suction under the as-
ymptotic flow conditions for downstream and determined
the wall shear stress components. )e researchers [16–18]
analyzed technically the fluctuating flow of some Newtonian
fluids through porous mediums with different rotating ge-
ometries, and they established adequate results. Mabood
et al. [19] examined the effects of thermal radiation and
melting heat transfer in a stagnation point flow towards a
shrinking/stretching surface. Numerical solutions based on
the Runge–Kutta fourth-fifth order method for the resulting
nonlinear problems were obtained.

All above mentioned studies have been performed for
Newtonian fluids. However, majority of fluids used in in-
dustries are non-Newtonian ones. )erefore, without the
study of non-Newtonian fluids, the problems associated with
industries issues remain unaddressed. Shoaib et al. [20]
dissected steady 3-D flow of a second grade fluid over an

infinite horizontal plane subjected to a sinusoidal transverse
suction velocity. )ey found the existence of backflow. Rana
and Latif [21] presented 3-dimensional free convective
second-grade fluid flow with periodic permeability and heat
transfer through a porous medium. )ey noted a rise in
pressure because of fluid thickening. Bhatti et al. [22] an-
alyzed electro-osmotic flow of Jeffery fluid in the presence of
small particles moving in the sinusoidal form in a Darcy–
Brinkman–Forchheimer medium and transversely applied
magnetic field. Riaz et al. [23] presented the exact solutions
of non-Newtonian multiphase fluid flow through peristaltic
pumping characteristics in an annulus having complaint
walls and applied magnetic field. It was concluded that
applied magnetic field decreases the velocity of both the fluid
and the particles flow. Gireesha et al. [24] analyzed the effect
of nanoparticles on a steady MHD flow and heat and mass
transfer of Eyring–Powell fluid in two lateral directions over
a convectively heated stretching sheet. Similarity transfor-
mations were employed to reduce the governing partial
differential equations into a set of nonlinear ordinary dif-
ferential equations which were solved numerically using the
fourth-fifth order Runge–Kutta–Fehlberg method with the
shooting technique. Mahanthesh et al. [25] scrutinized
numerically the combined effects of nonlinear thermal
convection and radiation in 3D boundary layer flow of
Maxwell nanofluid over a stretching sheet. )e solutions
were computed via the homotopy procedure. It was noted
that the nanoparticle volume fraction and temperature
profiles are stronger for the case of solar radiation in
comparison with the problem without radiation. Shafiq et al.
[26] examined the second grade bioconvective nanofluid
flow with the buoyancy effect and chemical reaction. )e
Brownian motion and thermophoretic mechanisms along
with Newtonian heating were also considered. Mass flux was
found to be enhancing function of both Brownian diffusion
parameter and Lewis number. Mabood et al. [27] studied
rheological aspects on the micropolar fluid model by sim-
ulating the reactive flow from a continuously moving flat
plate. )e model was developed employing Brownian mo-
tion, thermophoretic diffusion, and chemically reactive
species. It was found that the presence of thermophoresis
and Brownian motion is more effective to improve the heat
transportation phenomenon. Shamshuddin et al. [28]
scrutinized the magnetized flow of Casson nanofluid past a
Riga surface with nonlinear radiative, uneven heat sink/
source, thermophoretic movement, and chemical reaction.
)e analysis revealed that an increment in the Casson term
causes a rise in the temperature profile for CuO and MgO
nanofluid and dominant behavior is noted in case of CuO
nanofluid on comparing with MgO nanofluid.

Above mentioned studies were carried out for steady
flows of non-Newtonian fluids; however, oscillatory un-
steady flows play a vital role in aerospace technology, turbo
machinery, and chemical engineering. )e objective of this
study is to analyze periodic suction velocity effect on the 3-D
flow of a second-grade incompressible fluid flowing lami-
narly over a horizontal infinite plane with a free stream
oscillatory velocity. To the best of authors’ information, no
such investigation has been carried out. Basically, laminar
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flow control performs a vital role in reducing drag resulting
enhancement in the vehicle power by a significant amount;
therefore, the present study is relevant to various engi-
neering sciences applications, particularly, relevant to
aeronautical engineering.

2. Mathematical Formulation

Consider an unsteady flow of a second grade incompressible
fluid along an infinite porous plate lying horizontally on the
x∗z∗ − plane with x∗ − axis along the plate, being the di-
rection of the flow. )e y∗ − axis which is directed into the
fluid is along normal to the plate. All fluid physical quantities
are not dependent of x∗ due to the plate infinite length in
x∗ − direction [11, 15].)e flow, however, ruins 3-D because
of the transverse sinusoidal suction velocity [11, 15]:
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where (V0 < 0) is suction velocity, l is the wave length of the
suction distribution, and ∈ (≪ 1) is the amplitude of the
suction variation.

)e continuity equation and momentum equation re-
spectively governing the fluid flow are

∇.V
→

� 0, (2)

ρ
dV

→

dt
� ∇.􏽥τ, (3)

where

V
→

� u
∗

y
∗
, z
∗
, t
∗

( 􏼁, v
∗

y
∗
, z
∗
, t
∗

( 􏼁, w
∗

y
∗
, z
∗
, t
∗

( 􏼁􏼂 􏼃, (4)

is velocity field, and the Cauchy stress tensor 􏽥τ for the second
grade fluid model [29–31] is
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For the model (5) to meet the assumption that the
specific Helmholtz free energy is a minimum in equilibrium
and to be well-matched with the thermodynamics in the
sense that all motions meet the Clausius–Duhem inequality
[31], then

α1 ≥ 0, μ≥ 0, α1 + α2 � 0. (7)

)e equations (2) and (3) in view of Equations (4)–(7)
yield
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)e appropriate boundary conditions [11] are
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where n∗ is frequency of free stream oscillation and t∗

denotes time.

3. Dimensionless Equations
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)e corresponding boundary conditions (12) reduce to
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It is wealth mentioning that the set of nonlinear partial
differential equations (16)–(18) reduce to momentum
equations of [11] for non-Newtonian parameter K⟶ 0
and momentum equations of [21] under identical physical
conditions.

4. Solution

As the amplitude ∈≪ 1, we take up solutions for the
equations (15)–(18) in the vicinity of the plate in the form:

F(y, z, t) � F0(y) + ∈ F1(y, z, t) + ∈2F2(y, z, t) + · · · ,

(20)

where F stands for any u, v, w , andp.

For ∈∈ � 0, the problem becomes the 2-dimensional
steady flow having constant suction at the plate. Plugging in
the series (20) into equations (15)–(19), the zeroth order
equations in ∈ are as follows and equation (15) yields
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)e differential (23) has order higher than the available
boundary conditions as a result of elastic parameter K. For
unique solution of the differential equation, three boundary
conditions are required. To resolve this issue, we expand
solution u0 in the power series of K(≪ 1) such that
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Now, solving the boundary value problem (25), we get
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u00(y) � 1 − e
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+ K(αRe)
3
ye

αRey
. (30)

When ∈≠ 0, the substitution of equation (20) for u, v, w

into the equations (15)–(19) and comparison of the coeffi-
cients of ∈ yields partial differential equations that is given by

zv1

zy
+

zw1

zz
� 0, (31)

n

Re

zu1

zt
+ v1

zu0

zy
+ α

zu1

zy
�

1
Re

z
2
u1

zy
2 +

z
2
u1

zz
2􏼠 􏼡 +

in2

Re
e

int
+ K α

z
3
u1

zy
3 + α

z
3
u1

zy zz
2 + v1

z
3
u1

zy
3􏼠 􏼡, (32)

n

Re

zv1

zt
+ α

zv1

zy
� −

zp1

zy
+

1
Re

z
2
v1

zy
2 +

z
2
v1

zz
2􏼠 􏼡 + Kα

z
3
v1

zy
3 +

z
3
v1

zy zz
2􏼠 􏼡, (33)

n

Re

zw1

zt
+ α

zw1

zy
� −

zp1

zz
+

1
Re

z
2
w1

zy
2 +

z
2
w1

zz
2􏼠 􏼡 + Kα

z
3
w1

zy
3 +

z
3
w1

zy zz
2􏼠 􏼡. (34)

Likewise, boundary conditions are

u1 � 0, v1 � α cos πz, w1 � 0 aty � 0,

u1 � e
int

, v1 � 0, w1 � 0, p1 � 0 asy⟶∞.
􏼩. (35)

)e set of differential equations (31)–(34) describe the
unsteady three-dimensional flow. )e equation (32) governs
the main flow while equations (31), (33), and (34) govern the
cross flow.

5. Cross Flow, Main Flow Solutions,
and Pressure

In order to solve the boundary value problems (32)–(35), we
consider the solutions for u1,v1, w1, p1 in the form of fol-
lowing complex notations whose real parts have physical
consequence:

u1(y, z, t) � u11(y)e
int

+ u12(y)cos πz, (36)

v1(y, z, t) � v11(y)e
int

+ v12(y)cos πz, (37)

w1(y, z, t) � − zv11′ (y)e
int

+
1
π

v12′ (y)sin πz􏼒 􏼓, (38)

p1(y, z, t) � p11(y)e
int

+ p12(y)cos πz. (39)

We note that the velocity components (37) and (38)
identically satisfy the continuity equation (31). Moreover,
prime denotes differentiation with respect to y. Setting these
equations into equations (32)–(35) and solving the resulting
partial differential equations to get the solutions for
u1, v1, w1, and p1 given by

u1(y, z, t) � 1 − e
− βy

􏼐 􏼑e
int

+
α2Re

2

π − λ
λ

παRe
−

π
2λαRe

􏼠 􏼡e
− λy

+
π

2λαRe
e

− (λ− αRe)y
−

λ
παRe

e
− (π− αRe)y

􏼢 􏼣􏼢

+ K
Fe

− λy
+ (A − C)e

− (λ− αRe)y
+

(D − B + Ey)e
− (π− αRe)y

− 2Eye
− (λ− αRe)y

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦cos πz,

(40)

v1(y, z, t) �
α

π − λ
πe

− λy
− λe

− πy
􏼐 􏼑cos πz, (41)

w1(y, z, t) �
αλ

π − λ
e

− λy
− e

− πy
􏼐 􏼑􏼠 􏼡sin πz, (42)
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p1(y, z, t) �
αλ

Reπ(π − λ)
KαReλ λ2 − π2

􏼐 􏼑e
− λy

+
α2λ
π − λ

e
− πy

􏼠 􏼡cos πz, (43)

where

λ � −
αRe

2
+

�����������

αRe

2
􏼒 􏼓

2
+ π2

􏽳

,

β � −
αRe

2
+

�����������

αRe

2
􏼒 􏼓

2
+ in2

􏽳

,

A �
(αRe)

4π􏼐 􏼑/(π − λ) + (αRe)
3π(αRe − λ) π2

− (αRe − λ)
2

􏼐 􏼑/(π − λ)2λαRe

(λ − αRe)
2

− αRe(αRe − λ) − π2
,

B �
(αRe)

4π􏼐 􏼑/(π − λ) + (αRe)
3λ(αRe − π) (αRe − π)

2
− π2

􏼐 􏼑/(π − λ)αReπ

(π − αRe)
2

− αRe(αRe − π) − π2
,

C �
π(αRe)

5
(αRe − 2λ)

π − λ
,

D �
λ(αRe)

5
(αRe − 2π)

π − λ
,

E �
πλ(αRe)

6

π − λ
,

F � − A + B + C − D.

(44)

In view of equations (30) and (40), we get

u(y, z, t) � 1 − e
αRey

+ Ky(αRe)
3
e
αRey

+ ∈ 1 − e
− βy

􏼐 􏼑e
int

+
α2Re

2

π − λ
e

− λy π
2λαRe

e
− (λ− αRe)y

−
λ

παRe
e

− (π− αRe)y
􏼠 􏼡􏼢 􏼣􏼢􏼢

+ K
Fe

− λy
+(A − C)e

− (λ− αRe)y
+

(D − B + Ey)e
− (π− αRe)y

− 2Eye
− (λ− αRe)y

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦cos πz

⎤⎥⎥⎥⎥⎥⎦.

(45)

6. Shear Stress Components

Shear stress components in x− and z− directions, respec-
tively, are

Cfx
�

(zu/zy)y�0

αRe
, (46)

or

Cfx
� − 1 + K(αRe)

2
+ ϵ

βe
int

αRe
+ ϵ −

λ
π

−
π
2λ

􏼠 􏼡 +
π(αRe − λ)

2λ
−
λ(αRe − π)

π
􏼠 􏼡􏼢 􏼣

λ
π − λ

􏼢

+
ϵK
αRe

− λ(− A + B + C − D) +(A − C)(αRe − λ)

+(D − B)(αRe − π) − E

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎤⎥⎥⎥⎦,

(47)
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and

Cfz
�
μ(zw/zy)y�0

α
, (48)

or

Cfz
� μλ sin πz. (49)

7. Results and Discussions

In the present study, a 3-dimensional transient flow of a
second grade fluid over a porous plane having periodic
suction and time dependent free stream velocity is
modeled and analyzed theoretically. Analytic expressions
for the velocity field, pressure, and skin friction are
computed by the perturbation technique. On these
physical quantities, the effects of Re (Reynolds number), K
(elastic parameter), a (suction parameter), t (time pa-
rameter), and n (frequency parameter) are visualized
graphically. For the sake of the physical inside into the
problem, the velocity field, skin friction components, and
pressure are conferred by passing on numerical values to
numerous nondimensional parameters arising in the
mathematical model of the problem.

Figure 1 displays the effect of Re, n, t, suction parameter
a, and elastic parameter K on the transient velocity u. In
Figures 1(a)–1(e), one of the parameters varies while all
other nondimensional parameters are fixed. In Figure 1(a),
Re� 8, 10, 15, whereas other parameters are fixed i. e., t� 0.5,
a� − 0.1, n� 5, z� 0, K� 0.05, and ε� 0.05. It is detected that
with the upsurge of the Re, the velocity component u also
upsurges and grasps its maximum value at the boundary for
each value of the Re is taken in this regard. Physically it
meant that inertial forces are overriding the viscous forces.
Moreover, the boundary layer thickness declines with a
growth in Re. Similarly, it is perceived that the velocity
component u (Figure 1(b)) increases with a rise in n. )is
upshot is very effective in the vicinity of the plate. Also, this
is motivating to note that all velocity profiles tend to unity,
away from the plate. Figure 1(c) displays the influence of the
transient number on u. It discloses that an upsurge in time
parameter results in a reduction in u. )is is quite in
agreement with the physical fact that unsteady flow ap-
proaches to steady flow after large time. It is evident that u
(Figure 1(d)) rises with a growth in suction parameter a. In
general, a rise in a leads to decelerate the flow velocity. Of
course, in this case, an enhancement in u is because of the
transient free stream velocity. Figure 1(e) parades the impact
of K on u. It is detected that a growth in K leads to a re-
duction in u, which looks correct physically as an increase in
K results in fluid thickening causing reduction in the
velocity.

Impact of Reynolds number Re, frequency parameter n,
time parameter t, suction parameter α, and elastic parameter
K on u is presented in Figure 2 for z as abscissa. It is observed
that a growth in Re (Figure 2(a)) leads to enhance the
amplitude of oscillation and consequently enhancement in
main flowwhich is in agreement with the results discussed in

the Figure 1(a). )e similar behavior is noted for the suction
parameter on u (Figure 2(d)). It is seen from Figure 2(b) that
enhancement in the values of n only shifts the location of
oscillation. Similar impact of t on u is noted (Figure 2(c)). It
is examined from Figure 2(e) that larger value of k rises the
amplitude of oscillation.

Figure 3 illustrates the impact of Re and α on v and w.

)e magnitude of v shrinks with a growth in Re

(Figure 3(a)). Instead, magnitude of v increases for growing
values of α, and this influence is significant near the plate
(Figure 3(c)), and it appears physically true, since it is well
known that the suction impact on the flow is maximum
adjacent to the plate. Further, the velocity component v

becomes stable as y⟶∞. It is detected from Figure 3(b)
that for a fixed value of Re, w rises exponentially adjacent to
the plate, achieves its maximum value, and then declines
rapidly, and ultimately approaches to 0 as y⟶∞. Ad-
jacent to the plate, a parabolic profile is attained. )is ve-
locity component growths with a rise in Re adjacent to the
plate but possesses opposite trend away from the plate.
Physically, it reflects the dominance of inertial forces over
viscous forces adjacent to the plate. However, away from the
plate, viscous forces dominate the inertial forces due to
oscillatory free steam velocity resulting opposite trend of
velocity component w and eventually approaching to zero
far away from the plate. It is viewed from Figure 3(d) that,
for a fixed value of a,w growths exponentially adjacent to the
plate, achieves its optimum (maximum value), then
shrinkages rapidly, and lastly approaches to zero as y⟶∞
. Adjacent to the plate, a parabolic profile is attained. It is also
observed that the suction parameter enhances the velocity
component near the plate which is against the general
conception (suction parameter leads to decelerate velocity).
An enhancement, in fact, in the velocity component near the
plate is because of the transient free stream velocity.

Figure 4 exemplifies the impact of Re and α on v and w

against z as abscissa. It is perceived from Figure 4(a) that an
increase in Re causes a decline in the amplitude of oscillation
resulting reduction in the flow velocity in the y− direction.
Further, the impact of Re on w (Figure 4(b)) is to upsurge the
amplitude of oscillation and consequently enhancement in
velocity component w agree with the results discussed
previously (Figure 3(b)). From Figure 4(d), similar influence
of α on w is noted. )e behavior of α on v is shown in
Figure 4(c). It is found that increasing α just results in shift of
the axis of oscillation.

Figure 5 displays the effect Re,α, and K on the pressure.
In Figure 5(a), Reynolds number is varied, that is, Re� 8, 10,
15 and other existing parameters are fixed, i. e.,
α � − 0.1,z� 0, K� 0.05, and ε� 0.05. )e pressure grows
near the plate with the rise in Re. It shows the dominance of
inertial forces over the viscous forces. Of course, the pressure
attains a steady value far away from the plate. In contrast, the
impact of α is to decline the pressure near the plate
(Figure 5(b)). Moreover, pressure converges to a steady
value away from vicinity of the plate, where the suction effect
vanishes, for increasing values of suction parameter. From
Figure 5(c), it is perceived that the pressure decreases ad-
jacent to the plate whenK is elevated. It is consistent with the
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Figure 1: Impact of all nondimensional parameters on main flow. (a) Impact of Re on u. (b) Impact of n on u. (c) Impact of t on u. (d)
Impact of α on u. (e) Impact of K on u.
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physical result that the boundary layer is thinned by suction
causing reduction in pressure near the plate. Further, similar
to influence of α on the pressure far away from the plate,
pressure again approaches to a steady value away from vi-
cinity of the plate for increasing values of K.

Figure 6 characterizes the impact of Re,α, and K on
pressure against z as abscissa. It is perceived from Figure 6(a)
that growth in Re results in enhancement in the amplitude of
oscillation causing a rise in the pressure. Similar effect of α
(Figure 6(b)) and K (Figure 6(c)) on the pressure is found.
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Figure 2: Impact of nondimensional parameters onmain flow for z as abscissa. (a) Impact ofRe on u. (b) Impact of n on u. (c) Impact of t on
u. (d) Impact of α on u. (e) Impact of K on u.
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Figure 7 typifies Cfx
(nondimensional skin friction

component) in the main flow direction against Re for
numerous values of frequency parameter n, transient
number t, a, and K. Figure 7(a) shows the growing in-
fluence on Cfx

magnitude for increasing values of n. It is
also revealed that there is exponential falloff in the
magnitude of this skin friction component for
0.5≤Re≤ 1.5 up to a certain value depending upon the
value of n taken in this regard and then a rapid rise in the
magnitude of this friction component is observed.
Physically it reflects the dominance role of viscous forces
over inertial forces for the range 0.5≤Re≤ 1.5. Of course,
it is worthwhile to point out that the role of viscous forces
over inertial forces is overturned when Re> 1.5. On the
contrary, the role of t regarding its impact on Cfx

is
inverted (Figure 7(b)). Figure 7(c) portrays the effect of α
upon Cfx

. It is observed that the magnitude of Cfx

decreases for 0.5≤Re≤ 1.4 and then increases exponen-
tially for rising values of α. It shows the dominant role of
viscous forces over the inertial forces in the range
0.5≤Re≤ 1.4 causing decay in Cfx

magnitude. In contrast,
for Re> 1.4, inertial forces overcome the viscous forces
resulting rapid grow in Cfx

magnitude. In Figure 7(d),
similar behavior of K on Cfx

is noted for Re> 1.1, and
increasing values of K has no significant impact for
0.5≤Re≤ 1.1.

Figure 8 is traced for Cfz
(nondimensional skin friction

component) in the z-direction versus Re for various values of
K and α. It is detected that a growth in Re results in growth in
Cfz

magnitude in both cases. Further, the enhancement in
Cfz

magnitude by increasing suction parameter (Figure 8(a))
seems naturally correct as the role of suction is to promote
the resistance in flow causing growth in the skin friction. It is
also detected that increasing elastic parameter results
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Figure 3: Impact of nondimensional parameters on v and w. (a) Impact of Re on v (b) Impact of Re on w. (c) Impact of α on v. (d) Impact of
α on w.
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(Figure 8(b)) in escalation of skin frictionmagnitude. In fact,
an increase in K results in the thickening of fluid causing rise
in skin friction.

8. Remarks

)is analysis aims to explore analytic solutions for 3-
dimensional fluctuating flow of a second grade fluid with
periodic suction. Approximate solutions for u, v, w (ve-
locity field), Cx, Cfz

(skin friction components), and
pressure based upon perturbation are computed and
explored theoretically. As a regular perturbation tech-
nique based upon small parameter existing in the gov-
erning equations, series solutions obtained by this method
always converges. Consequently, analytic solutions for
u, v, w computed by this approach in this work also
converges. )e conclusions of this analysis are as follows:

(i) Velocity component u grows with Re, frequency
parameter n and α, whereas it declines with

increasing time parameter and non-Newtonian
parameter

(ii) v increases with growing values of Re, and it de-
creases for growing values of α, and this impact is
significant near the plate and ultimately it becomes
stable as y⟶∞

(iii) w is noted to be enhancing exponentially adjacent
to the plate, attaining its optimum (maximum)
value, then decreasing rapidly, and ultimately
approaches to 0 as y⟶∞ due to Re and α

(iv) A rise in Re, n, a, and K leads to enhance the
oscillation amplitude and consequently enhance-
ment in u whereas enhancement in transient pa-
rameter causes an inverse effect

(v) )e amplitude of oscillation of cross flow velocity
w upsurges due to enhancement in Re and α
causing intensification in the flow velocity. In
contrast, Re possesses inverse impact on cross flow
velocity v
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Figure 4: Impact of nondimensional parameters on v and w for z as abscissa. (a) Impact of Re on v. (b) Impact of Re on w. (c) Impact of α on
v. (d) Impact of α on w.
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(vi) )e influence of Re is to boost the pressure;
however, α and K possess inverse impact on it

(vii) )e effect of suction parameter α and non-New-
tonian parameter K is to decrease the pressure near
the plate

(viii) )e growth in Re,α, and K results in enhancement
in the amplitude of oscillation causing rise in the
pressure

(ix) Cfx
rises for growing values of n, and the role of t

regarding its impact on Cfx
is inverted

(x) It is observed that Cfx
decreases for 0.5≤Re≤ 1.4

and then increases exponentially for rising values
of α and K

(xi) )e role of viscous forces over the inertial forces
is found to be dominant for 0.5≤Re≤ 1.4; in
contrast, this role is noted to be inverted for
Re> 1.4

(xii) Cfz
enhances for rising values α,K, and Re

(xiii) A growth in Re causes to decline boundary layer
thickness

(xiv) Inertial forces are found to be dominant over
viscous forces adjacent to the plate

(xv) Results of [11] are recovered for non-Newtonian
parameter K⟶ 0

(xvi) Results of Ref. [21] are validated under identical
physical conditions
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Figure 5: Impact of nondimensional parameters on pressure. (a) Impact of Re on p. (b) Impact of α on p. (c) Impact of K on p.
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Abbreviations

English Letters

􏽥A1,
􏽥A2,: Rivlin–Erickson tensors

A1: Constants of integrations
Cfx

: Shear stress along the x-direction (N/m2)

Cfz
: Shear stress along the z-direction (N/m2)

􏽥I: Identity tensor
l: Half-wave length of the periodic suction velocity

(m)

p and
p∞:

Pressure and constant pressure (N/m2)

T: Time (s)

n: Frequency parameter (Hz)

K: Elastic parameter for the second-grade fluid
(dimensionless)

Re: Reynolds number (dimensionless)
U0 : Mean constant free stream velocity (m/s)
V0: Mean constant suction velocity (m/s)
u, v, w: Components of velocity in

x− , y− , z − directions (m/s)

Greek Letters

α: Suction parameter
α1, α2: Material constants (kg/m)

ρ: Fluid density (kg/m3)

∈: Small reference parameter (amplitude)
μ: Coefficient of viscosity (kg/ms)

ϑ: Kinematic viscosity (m2/s)
􏽥τ: Cauchy stress tensor
∇: Gradient operator (1/m).
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Figure 6: Impact of nondimensional parameters on pressure for z as abscissa. (a) Impact of Re on p. (b) Impact of α on p. (c) Impact of K on p.
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Figure 7: Impact of nondimensional parameters on skin friction the along x-axis. (a) Impact of n on skin friction along the x-axis. (b) Impact
of t on skin friction along the x-axis. (c) Impact of α on skin friction along the x-axis. (d) Impact of K on skin friction along the x-axis.
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Figure 8: Impact of nondimensional parameters on skin friction the along the z-axis. (a) Impact of α on skin friction along the z-axis. (b)
Impact of K on skin friction along the z-axis.
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Data Availability

No data were used to support this study.

Additional Points

Various non-Newtonian fluid models such as Jeffery,
Maxwell, Oldroyd-B, etc. (both isothermal and non-
isothermal) are favourite models for future work. Appli-
cability: (Aeronautical Engineering) Designing and
manufacturing laminar flow control system (LFCS) to en-
hance the vehicle power requirement.
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