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A time integration method for the equations of motion is developed based on the Gauss implicit Runge-Kutta method to high-
accurate solving the responses in structural vibration. Te present method possesses the features of unconditional stability and
self-starting and can achieve fourth-order accuracy in displacement, velocity, and acceleration simultaneously. Te algorithm is a
matrix form and no need to iterate in the calculation. Te convergent accuracy is verifed by a numerical example, and the
efectiveness is also verifed by solving the dynamic responses of a vibration isolation system and the vibration responses of a pylon
structure with cyclic loads and earthquake loads.

1. Introduction

Te governing equations of structural dynamics after spatial
discretized by the fnite element method or the boundary ele-
ment method lead to a set of second-order equations of motion
in the time domain. As the implicit time integration methods
generally can use a large time step with the unconditional
stability, they have been developed to solve the equations of
motion, especially for the structural vibration response. Typical
implicit time integrationmethods include theNewmarkmethod
[1], theHouboltmethod [2], theHHT-αmethod [3, 4], the three
parameters optimal (TPO) method [5, 6] (the generalized-α
method [7]), the composite methods [8–10]. Although these
methods can solve the second-order equations of motion di-
rectly, they can only achieve second-order accuracy with the
unconditional stability. Moreover, the acceleration response of
somemethods can only achieve frst-order accuracy [11], such as
the HHT-α method and the TPO method.

To increase the solution accuracy of the equations of
motion, an alternative way is to transform the second-order
diferential equations into frst-order ones. After that, higher

accurate solution method can be developed, such as the
precise time step integration method [12]. Moreover, there
are already some efective algorithms to solve the frst-order
ordinary diferential equations (ODEs), such as the Runge-
Kutta methods family [13], which can achieve an accuracy
order higher than two with the unconditional stability. Te
obstacle to use the Runge-Kutta methods for the equations
of motion is that the complicated algorithm structure in-
creases the computational cost. Nevertheless, if the com-
putational cost is acceptable, a high-order Runge-Kutta
method can be considered.

Te present study aims to develop a high-accurate time
integrationmethod for the structural vibration analysis based on
a Gauss-type implicit Runge-Kutta method. First, the solution
procedure for the equations of motion will be derived, where the
displacement, velocity, and acceleration to be the same order of
accuracy are considered. Second, the high-order accuracy of the
method will be validated. Tird, the efectiveness of the method
in solving complicated problems with high accuracy will be
verifed by somenumerical examples. Finally, the conclusionwill
be drawn.
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2. Governing Equations of Motion

After spatial discretization, the second-order governing
equations of motion can be denoted by [14]

M€u + C _u + Ku � F(t), (1)

where t denote the time; u, _u, and €u denote displacement,
velocity, and acceleration, respectively; M, C, and K denote
the mass matrix, damping matrix, and stifness matrix, re-
spectively; and F(t) denotes the load vector.

Expressing the initial conditions of the displacement and
velocity as u0 and _u0, the initial acceleration can be given by
(1)

M€u0 � −Ku0 − C _u0 + F0,
F0 � F(0).

(2)

Introducing v � _u, the second-order equations of mo-
tion in (1) can be transformed into a frst-order form as

M 0

0 M
 

_u

_v
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F(t)
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3. Two-Stage Fourth-Order Gauss Implicit
Runge-Kutta Method

Te frst-order ODEs can be denoted as

_y � f(y, t), (4)

where y and f are unknown and known function vectors,
respectively.

Discretizing the time domain by time step Δt and as-
suming that yn is known at time tn, yn+1 at time tn+1 � tn + Δt
can be determined by the two-stage fourth-order Gauss
implicit Runge-Kutta (GIRK24) method [13]. Te GIRK24
method solving (4) gives

yn+1 � yn +
1
2
Δt _yα1 + _yα2( , (5)

_yα1 � f yn +
1
4
Δt _yα1 + p1Δt _yα2, tn + p2Δt , (6)
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1
4
Δt _yα2, tn + p4Δt , (7)
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where _yα1 and _yα2 are auxiliary variables.
As _yα1 and _yα2 are fully implicit in the algorithm, Attili

[15] and González-Pinto and Rojas-Bello [16] have devel-
oped some efective solving procedure with iteration for the
second-order initial value problems. Te present study only
considers the structural vibration responses in a linear range,
and a matrix form-solving procedure is developed in the
following.

Te linear frst-order ODEs can be expressed as

A _y � By + φ(t), (9)

or

_y � A− 1By + A− 1φ(t), (10)

where A and B are constant matrices, A is inversible, and
φ(t) is a function of t.

Substituting the GIRK24 method of equation (6) and
equation (7) into equation (9) or equation (10) yields

A _yα1 � B yn +
1
4
Δt _yα1 + p1Δt _yα2  + φ tn + p2Δt( , (11)

A _yα2 � B yn + p3Δt _yα1 +
1
4
Δt _yα2  + φ tn + p4Δt( . (12)

Combining equations (11) and (12) gives

A −
1
4
ΔtB −p1ΔtB

−p3ΔtB A −
1
4
ΔtB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_yα1

_yα2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
�

I

I

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Byn +

φ tn + p2Δt( 

φ tn + p4Δt( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (13)

Denoting y � [uT, vT]T, equation (3) can be expressed as
the form of equation (9), in which
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M 0

0 M
 ,
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 .

(14)

Substituting equation (14) into equation (13) yields the
GRK24 method for the equations of motion as

M_yα � Kyn + F, (15)

in which
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(16)

Solving _yα from equation (15) and substituting into (5),
the displacement and velocity ( _un � vn) can be updated by

un+1 � un +
1
2
Δt _uα1 + _uα2( ,

vn+1 � vn +
1
2
Δt _vα1 + _vα2( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

To update the acceleration solution €un+1, the equations of
motion at time tn+1 are considered in the present study,
which yields

M€un+1 � −Kun+1 − Cvn+1 + F tn+1( . (18)

As the solution of y in the GIRK24 method is fourth-
order accurate, the displacement and the velocity are fourth-
order accurate as well. Denoting E €un+1 as the error of the
acceleration solution, equation (16) gives

M €u tn+1(  + E €un+1  � −K u tn+1(  + O Δt4  

− C _u tn+1(  + O Δt4   + F tn+1( .

(19)

Substituting (1) at time tn+1 into (19) yields

E €un+1 � O Δt4 , (20)

which indicates that the acceleration can also achieve the
fourth-order accuracy.

4. Accuracy Validation of the Solving Procedure

Te complete solving procedure is determined by equations
(15), (17), and (18), which is self-started and can be solved
step by step.Te displacement, velocity, and acceleration can
be obtained successively. If the acceleration is no need to be
solved, equation (18) can be omitted, and the method de-
generates into the original GIRK24method for the equations
of motion in the frst-order form.

It is indicated that the Gauss kind Runge-Kutta method
possesses desirable properties to the Hamiltonian system,
such as simplecticness [16], and the unconditional stability
to linear systems. Te stability of the GIRK24 can be
inherited from the frst-order type ODEs to the second-
order type equations of motion in linear structural dynamics
analysis. A typical single degree-of-freedom (SDOF) model
is adopted to verify the convergence accuracy of the de-
veloped method in the displacement, velocity, and accel-
eration. Te governing equation of the SDOF model is
considered as

€u + 2ξω _u + ω2
u � 0, (21)

where ξ is the physical damping ratio with ξ � 0.2, ω is the
physical frequency with ω � 2π/T, and the natural period
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Figure 1: Te solution errors of the single degree of freedom
system.
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has T � 1.0. Te initial conditions are u0 � 1.0 and _u0 � 1.0.
Te dimensionless parameters are considered in the SDOF
model.

Figure 1 shows the solution errors of the displacement,
velocity, and acceleration at time t � 0.4 with various time
steps. Te slope of the logarithmic curves equals to the order
of accuracy of the solutions. It can be validated that the
displacement, velocity, and acceleration can achieve fourth-
order of accuracy simultaneously as indicated in the theo-
retical prediction. Terefore, the present developed method
has a higher order of accuracy than the traditional second-
order accurate time integration methods for structural
analysis, especially in the acceleration solutions.

5. Numerical Examples

To verify the high-accurate performance and efciency of the
developed method, numerical examples are performed in
this section. A vibration isolation system and a pylon
structure system are adopted as the examples of practical
applications. Te dynamic response is also solved by the
Newmark-βmethod as a comparison, where the parameters
are chosen to make the method to be second-order accuracy.

5.1. A Vibration Isolation System Model. Figure 2 shows a
vibration isolation system with m � 10kg and k � 40kN/m.
Te external force F0 sin ωt has parameters of F0 � 100N

m

c

F0sin ωt

x

1/2 k 1/2 k

Figure 2: A vibration isolation system model.
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and ω/2π � 50Hz. Te physical damping ratio of 0.1 is
considered, and the initial static condition is adopted. In the
initial period, the dynamic response is dominated by the
transient state response with natural frequencies. Tereafter,
the dynamic response is dominated by the steady-state re-
sponse with external frequencies. Te displacement solu-
tions and their errors are shown in Figures 3 and 4,
respectively, where the solution error is obtained by com-
paring them with the exact solution. It can be seen that the
solution for the present developed method in the steady-
state response period is stable where the magnitudes are not
divergent even for the large time step of Δt � 0.008s, which
is the unconditional stability feature inherited from the
GIRK24 method. Moreover, the solution error is also
bounded in the steady-state response period and is not
higher than the amplitude of the exact solution. For the same
time step, the present developed method shows much lower
solution error than the Newmark-β method. Even if the
former uses four times larger time step, it still shows a more
accurate solution than the latter, see the results of the present
developed method with Δt � 0.004s and Newmark-β
method with Δt � 0.001s. For the steady-state response, the
present method can still have considerably small solution
error at the time points when only three time steps are used
in a period.

5.2.Te Pylon Structure System. Te two-dimensional pylon
structure system [17] shown in Figure 5 is adopted to verify
the stability and accuracy of the developedmethod in solving
complicated structures. Te material properties of the
structure are considered as follows: the density to be
7850 kg/m³ and Young’s modulus to be 2×105MPa. Te
truss members are constructed from two kinds of sections,
where the areas of the section labeled by s are 600mm2 and
the rest of the areas are 3000mm2, and their lengths are
shown in Figure 5. Two lumped masses of 150 kg are applied
at the top-left and top-right joints, respectively. Te two-
dimensional bar element is used to discretize the structure
spatially, see references [17–19] for details, and the weights
of the members are ignored. Te frst two circular fre-
quencies are 43.995 rad/s and 117.769 rad/s, respectively.
Te Rayleigh damping is set as a damping ratio of 2% in the
frst two modes. Two kinds of loading conditions are con-
sidered as follows: (1) two cyclic concentrated forces applied
at the top-left and top-right joints and (2) a ground
earthquake load applied at the bottom of the structure; and
the initial static condition is applied. As the exact solution is
hard to be obtained, the reference solutions are adopted by
the Newmark-β method with a fne time step Δt � 0.0001s.
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Figure 7: Te vertical velocity response of the right mass point.
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5.2.1. Two Joints with Cyclic Forces. Te concentrated forces
applied at the top-left and top-right joints are 120000 sin
(0.5πt) N and 120000 cos (0.5πt)N, respectively. Figures 6–8
show the solutions of the displacement, velocity, and ac-
celeration at the top-right joint, respectively. It can be seen
that the present developed method shows more accurate
solutions than the Newmark-βmethod under the same time
step. Even if the former uses four times larger time step, it
still shows a more accurate solution than the latter, which is
similar to the result in the previous example. Nevertheless,
the present developed method and the Newmark-β method
both show a feature that the error increases with the time
step, and a large time step could lead to an unacceptable
solution error which indicates that a proper time step should
be chosen to compromise an acceptable computational cost.

5.2.2. Ground Earthquake Motion. Te El Centro earth-
quake motion is applied to the system as in reference
[19], and the right direction is set as the positive di-
rection. Te peak response of the top-right joint happens
at about 3.3 s as indicated in reference [19]. Figure 9
shows the acceleration solution near the peak response
point. It can be seen again that the present developed

method shows more accurate solutions than the New-
mark-β method under the same time step. Even if the
former uses four or much times larger time step, it still
shows a more accurate solution than the latter at the time
points. It should be noted that the time step cannot be too
large as the time point of the peak would be skipped. As
an accurate acceleration solution could be very impor-
tant in the structure analysis under the earthquake load
[19], the present developed method can provide a re-
markably accurate solution and can be recommended in
such practical applications.

6. Conclusions

In this study, a high-accurate time integration method is
proposed for solving the structural vibration responses. Te
method is derived from the two-stage fourth-order Gauss
implicit Runge-Kutta (GIRK24) method for the frst-order
ODEs and is extended and developed for the equations of
motion. Te merits of the presented method are as follows:
(1) the solving and updating formulations for the dis-
placement, velocity, and acceleration are derived explicitly;
(2) the method possesses the unconditional stability; (3) self-
starting; and (4) the method can achieve fourth-order ac-
curacy in displacement, velocity, and acceleration simulta-
neously. Te numerical properties are validated by the
theoretical analysis and numerical examples. Compared
with the Newmark-β method, the present method needs to
solve a higher-order matrix equation. Nevertheless, the
present method is desirable and has advantages in solving
high-accuracy demanded problems, such as the structure
responses analysis under earthquake.
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