Research Article
Solution Expressions of Discrete Systems of Difference Equations

E. M. Elsayed,1,2 B. S. Alofi,1 and Abdul Qadeer Khan3

1King Abdulaziz University, Faculty of Science, Mathematics Department, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhan1@gmail.com

Received 26 February 2022; Revised 21 April 2022; Accepted 26 May 2022; Published 30 July 2022

Academic Editor: Liping Chen

Copyright © 2022 E. M. Elsayed et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we obtain the solution forms of fifth order systems of rational difference equations

\[P_{n+1} = \frac{\beta_1 + \alpha_1 e^{-Q_n}}{\gamma_1 + \delta_1 P_n}, \]
\[Q_{n+1} = \frac{\beta_2 + \alpha_2 e^{-S_n}}{\gamma_2 + \delta_2 Q_n}, \]
\[S_{n+1} = \frac{\beta_3 + \alpha_3 e^{-P_n}}{\gamma_3 + \delta_3 S_n}. \]

It is very interesting to get solutions of systems of nonlinear difference equations if possible. Other authors were able to obtain the solutions of difference equations. For instance, Alayachi et al. in [5] studied the formula of solutions of the following difference equations system of order three

\[P_{n+1} = \frac{S_{n-1}Q_n}{S_{n-1} + Q_{n-2}}, \]
\[Q_{n+1} = \frac{P_{n-1}S_n}{S_n + P_{n-2}}, \]
\[S_{n+1} = \frac{Q_{n-1}P_n}{P_n + Q_{n-2}}. \]

Elsayed et al. [6] obtained the solution expressions and studied the behavior of three-dimensional systems of difference equations.

1. Introduction

The applications of discrete dynamical systems and difference equations have grown rapidly, especially in economics and modern sciences. In [1], El-Metwally et al. investigated the asymptotic behavior of the population model:

\[P_{n+1} = bP_{n-1}e^{P_n} + a. \] (1)

Elsayed et al. [2] studied the discrete population model

\[P_{n+1} = \alpha_0 P_{n-1} + \frac{\alpha_1 P_{n-1} P_{n-4}}{\alpha_2 P_{n-4} + \alpha_3 P_{n-2}}. \] (2)

In economy, Askar [3] studied the discrete dynamical systems of duopoly games

\[P_{n+1} = P_n + kP_n \left(\frac{a + Q_n}{(a + q)^2} - c_1 \right), \]
\[Q_{n+1} = \sqrt{\frac{P_n + a}{c_2}} - P_n - a. \] (3)

Many of authors investigated the behavior of nonlinear systems of difference equations when the solutions are difficult to obtain. For example, Khalilq and Zubair in [4] studied properties of solutions such as persistence, boundedness, global stability, and locally asymptotically stable of equilibrium point.
where the initial conditions $P_{-4}, P_{-3}, P_{-2}, \ldots, P_{-1}, P_0, Q_{-4}, Q_{-3}, Q_{-2}, Q_{-1}, Q_0, S_{-4}, S_{-3}, S_{-2}, S_{-1}, S_0$ are any real number. Also, some numerical examples and figures will be presented to confirm the results of the obtained solutions.

2. The First Case

Through this section, we obtain the solution formula of system of the three difference equations

$$P_{n+1} = \frac{P_{n+2} - Q_n - 4Q_{n+2} - S_{n+2}}{S_{n+2}}$$

$$Q_{n+1} = \frac{Q_{n+2} - P_n - 4P_{n+2} - S_{n+2}}{S_{n+2}}$$

$$S_{n+1} = \frac{S_{n+2} - P_n - 4P_{n+2} - Q_{n+2}}{Q_{n+2}}$$

Theorem 1. Assume that $\{P_n, Q_n, S_n\}$ are solutions of difference equations system. Then, for $n = 0, 1, 2, \ldots$, we see that all solutions of system (8) are given by the following formulas:
Proof. For $n = 1$ the result holds. Now suppose that $n > 0$ and that our assumption holds for $n - 1$, that is,

\[
P_{6n-5} = \frac{P_{6n-4}^n Q_n S_n^p \prod_{k=0}^{n-2} (1 + (6k + 5)P_{-2} Q_{-2} S_{-4})}{P_{-2} Q_{-4} S_n^p \prod_{k=0}^{n-2} (1 + (6k + 6)P_{-2} Q_{-2} S_{-4})}
\]

\[
P_{6n-3} = \frac{P_{6n-4}^n Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 1)P_{-2} Q_{-2} S_{-4})}{P_{-2}^n Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 2)P_{-2} Q_{-2} S_{-4})}
\]

\[
P_{6n-1} = \frac{P_{6n-4}^n Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 3)P_{-2} Q_{-2} S_{-4})}{P_{-2}^n Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 4)P_{-2} Q_{-2} S_{-4})}
\]

\[
Q_{6n-5} = \frac{Q_n^p S_n^q P_n^r \prod_{k=0}^{n-2} (1 + (6k + 5)Q_{-2} S_{-4} P_{-4})}{Q_{-2}^p S_n^q P_n^r \prod_{k=0}^{n-2} (1 + (6k + 6)Q_{-2} S_{-4} P_{-4})}
\]

\[
Q_{6n-3} = \frac{Q_n^p S_n^q P_n^r \prod_{k=0}^{n-1} (1 + (6k + 1)Q_{-2} S_{-4} P_{-4})}{Q_{-2}^p S_n^q P_n^r \prod_{k=0}^{n-1} (1 + (6k + 2)Q_{-2} S_{-4} P_{-4})}
\]

\[
Q_{6n-1} = \frac{Q_n^p S_n^q P_n^r \prod_{k=0}^{n-1} (1 + (6k + 3)Q_{-2} S_{-4} P_{-4})}{Q_{-2}^p S_n^q P_n^r \prod_{k=0}^{n-1} (1 + (6k + 4)Q_{-2} S_{-4} P_{-4})}
\]

\[
S_{6n-5} = \frac{S_n^p Q_n S_n^p \prod_{k=0}^{n-2} (1 + (6k + 5)S_{-2} P_{-4} Q_{-4})}{S_{-2}^p Q_n S_n^p \prod_{k=0}^{n-2} (1 + (6k + 6)S_{-2} P_{-4} Q_{-4})}
\]

\[
S_{6n-3} = \frac{S_n^p Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 1)S_{-2} P_{-4} Q_{-4})}{S_{-2}^p Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 2)S_{-2} P_{-4} Q_{-4})}
\]

\[
S_{6n-1} = \frac{S_n^p Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 3)S_{-2} P_{-4} Q_{-4})}{S_{-2}^p Q_n S_n^p \prod_{k=0}^{n-1} (1 + (6k + 4)S_{-2} P_{-4} Q_{-4})}
\]

(10)
Now, we find from system (8) that

\[
P_{n+1} = \frac{P_{n-1}S_nQ_n}{S_{n-1}Q_{n-1}(1 + P_{n-1}S_nQ_n)} \times \left(\begin{array}{c} (P_nQ_nS_n)^3Q_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)P_nQ_nS_n) \\ S_nP_nQ_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)S_nP_nQ_n) \\ P_nQ_nS_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)Q_nP_nS_n) \\ \end{array} \right)
\]

\[
S_{n+1} = \frac{S_{n-1}Q_nP_n}{Q_{n-1}S_{n-1}(1 + Q_{n-1}P_nS_{n-1})} \times \left(\begin{array}{c} (S_nP_nQ_n)^3Q_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)Q_nP_nS_n) \\ S_nP_nQ_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)S_nP_nQ_n) \\ P_nQ_nS_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)Q_nP_nS_n) \\ \end{array} \right)
\]

\[
Q_{n+1} = \frac{Q_{n-1}P_nS_n}{P_{n-1}Q_{n-1}(1 + Q_{n-1}P_nS_{n-1})} \times \left(\begin{array}{c} (Q_nP_nS_n)^3Q_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)Q_nP_nS_n) \\ Q_nP_nS_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)S_nP_nQ_n) \\ P_nQ_nS_n^{-3}P_n^{-3}Q_n^{-3}S_n^{-3}P_n^{-3}(1 + (6k+6)Q_nP_nS_n) \\ \end{array} \right)
\]

(11)
Example 1. Figure 1 shows numerical solution of system (8) with the initial conditions $P_{-4} = 5, P_{-3} = 13, P_{-2} = 7, P_{-1} = 3, P_0 = 19, Q_{-4} = 13, Q_{-3} = 5, Q_{-2} = 7, Q_{-1} = 3, Q_0 = 10, S_{-4} = 10, S_{-3} = 12, S_{-2} = 10, S_{-1} = 6, S_0 = 11.$

Example 2. This illustrates the numerical solution of system (8) with the initial conditions $P_{-4} = 9, P_{-3} = 17, P_{-2} = 11, P_{-1} = 4, P_0 = 16, Q_{-4} = 9, Q_{-3} = 1, Q_{-2} = 3, Q_{-1} = 1, Q_0 = 6, S_{-4} = 6, S_{-3} = 7, S_{-2} = 8, S_{-1} = 10, S_0 = 5$ (See Figure 2).

3. Second Case

Through this section, we obtain the solution form of the system of three difference equations given by the following:

\[
P_{6n+1} = P_{6n} \frac{Q_{n+1} + S_{n+1}}{2} - \left[\frac{1}{2} n (6k + 5) P_{6n+1} - \frac{Q_{6n+1} + S_{6n+1}}{2} \right]
\]

\[
P_{6n+3} = P_{6n+2} \frac{Q_{n+2} + S_{n+2}}{2} - \left[\frac{1}{2} n (6k + 3) P_{6n+2} - \frac{Q_{6n+2} + S_{6n+2}}{2} \right]
\]

\[
P_{6n+5} = P_{6n+4} \frac{Q_{n+3} + S_{n+3}}{2} - \left[\frac{1}{2} n (6k + 5) P_{6n+4} - \frac{Q_{6n+4} + S_{6n+4}}{2} \right]
\]

\[
Q_{6n+1} = Q_{6n} \frac{P_{n+1} + S_{n+1}}{2} - \left[\frac{1}{2} n (6k + 1) Q_{6n+1} - \frac{S_{6n+1} + P_{6n+1}}{2} \right]
\]

\[
Q_{6n+3} = Q_{6n+2} \frac{P_{n+2} + S_{n+2}}{2} - \left[\frac{1}{2} n (6k + 3) Q_{6n+2} - \frac{S_{6n+2} + P_{6n+2}}{2} \right]
\]

\[
Q_{6n+5} = Q_{6n+4} \frac{P_{n+3} + S_{n+3}}{2} - \left[\frac{1}{2} n (6k + 5) Q_{6n+4} - \frac{S_{6n+4} + P_{6n+4}}{2} \right]
\]

\[
S_{6n+1} = S_{6n} \frac{P_{n+1} + Q_{n+1}}{2} - \left[\frac{1}{2} n (6k + 5) S_{6n+1} - \frac{Q_{6n+1} + P_{6n+1}}{2} \right]
\]

\[
S_{6n+3} = S_{6n+2} \frac{P_{n+2} + Q_{n+2}}{2} - \left[\frac{1}{2} n (6k + 3) S_{6n+2} - \frac{Q_{6n+2} + P_{6n+2}}{2} \right]
\]

\[
S_{6n+5} = S_{6n+4} \frac{P_{n+3} + Q_{n+3}}{2} - \left[\frac{1}{2} n (6k + 5) S_{6n+4} - \frac{Q_{6n+4} + P_{6n+4}}{2} \right]
\]

Theorem 2. Assume that $\{P_n, Q_n, S_n\}$ are solutions of difference equation system. Then for $n = 0, 1, 2, \ldots$, we see that all solutions of system (12) are given by the following formulas:

\[
P_{n+1} = \frac{P_{n-4} S_{n-2} Q_n}{S_{n-3} Q_{n-1} (1 - P_{n-4} S_{n-2} Q_n)}
\]

\[
Q_{n+1} = \frac{Q_{n-4} P_{n-2} S_n}{P_{n-3} S_{n-1} (1 + Q_{n-4} P_{n-2} S_n)}
\]

\[
S_{n+1} = \frac{S_{n-4} Q_{n-2} P_n}{Q_{n-3} P_{n-1} (1 - S_{n-4} Q_{n-2} P_n)}
\]

4. Third Case

In this section, we investigate the solutions of the difference equation system

\[
P_{n+1} = \frac{P_{n-4} S_{n-2} Q_n}{S_{n-3} Q_{n-1} (1 - P_{n-4} S_{n-2} Q_n)}
\]

\[
Q_{n+1} = \frac{Q_{n-4} P_{n-2} S_n}{P_{n-3} S_{n-1} (1 + Q_{n-4} P_{n-2} S_n)}
\]

\[
S_{n+1} = \frac{S_{n-4} Q_{n-2} P_n}{Q_{n-3} P_{n-1} (1 - S_{n-4} Q_{n-2} P_n)}
\]

Proof. The proof is derived from the proof of the previous theorem.

Example 3. Figure 3 shows numerical solution of system (12) with the initial conditions $P_{-4} = 11, P_{-3} = 19, P_{-2} = 13, P_{-1} = 6, P_0 = 18, Q_{-4} = 11, Q_{-3} = 3, Q_{-2} = 5, Q_{-1} = 3, Q_0 = 8, S_{-4} = 8, S_{-3} = 9, S_{-2} = 10, S_{-1} = 12, S_0 = 7.$

Example 4. This illustrates the numerical solution of system (12) with the initial conditions $P_{-4} = 4, P_{-3} = 12, P_{-2} = 5, P_{-1} = 6, P_0 = 14, Q_{-4} = 11, Q_{-3} = 6, Q_{-2} = 12, Q_{-1} = 2, Q_0 = 9, S_{-4} = 9, S_{-3} = 3, S_{-2} = 9, S_{-1} = 11, S_0 = 2$ (See Figure 4).
Theorem 3. Assume that \(P_n, Q_n, S_n \) are solutions of difference equation system. Then for \(n = 0, 1, 2, \ldots \), we see that all solutions of system (14) are given by the following formulas:

\[
P_{6n+1} = \frac{p_2^{n+1} p_0^{n+1} p_0^{n+1} (p_0 Q_0 S_4 - 1)^n}{Q_4 S_2} \cdot P_{6n+2} = \frac{p_2^{n+1} p_4^{n+1} p_0^{n+1}}{Q_4 S_4} \cdot P_{6n+3} = \frac{p_2^{n+1} p_0^{n+1} p_0^{n+1} (p_2 Q_2 S_0 - 1)^n}{Q_2 S_2} \cdot P_{6n+4} = \frac{p_2^{n+1} p_4^{n+1} p_0^{n+1} p_0^{n+1}}{Q_2 S_4}.
\]
Figure 3: Drawing the numerical solution of system (12).

Figure 4: Drawing the numerical solution of system (12).

\[
P_{\text{6or}+5} = \frac{P_{-4} Q_{-2}^n S_{-2}^n (P_{-4} Q_{-2} S_{-2} - 1)^{n+1}}{P_{-4} Q_{-2}^n S_{-2}^n (P_{-2} Q_{-4} S_{-2} - 1)^{n+1}}, \quad P_{\text{6or}+6} = \frac{Q_{-2}^n S_{-4}^n Q_{-2}^n}{P_{-2}^n Q_{-4}^n S_{-4}^n},
\]

\[
Q_{\text{6or}+1} = \frac{Q_{-4}^n S_{-2}^n P_{-2}^n (Q_{-4} S_{-2} P_{-2} - 1)^n}{S_{-2} P_{-4} Q_{-2}^n S_{-2}^n (Q_{-2} S_{-2} P_{-2} - 1)^n}, \quad Q_{\text{6or}+2} = \frac{Q_{-2}^n S_{-4}^n P_{-2}^n}{Q_{-2}^n S_{-4}^n P_{-2}^n},
\]

\[
Q_{\text{6or}+3} = \frac{Q_{-4}^n S_{-2}^n P_{-2}^n (Q_{-4} S_{-2} P_{-2} - 1)^n}{Q_{-4}^n S_{-2}^n P_{-2}^n (Q_{-2} S_{-2} P_{-2} - 1)^n}, \quad Q_{\text{6or}+4} = \frac{Q_{-2}^n S_{-4}^n P_{-2}^n}{Q_{-2}^n S_{-4}^n P_{-2}^n}.
\]
4T_hisillustert thenumericalsolutionofsystem
\(\begin{align*}
Q_{6t+1} &= \frac{Q_1 P_{0}^{11} P_{0}^{11} (Q_2 S_0 P_{0} - 1) P_0}{Q_4 S_0 P_{0} P_0 - 1} Q_{6t+1} = \frac{Q_1 P_{0}^{11} P_{0}^{11} (Q_2 S_0 P_{0} - 1) P_0}{Q_4 S_0 P_{0} P_0 - 1}
S_{6t+1} &= \frac{Q_1 P_{0}^{11} P_{0}^{11} (Q_2 S_0 P_{0} - 1) P_0}{Q_4 S_0 P_{0} P_0 - 1} Q_{6t+1} = \frac{Q_1 P_{0}^{11} P_{0}^{11} (Q_2 S_0 P_{0} - 1) P_0}{Q_4 S_0 P_{0} P_0 - 1}
\end{align*} \)

Proof. This proof is obtained similar to the First Theory.

Example 5. Figure 5 shows numerical solution of system (14) with the initial conditions \(P_{-4} = 5, P_{-3} = 13, P_{-2} = 8, P_{-1} = 6, P_0 = 19, Q_{-4} = 13, Q_{-3} = 5, Q_{-2} = 7, Q_{-1} = 3, Q_0 = 10, S_{-4} = 10, S_{-3} = 12, S_{-2} = 12, S_{-1} = 12, S_0 = 6. \)

Example 6. This illustrates the numerical solution of system (14) with the initial conditions \(P_{-4} = 10, P_{-3} = 16, P_{-2} = 10, P_{-1} = 3, P_0 = 15, Q_{-4} = 8, Q_{-3} = 2, Q_{-2} = 4, Q_{-1} = 3, Q_0 = 5, S_{-4} = 5, S_{-3} = 6, S_{-2} = 7, S_{-1} = 9, S_0 = 3 \) (See Figure 6).

5. Fourth Case
In this section, we investigate the solutions of the difference equation system:

\(\begin{align*}
P_{6t+1} &= \frac{Q_1 P_{0}^{11} P_{0}^{11} (P_0 Q_2 S_{-4} + 1)^n}{Q_1 S_{-4} P_0 S_{-2}} Q_{6t+1} = \frac{Q_1 P_{0}^{11} P_{0}^{11} (P_0 Q_2 S_{-4} + 1)^n}{Q_1 S_{-4} P_0 S_{-2}}
S_{6t+1} &= \frac{Q_1 P_{0}^{11} P_{0}^{11} (P_0 Q_2 S_{-4} + 1)^n}{P_1 S_{-4} P_0 S_{-2}} Q_{6t+1} = \frac{Q_1 P_{0}^{11} P_{0}^{11} (P_0 Q_2 S_{-4} + 1)^n}{P_1 S_{-4} P_0 S_{-2}}
\end{align*} \)

Theorem 4. Assume that \(\{P_n, Q_n, S_n\} \) are solutions of difference equation system. Then for \(n = 0, 1, 2, \ldots, \) we see that all solutions of system (16) are given by the following formulas:

\(\begin{align*}
P_n &= \frac{P_n Q_n S_n}{Q_n Q_{n-1} (-1 - P_n S_{n-2} Q_n)}
Q_n &= \frac{Q_n P_n S_n}{Q_n Q_{n-1} (-1 - Q_n P_{n-2} S_n)}
S_n &= \frac{S_n P_n Q_n}{Q_n Q_{n-1} (-1 - S_n Q_{n-2} P_n)}
\end{align*} \)

(16)
Proof. This proof is obtained similar to the First Theory.

Example 7. Figure 7 shows numerical solution of system (16) with the initial conditions $P_4 = 10, P_{-3} = 18, P_{-2} = 13, P_{-1} = 6, P_0 = 16, Q_{-4} = 10, Q_{-3} = 3, Q_{-2} = 4, Q_{-1} = 2, Q_0 = 6, S_{-4} = 7, S_{-3} = 8, S_{-2} = 9, S_{-1} = 11, S_0 = 6$.

Example 8. For illustrates the numerical solution of system (16) with the initial conditions $P_4 = 4, P_{-3} = 30, P_{-2} = 5, P_{-1} = 6, P_0 = 14, Q_{-4} = 11, Q_{-3} = 16, Q_{-2} = 12, Q_{-1} = 11, Q_0 = 19, S_{-4} = 9, S_{-3} = 3, S_{-2} = -40, S_{-1} = 1, S_0 = 30$ (See Figure 8).

6. Fifth Case

In this section, we investigate the solutions of the difference equation system:

\[P_{n+1} = \frac{P_{n-4}S_{n-3}Q_n}{S_{n-3}Q_{n-1}(-1 - P_{n-4}Q_{n-2}Q_n)} \]
\[Q_{n+1} = \frac{Q_{n-4}P_{n-2}S_n}{P_{n-3}S_{n-1}(-1 - Q_{n-4}P_{n-2}S_n)} \]
\[S_{n+1} = \frac{S_{n-4}Q_{n-2}P_n}{Q_{n-3}P_{n-1}(-1 + S_{n-4}Q_{n-2}P_n)} \]
Theorem 5. Assume that \(P_n, Q_n, S_n \) are solutions of difference equation system. Then for \(n = 0, 1, 2, \ldots \), we see that all solutions of system (18) are given by the following formulas:

\[
P_{6n+1} = \frac{-p_{n+1}Q_n^{n+1}S_n^{n+1}}{Q_{n-3}P_0Q_n^{n+1}S_n^{n+1}(P_0Q_{n-4}S_{n-4} + 1)^{n+1}}, \quad P_{6n+2} = \frac{p_{n+1}Q_n^{n+1}S_n^{n+1}}{P_0Q_n^{n+1}S_n^{n+1}}, \quad P_{6n+3} = \frac{(-1)^{n+1}P_0Q_n^{n+1}S_n^{n+1}(P_0Q_{n-4}S_{n-4} + 1)^{n+1}}{P_0Q_n^{n+1}S_n^{n+1}(P_0Q_{n-4}S_{n-4} + 1)^{n+1}}, \quad P_{6n+4} = \frac{(-1)^{n+1}P_0Q_n^{n+1}S_n^{n+1}(P_0Q_{n-4}S_{n-4} - 1)^{n+1}}{P_0Q_n^{n+1}S_n^{n+1}(2P_0Q_{n-4}S_{n-4} + 1)^{n+1}},
\]

Figure 7: Drawing the numerical solution of system (16).

Figure 8: Drawing the numerical solution of system (16).
Proof. This proof is derived from the proof of First theorem.

Example 9. Figure 9 shows the numerical solution of system (18) with the initial conditions \(P_{-1} = -10, P_{-3} = -18, P_{-2} = -13, P_{-1} = -6, P_0 = -16, Q_{-4} = -10, Q_{-3} = -3, Q_{-2} = -4, Q_{-1} = -2, Q_0 = 6, S_{-4} = 7, S_{-3} = 8, S_{-2} = 9, S_{-1} = 11, S_0 = 6. \)

Example 10. This illustrates the numerical solution of system (18) with the initial conditions \(P_{-4} = -3, P_{-3} = -10, P_{-2} = -1, P_{-1} = -6, P_0 = -14, Q_{-4} = -11, Q_{-3} = 16, Q_{-2} = -12, Q_{-1} = -11, Q_0 = 19, S_{-4} = 9, S_{-3} = 3, S_{-2} = 40, S_{-1} = 1, S_0 = 30. \) (See Figure 10).

7. Sixth Case

In this section, we investigate the solutions of the difference equation system

\[
\begin{align*}
\mathbf{P}_{n+5} &= \frac{(-1)^{n+1} P_{-1}^{-1} P_{-2}^{-1} Q_{-1}^{-1} S_{-1}^{-1} (P_{-1} Q_{-2} S_{-2} + 1)^{n+1}}{P_{-1} Q_{-2} S_{-2} (P_{-1} Q_{-2} S_{-2} + 1)^{n+1}}, \\
\mathbf{Q}_{n+1} &= \frac{-Q_{-1}^{-1} P_{-2}^{-1} Q_{-2}^{-1} S_{-1}^{-1} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}}{S_{-1} Q_{-2} S_{-2} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}}, \\
\mathbf{Q}_{n+3} &= \frac{-Q_{-1}^{-1} Q_{-2}^{-1} P_{-1}^{-1} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}}{Q_{-1} Q_{-2} S_{-2} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}}, \\
\mathbf{Q}_{n+5} &= \frac{-Q_{-1}^{-1} Q_{-2}^{-1} Q_{-3}^{-1} P_{-1}^{-1} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}}{Q_{-1} Q_{-2} Q_{-3} S_{-3} (Q_{-2} S_{-2} P_{-2} + 1)^{n+1}},
\end{align*}
\]

(19)

\[
\begin{align*}
\mathbf{P}_{n+1} &= \frac{P_{n-4} S_{n-2} Q_{n}}{S_{n-1} Q_{n-1} (1 - P_{n-4} S_{n-2} Q_{n})}, \\
\mathbf{Q}_{n+1} &= \frac{Q_{n-4} P_{n-2} S_{n}}{P_{n-3} S_{n-2} (1 - Q_{n-4} P_{n-2} S_{n})}, \\
\mathbf{S}_{n+1} &= \frac{S_{n-4} P_{n-2} Q_{n}}{Q_{n-3} P_{n-1} (1 - S_{n-4} P_{n-2} Q_{n})}.
\end{align*}
\]

(20)

Theorem 6. Assume that \(\{P_{n}, Q_{n}, S_{n}\} \) are solutions of difference equation system. Then for \(n = 0, 1, 2, \ldots \), we see that all solutions of system (20) are given by the following formulas:

\[
\begin{align*}
\mathbf{P}_{n+1} &= \frac{P_{n-4} S_{n-2} Q_{n}}{S_{n-1} Q_{n-1} (1 - P_{n-4} S_{n-2} Q_{n})}, \\
\mathbf{Q}_{n+1} &= \frac{Q_{n-4} P_{n-2} S_{n}}{P_{n-3} S_{n-2} (1 - Q_{n-4} P_{n-2} S_{n})}, \\
\mathbf{S}_{n+1} &= \frac{S_{n-4} P_{n-2} Q_{n}}{Q_{n-3} P_{n-1} (1 - S_{n-4} P_{n-2} Q_{n})}.
\end{align*}
\]
\[Q_{6n+5} = \frac{(-1)^{n+1} Q_{-1}^{n+1} S_{4-1}^{n+1} P_{0}^{n+1} (Q_{-4} S_{6} P_{-2} - 1)^{n+1}}{Q_{4-1}^{n+1} S_{0}^{n+1} P_{-2}^{n+1} (Q_{-2} S_{4} P_{0} - 1)^{n+1}}, \]
\[Q_{6n+6} = \frac{(-1)^{n+1} Q_{-1}^{n+1} P_{0}^{n+1} P_{-4}^{n+1}}{Q_{2-1}^{n+1} S_{4}^{n+1} P_{-2}^{n+1}}, \]
\[S_{6n+1} = \frac{-S_{0}^{n+1} P_{0}^{n+1} Q_{0}^{n+1} (S_{0} P_{-3} Q_{-4} - 1)^{n}}{P_{-1} Q_{-3} S_{0}^{n+1} P_{-2}^{n+1} Q_{4}^{n+1} (S_{4} P_{6} Q_{-2} - 1)^{n+1}}, \]
\[S_{6n+2} = \frac{(-1)^{n+1} S_{-1}^{n+1} P_{0}^{n+1} Q_{0}^{n+1}}{S_{-4}^{n+1} P_{0}^{n+1} Q_{2}^{n+1} (2P_{-4} Q_{0} S_{2} - 1)^{n+1}}, \]
\[S_{6n+3} = \frac{(-1)^{n+1} S_{-3}^{n+1} P_{0}^{n+1} Q_{0}^{n+1} (S_{-2} P_{-4} Q_{0} - 1)^{n+1}}{S_{-2}^{n+1} P_{0}^{n+1} Q_{4}^{n+1}}, \]
\[S_{6n+4} = \frac{(-1)^{n+1} S_{-1}^{n+1} P_{0}^{n+1} Q_{0}^{n+1}}{S_{0}^{n+1} P_{2}^{n+1} Q_{4}^{n+1}}, \]
\[S_{6n+5} = \frac{(-1)^{n+1} S_{-1}^{n+1} P_{0}^{n+1} Q_{0}^{n+1} (S_{-2} P_{-4} Q_{0} - 1)^{n+1}}{S_{-4}^{n+1} P_{0}^{n+1} Q_{2}^{n+1} (S_{2} P_{-4} Q_{0} - 1)^{n+1}}, \]
\[S_{6n+6} = \frac{(-1)^{n+1} S_{-1}^{n+1} P_{0}^{n+1} Q_{0}^{n+1}}{S_{-4}^{n+1} P_{0}^{n+1} Q_{2}^{n+1} (S_{2} P_{-4} Q_{0} - 1)^{n+1}}. \]

(21)
P(n), Q(n), S(n)

-20
-15
-10
-25
-20
-15
-10
10
15
20

10
15
20

51 0

n

P(n)

Q(n)

S(n)

1234 6789

Figure 11: Sketch the numerical solution of system (20).

Figure 12: Sketch the numerical solution of system (20).

Proof. This proof is obtained similar to the First theorem. □

Example 11. Figure 11 shows numerical solution of system (20) with the initial conditions $P_{-4} = -5, P_{-3} = -13, P_{-2} = -8, P_{-1} = -6, P_0 = -19, Q_{-4} = -13, Q_{-3} = -5, Q_{-2} = -7, Q_{-1} = -3, Q_0 = -10, S_{-4} = -10, S_{-3} = -12, S_{-2} = -10, S_{-1} = -12, S_0 = -6$.

Example 12. This illustrates the numerical solution of system (20) with the initial conditions $P_{-4} = -8, P_{-3} = 16, P_{-2} = -10, P_{-1} = 3, P_0 = -15, Q_{-4} = -8, Q_{-3} = 2, Q_{-2} = -4, Q_{-1} = 3, Q_0 = -5, S_{-4} = -5, S_{-3} = -6, S_{-2} = -7, S_{-1} = -9, S_0 = -3$ (See Figure 12).

Data Availability

All the data utilized in this article have been included, and the sources from where they were adopted were cited accordingly.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[12] E. Camouzis, G. Ladas, and H. D. Voulov, “On the dynamics of $x_{n+1} = \alpha x_n + \beta x_{n-1} + \gamma x_{n-2} + \delta x_{n-3} + \epsilon x_{n-4}$,” *J. Differ Equations Appl.*, vol. 9, no. 8, pp. 731–738, 2003.

[17] A. Khaliq and S. S. Hassan, ”On a new class of rational difference equation $x_{n+1} = ax_n + bx_{n-k} + \alpha + \beta x_{n-k}/A + Bx_{n-k}$,” Journal of Applied Nonlinear Dynamics, vol. 8, no. 4, pp. 569–584, 2019.