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�e Pareto distribution is widely used to model industrial, biological, engineering, and other various types of data. A new
generalized model, namely the neutrosophic Pareto distribution (NPD), is developed in this article. �e proposed model is a
neutrosophic variant of the classical Pareto distribution, potentially useful for analyzing vague, unclear, indeterminate, or
imprecise data. �e structure form of the proposed distribution is skewed to the right and determined to be unimodal. Several
characteristics of the NPD are investigated under the neutrosophic framework.�e expressions for basic properties such as mean,
variance, raw moments, and shape coe�cients are obtained. �e maximum likelihood approach is presented for estimating the
imprecise distributional parameters of the proposed model. �e extended notions of the NPD are explained with various key
functions in the domain of applied statistical methods. Finally, the practical bene�ts of NPD are proven by analyzing two
real datasets.

1. Introduction

�e distribution of extreme values for some natural
phenomena (e.g., earthquakes, winds, �oods, waves, and
temperatures) is of relevance in a wide variety of practical
situations. For instance, the distributions of high waves in
the sea, the distribution of large �oods in dams, and so on
are important when designing these structures. Extreme
value theory has exploded in popularity in recent years as
a result of this interest [1]. By the end of the twenty-�rst
century, there is a substantially increased interest in safety
and reducing losses from man-induced and natural di-
sasters [2]. �e combination of highly felt social needs and
the emergence of new theoretical methods has resulted in
tremendous progress in this essential multidisciplinary
�eld of research [3]. Note that the study of statistical
characteristics for various natural catastrophes is

essentially required not only for understanding the
physical nature of the underlying processes but also for
risk assessment [4]. Edwards and Das [5] provide a
comprehensive list of major domains where heavy-tailed
distributions are shown to be useful. �e Pareto distri-
bution is one of the heavy-tailed distributions frequently
encountered in physical systems to describe di�erent
natural disasters (e.g., volcanic eruptions, earthquakes,
hurricanes, �oods) [6]. �e observed �uctuation in sea
level, river �ow discharges, asteroid craters, wind velocity,
forest �res distributions, and some other natural disasters
support the potential of a successful Pareto �tting model
and obey the Pareto power law [7]. �e Pareto distribution
and its di�erent variants are also especially well known in
the literature for its ability to describe heavy-tailed data,
which are commonly found in wealth distribution, ac-
tuarial science, life testing, �nance, economics,
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engineering, and survival analysis [8]. A large range of
socioeconomic variables have heavy-tailed distributions
that are reasonably well fitted by the Pareto model [9]. (e
shape of income distributions is governed by some un-
derlying law [10]. Rootzen et al. [11] also listed a number
of additional quantities that have been measured in di-
verse physical, biological, technical, and social systems
and for which the Pareto rule has been proven to be a good
fit. In short, several studies have asserted that the Pareto
model is versatile in modeling many forms of data with
large tails.

A traditional method for analyzing extreme values in a
population is based on a precisely characterized extreme
value Pareto distribution.(e customary approach of Pareto
distribution is appropriate to use when data consist of a set
of exact values or distributional parameters are exactly
defined values [12]. However, this strategy has been cri-
tiqued since employing exact data results in the loss of
information contained in data. Measurements on quanti-
tative variables always have a certain range of inaccuracy
[13]. Apart from continuous measurements, there is
abundance of situations where exact reporting is impossible
due to the irregular nature of circumstances. For example,
due to the fluctuating nature of water, the depth of an ocean
cannot be exactly quantified but can only be approximated.
(is issue is remedied by using fuzzy and neutrosophic
statistics rather than conventional statistical approaches
[14]. (e neutrosophic approach is a broader idea that
combines a fuzzy concept set with the notion of a classical set
[15]. (e neutrosophic philosophy takes into account the
presence of truth, falsity, and ambiguity [16]. (e notion of
neutrosophy is now being utilized in a variety of application
areas [17–19].(e obtained data may be unclear in a number
of real-world scenarios. Several researchers have turned to
neutrosophical philosophy to solve the issues of incomplete
data [20–22]. In the domain of neutrosophic statistics,
conventional statistical approaches have been rigorous in
their treatment of ambiguous data processing. New appli-
cation areas for distribution theory are emerging and de-
manding further attention. (e literature on statistical
distributions is dense with several strategies for generalizing
continuous distributions in order to improve their ability to
describe a variety of datasets.

(is study presents the NPD within the neutrosophic
framework, thereby enhancing the model’s flexibility in
dealing with uncertain data sets from a variety of real-world
circumstances. (is work aims to investigate the usage and
implementation of the NPD in healthcare data analysis and
to demonstrate the practical advantages of the suggested
model.

(e remainder of this work is structured as follows:
Section 2 contains a description of the proposed and other
key characteristics. Simulation studies, including the
quantile function of the NPD, are explained in Section 3.
(e estimation process under the neutrosophic logic is
presented in Section 4. In Section 5, a concise explanation
of significant theoretical findings is followed by some real-
world examples. Section 6 summarizes the findings of the
study.

2. ProposedModel with SomeUseful Properties

(is section gives an overview of the suggested distribution
and presents it in a coherent framework. (e following
concepts provide a link between the proposed model and its
uses in the applied statistical methods. If the random var-
iable X with two parameters λn and ρn follows the Pareto
model, then the density function (DFn) of the proposed
distribution is defined as

Gn(X) �
λnρ

λn

n

x
λn+1 for x≥ ρn; λn, ρn > 0, (1)

where λn � [λl, λu] and ρn � [ρl, ρu] are the neutrosophic
shape and scale parameters, respectively, of the NPD. Note
that the proposed model differs from the existing structure
of the classical Pareto model, where shape and scale pa-
rameters are precisely determined. When the indeterminate
part is considered zero in the proposed model, that is, λl �

λu � λ and ρl � ρu � ρ, it becomes equivalent to the classical
model. Various values of λn and ρn result in different density
curves. A variety of density curves with different neu-
trosophic shape values and a fixed of scale are plotted in
Figure 1.

Figure 1 shows that different indeterminate values of
shape parameter resulted in different sturdy curves of the
NPD. It is clear from Figure 1 that DFn curves are not
symmetric and distorted toward the right. (e DFn curve is
portrayed as a thick layer instead of a single curve in the
neutrosophic framework. (e layer width (shaded area)
indicates an imprecision region, and total area under the
thick curve is one in view of completeness. Another in-
triguing aspect in probability theory applications is the
neutrosophic cumulative function (CFn) of any density. (e
CFn is a jointly coupled form of the DFn is given by

Gn(x) � 1 −
ρn

x
 

λn

. (2)

(e CFn function estimates the probability that a ran-
dom variable will have a value smaller than a given value.
Figure 2 shows the CFn curves for various interval values of
the shape parameter of the proposed model.

Figure 2 depicts the cumulative densities of the proposed
model for various interval values of shape and fixed value of
scale parameter. In each panel of Figure 2, the CFn curve is
nondecreasing and ranges from 0 to 1. (e nondecreasing
nature of theDFn implies that the DF cannot be negative and
true for any distribution. Another useful function in the
context of the applied statistical method is the possibility
that an individual’s life will outlive a certain period of time.
(is function is referred to as the survival function or simply
the survival rate. In the neutrosophic framework, the sur-
vival function (SFn) of the proposed model may be rep-
resented as follows:

Sn(x) �
ρn

x
 

λn

. (3)

(e graph of SFn is referred to as a survival curve.
Figure 3 depicts the survival curve for the proposed NPD.
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Figure 1: (e DFn curves of NPD at different values of λn and ρn � [1, 1].
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Figure 2: Continued.

Mathematical Problems in Engineering 3



(e steep curve can demonstrate a short survival
period, or a low survival rate can be shown by the steep
curve, as seen in Figure 3(b). A flat or progressive survival
curve indicates a longer survival rate, as seen in
Figure 3(a).

Another critical function in reliability analysis is the
neutrosophic hazard function (HFn), often known as the
imminent failure rate. It is the ratio of the survival and
density functions and may be calculated as follows for the
suggested model:

hn(x) �
gn(x)

Sn(x)
,

�
λn

x
.

(4)

(e function hn(x) provides the failure probability of an
individual or item for a minimal time. HFn may increase,
decrease, stay constant, or reflect a more complex process.
(e graphical behavior of the hazard curve can be seen in
Figure 4.

Figure 4 provides the hazard curves of NPD at the fixed
value of the scale parameter and interval values of the shape
parameter. Figure 4 indicates the decreasing trends of the
hazard curves of the proposed model.

In this section, we have also further investigated the
theoretical background and presented some key distribu-
tional properties of the proposed NPD in the context of
neutrosophic logic. (e distributional properties subject to
parameterization as given in (1) are given as follows.

Theorem 1. If X follows the NPD, then E(x) � (λnρn/ λn − 1).

Proof. By definition, the mean of the NPD is given by

E(x) � λnρ
λn

n 
x

ρn

x

x
λn+1 dx,

� λlρ
λl

l 
x

ρl

x

x
λl+1

dx, λuρ
λu

u 
x

ρu

x

x
λu+1 dx .

(5)

Equation (5) further yielded
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Figure 2: (e CFn curves of NPD at different values of λn and ρn � [1, 1].
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Figure 3: Survival curves of the NPD at different values of λn and ρn � [1, 1].
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λlρ
λl

l 
x

ρl

x

x
λl+1

dx �
λlρl

λl − 1
,

λuρ
λu

u 
x

ρu

x

x
λu+1 dx �

λuρu

λu − 1
.

(6)

So,

λlρl

λl − 1
,
λuρu

λu − 1
  �

λnρn

λn − 1
, (7)

hence proved. □

Theorem 2. If X follows the NPD, then
Vn(x) � (λnρ2n/(λn − 1)2(λn − 2)) is the variance of the
proposed model.

Proof. (e variance of the NPD is given by

Vn(x) � E x
2

  − [E(x)]
2
. (8)

Now,

E x
2

  � λnρ
λn

n 
x

ρn

x
2

x
λn+1 dx,

� λlρ
λl

l 
x

ρl

x
2

x
λl+1

dx, λuρ
λu

u 
x

ρu

x
2

x
λu+1 dx .

(9)

Simplification of (9) provides

λlρl

λl − 2( 
,

λuρu

λu − 2( 
  �

λnρn

λn − 2( 
. (10)

Equation (8) thus becomes

Vn(x) �
λlρ

2
l

λl − 1( 
2 λl − 2( 

,
λuρ

2
u

λu − 1( 
2 λu − 2( 

⎡⎣ ⎤⎦

�
λnρ

2
n

λn − 1( 
2 λn − 2( 

forλn > 2.

(11)

□

Theorem 3. If X follows the NPD, then 21/λnρn is the median
value.

Proof. (e median point can be derived from the distri-
bution function as

Gn mn(  � 1 −
ρn

mn

 

λn

,

�
1
2
,

(12)

where mn denotes the neutrosophic median value.
Furthermore, simplification of (12) for mn yielded

mn � 21/λlρn � 21/λlρl, 2
1/λuρu . (13)

□

Theorem 4. 5e jth moment of the NPD is λnρ
j
n/(λn − j)

Proof. By definition, the jth moment of the NPD is
given by

μjn � λnρ
λn

n 
x

ρn

x
j

x
λn+1 dx ,

� λlρ
λl

l 
x

ρl

x
j

x
λl+1

dx, λuρ
λu

u 
x

ρu

x
j

x
λu+1 dx .

(14)

From (14), we can write

λlρ
λl

l 
x

ρl

x
j

x
λl+1

dx �
λlρ

j

l

λl − j( 
,

λuρ
λu

u 
x

ρu

x
j

x
λu+1 dx �

λuρ
j
u

λu − j( 
,

(15)

hence, μjn � [λlρ
j

l /(λl − j), λuρ
j
u/(λu − j)] � (λnρ

j
n/(λn − j))

is required result, where j � 1, 2, 3, . . . is a general expression
for the jth row moment about the origin of the NPD. By
using the following relations, moments about the mean for
NPD can be derived as
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Figure 4: Hazard curves for the proposed NPD.
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μ’1n � μ1n �
λnρn

λn − 1( 
,

μ’2n � μ2n − μ1n( 
2
,

�
λnρ

2
n

λn − 1( 
2 λn − 2( 

,

μ’3n � μ3n − 3μ2nμ1n + 2 μ1n( 
3
,

�
2λn λn + 1( ρ3n

λn − 1( 
3 λn − 2(  λn − 3( 

,

μ’4n � μ4N − 4μ3nμ1n + 6μ2nμ
2
1n − 3μ41n,

�
3λn 3λ3n + λn + 3 ρ4n

λn − 1( 
4 λn − 1(  λn − 3(  λn − 4( 

.

(16)

□

Theorem 5. 5e coefficient of skewness of the NPD is
(2(λn + 1)/(λn − 3)

��������
λn − 2/λn


).

Proof. By definition, the coefficient of skewness for NPD is
given by

α3 �
μ’3n

μ’2n 
3/2, (17)

where μ’3n � (2λn(λn + 1)ρ3n/(λn − 1)3(λn − 2)(λn − 3)) and
μ’2n � (λnρ2n/(λn − 1)2(λn − 2)).

Substituting in (17) yielded

α3 �
2 λn + 1( 

λn − 3( 

�����
λn − 2
λn



, (18)

where α3 ∈ [αl, αu]. □

Theorem 6. 5e coefficient of kurtosis for NPD is
6(λ3n + λ2n − 6λn − 2)/λn(λn − 3)(λn − 4).

Proof. By definition, the coefficient of kurtosis is given by

α4 �
μ’4n

μ′22n

, (19)

where μ’4n � (3λn(3λ3n + λn + 3)ρ4n/(λn − 1)4(λn− 1)(λn − 3)

(λn − 4)) and μ’2n � (λnρ2n/(λn − 1)2(λn − 2)).
Substituting in (19) yielded

α4 �
6 λ3n + λ2n − 6λn − 2 

λn λn − 3(  λn − 4( 
, (20)

where α4 � [αl, αu]. □

3. Simulation Analysis of the Proposed Model

In this section, a Monte Carlo technique is employed to
generate the random numbers that are expected to follow

NPD. In general, the Monte Carlo method refers to any
technique for solving a problem that makes use of random
outcomes. (e objective of this study is to test the the-
oretical findings listed in Section 2 by simulating random
samples from the NPD with known parameter values
using the Monte Carlo approach. (e inverse CFn ap-
proach has been employed as the most straightforward
technique to simulate random numbers from the pro-
posed model. (is approach enables us to make use of a
computer built-in pseudo-random number generator for
generating random numbers. (e inverse CFn of the
proposed model is given by

Qp � ρn 1 − Ui 
− 1/λn , (21)

where Ui randomly generated numbers from the
uniform distribution, and Qp is desired percentile
value of the proposed NPD. Let 105 random samples
are drawn according to the inverse CFn method from
the proposed model with ρn � [1, 1] and λn � [4, 6].
Analytical outcomes based on the analytical results
given in Section 2 are calculated with baseline parameter
values. Estimated values of different distribution
properties along with exact results are provided in
Table 1.

Table 1 displays the descriptive metrics of the proposed
model for known distributional parameter values. (e de-
scriptive measures of the simulated data using the proposed
model are in intervals due to assumed indeterminacies in
defined parameters. (e basic framework of the proposed
model is validated by the strong agreement between sim-
ulated and analytical results.

4. Estimation of Neutrosophic Parameters

In this part, a well-known maximum likelihood (ML)
technique is used to determine the neutrosophic pa-
rameters of the proposed NPD. (e ML technique is
defined by considering the parameters unknown and
calculating the joint density of all observations in a
dataset that are assumed to be identical and dispersed
independently. Once the likelihood of the NPD is
established, maxima of the function are determined.
(ese ML estimators are essential in the statistical
viewpoint because of minimal variance and asymptotic
unbiasedness properties. Let x1, x2, . . . xm are identical,
and independently observations from the m subjects
follow the parametric model given in (1), and then, the
joint density is given by

Table 1: A summary of distribution properties of the proposed
model based on simulated data.

Basic properties of NPD Simulated results Analytical results
Mean [1.19, 1.33] [1.20, 1.33]
Median [1.12, 1.19] [1.10, 1.19]
Standard deviation [0.25, 0.47] [0.25, 0.47]
Skewness [3.95, 8.06] [3.94, 8.02]
Kurtosis [45.73, 350.05] [45.62, 350.10]
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L ηn, ρn|x(  � 
m

i�1
gn xi|λn, ρn( ,

� 

m

i�1

λnρ
λn

n

x
λn+1
i

⎡⎣ ⎤⎦,

� λm
n ρ

mλn

n 

m

i�1

1
x
λn+1
i

.

(22)

Taking the logarithm of (22) and symbolizing it by
ωn(Ti|ηn, ρn)

ωn Ti|ηn, ρn(  � log λm
n ρ

mλn

n 

m

i�1

1
x
λn+1
i

⎡⎣ ⎤⎦. (23)

Simplification of (23) yielded
ωn Ti|ηn, ρn(  � mlog λn(  + mλnlog ρn( 

− λn + 1(  

m

i�1
logxi.

(24)

Partially differentiating (24) by unknown values and
equating to zero implies

δωn xi, ηn( 

δλn

,
δωn xi, ρn( 

δρn

  � [0, 0]. (25)

Further solution of (25) provides the following estimates
for unknown parameters of the NPD

ρn � Minxi,

λn �
m


m
i�1 logxi − mlog ρn( 

.
(26)

Note that ρn and λn will be interval forms because of
imprecise sample data. Additionally, we analyze the simu-
lated dataset to demonstrate how the estimation procedure
works in neutrosophic environment. Total 104 different
random samples from the NPD are generated with values of
λn is taken as [4, 6], whereas the value of ρn is fixed at [1, 1].
(e behavior of ML estimator from unknown shape pa-
rameter and scale parameter is also investigated in terms of
neutrosophic root mean square error (NRME).NRME is
estimated according to the formula given as follows:

NRME �

�����������


M

j�1

δj − δj 
2

M




, (27)

where δj and δj are, respectively, actual and predicted value
of the estimated parameter, and M is the total number of
simulation runs. (e R packages EnvStats and Metrics have
been utilized to estimate the model’s parameters and cal-
culate the values of root mean square error. (e estimated
values of λn at a fixed value of scale parameter along with
NRME values are reported in Table 2.

Table 2 shows that when the sample size increases, the
value of the estimator tends to the benchmark value [4, 6],
and NRME decreases to zero. (is trending behavior reveals

that ML neutrosophic estimators efficiently perform with a
larger sample size. We can estimate and observe the per-
formance of the scale parameter ρn, but results are not
presented here due to a similar trend.

5. Applications of the Proposed Model

Two real datasets are utilized in this section to show how the
proposed NPD may be implemented.

5.1. 5e Dioxin Data. Dioxins are a class of very poisonous
chemical substances that are dangerous to humans [23]. In
the environment, dioxins pose a threat. Dioxins are a matter
of concern due to their extremely hazardous potential im-
pact on human health. Experimental studies revealed that
they could impact negatively on reproductive, develop-
mental, and immunological systems and organs in the
human body [24].

Additionally, they can affect hormones and result in
cancer. Once dioxins enter cells, they remain there for an
extended period of time due to their chemical persistence
and ability to be absorbed by fatty tissue, where they are
subsequently retained [25]. Dioxins aremostly produced as a
byproduct of industrial operations; however, they can also be
produced naturally. Dioxins are unintended byproducts of
various manufacturing processes, including chlorine drying
of paper pulp, smelting, and the production of some agri-
cultural chemicals [26]. When it comes to dioxin discharge
into the environment, unregulated waste incinerators are
frequently the greatest offenders, because of incomplete
combustion. (e vast majority of dioxins in the food supply
are found in dairy products, meat, shellfish, and fish. (at is
why securing our food supply is so important. Although
dioxins are formed locally, their environmental dispersion is
worldwide. Dioxins are prevalent in the environment on a
global scale. Dioxins emission is therefore monitored by
many countries on a regular basis. (e total amount of
dioxins emitted in Japan is monitored on a regular basis by
the Ministry of Environment [27]. Because of good gov-
ernment policy, the quantity occurrence in the ecosystem or
in food is now extremely small; routine levels of ingestion are
extremely unlikely to cause acute toxicity. (e current levels
of dioxins in Japan indicate an extremely low risk of cancer.
To assess the safety of dioxins exposure, the TDI (tolerable
daily intake) is employed as an indication. It is the quantity
of a chemical substance that may be safely absorbed into the
body over a long period of time, per kg of body weight per
day, known as TDI. (us, TDI is a figure that is used as an
indicator of how long it will take for daily intake to have an

Table 2: Estimation of the neutrosophic parametric with simulated
data.

Sample size Estimate of λn NRME

25 [4.338, 6.507] [0.972, 1.458]
50 [4.162, 6.244] [0.623, 0.935]
80 [4.109, 6.164] [0.480, 0.720]
120 [4.070, 6.106] [0.380, 0.570]
200 [4.042, 6.063] [0.290, 0.435]
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effect on health [28].(e amount of dioxins absorption from
the average diet estimated annually for the time period 1998
to 2015 is published in the annual report 2017 on envi-
ronmental statistics by the Ministry of Environment Japan
[29]. First, the Pareto distribution on intake data for dioxins
is evaluated using the distribution fitting package in R
software. Figure 5 depicts basic probability plots and em-
pirical density.

When the systematic deviations of the points from the
straight line in each graph are considered, it is established
that the Pareto distribution is an appropriate model for this
dataset. (us, the visualization plots in Figure 5 show that
the process data are skewed. It is, therefore, possible to
investigate the data in further depth by applying the pre-
viously proposed model. Although intakes of dioxins are
initially precise quantities for demonstration purposes, we
assume the uncertain sample values as shown in Table 3.(e
imprecise data are formed according to the strategy devised
in [30].

Because of uncertain values, traditional Pareto anal-
ysis of these types of data is inappropriate. It is possible to
use the suggested NPD to summarize the data containing
indeterminacies. Table 4 provides a descriptive summary

of the consumption of dioxins from a typical diet using
NPD.

Table 4 shows the estimated neutrosophic measures
based on the suggested model. All the estimated values are
expressed as intervals because of indeterminacies inherent in
the analyzed dataset. (us, the suggested model is more
adaptable and capable of efficiently analyzing incomplete
data or estimating the parameters with imprecision values.

5.2.5e Child Mortality Rate Data. (e second dataset used
in this analysis provides the childhood mortality rates under
the age of five, covering the period 1995 to 2020 for Saudi
Arabia. (e information has been gathered from a well-
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Figure 5: Fitting of Pareto distribution on average dioxins consumption from total food samples.

Table 3: Estimated dioxins consumption from total food samples collected with uncertainties.

Average daily ingestion of dioxins
[0.80, 2.06] [0.51, 1.26] [0.12, 1.47] [0.36, 1.47] [1.04, 1.46] [0.35, 1.19]
[0.42, 0.65] [0.02, 0.91] [0.04, 1.05] [2.36, 2.44] [1.029, 1.62] [1.17, 2.26]
[0.05, 0.96] [0.48, 1.35] [0.18, 1.18] [0.26, 1.24] [0.14, 0.80]

Table 4: Analysis of dioxins intake dataset using the proposed
model.

Summary statistics Estimated measures
Scale parameter [0.95, 1.02]
Shape parameter [2.15, 2.36]
Mean [1.76, 1.78]
Standard deviation [1.92, 3.12]
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known source on the WHO’s global health indicators da-
tabase, and it is usually expressed as a ratio per 1,000 live
births [31]. Even though child fatality has significantly de-
creased at extremely low rates in many regions of the globe,
it is still seen as a significant issue that requires great at-
tention in the country’s policies. Significant worldwide
progress has been achieved since 1990 in lowering child
fatalities. (ere has been amazing development and re-
markable progress in the health of children and adolescents
in Saudi Arabia during the past two decades due to major
factors such as malnutrition reduction, immunization of
infectious illnesses, and diarrhea control [32]. (e data from
the source are crisp death rate values during the first five
years of life. To aid comprehension of the previous notion of
the suggested distribution, neutrosophic data are created
using the approach provided in [30]. (e interval childhood
mortality rates for the period 1995–2020 are given in Table 5.

(e noticeable uncertainty estimates in Table 5 are due to
the fact that different estimation procedures typically used
for reporting the mortality rates hinder the exact estimates.
Depending on the number of census errors and the various
estimating methodologies, there are likely to be fluctuations
in estimates for any particular country. A distribution fitting
R tool is used to depict the basic probability plots to test the
applicability of the Pareto distribution on average child
death rates, as shown in Figure 6.

In Figure 6, the subjective visual examination of the data
suggests that the Pareto distribution is a reasonable model
for the mortality data as observations are very close to the

straight line. As interval childhood mortality rates are uti-
lized in this investigation, the conventional Pareto analysis is
inapplicable. It is feasible to summarize data, including
uncertainties using the proposed model. Using the suggested
neutrosophic model, Table 6 displays a descriptive overview
of the mortality statistics.

Table 6 provides the estimated uncertainty bounds of
some essential statistics based on the proposed distribution.
All estimated values are provided as intervals due to the
intrinsic imprecision of the dataset being studied. (us, the
proposedmodel is more flexible and capable of evaluating an
imprecise dataset more effectively.

6. Conclusions

(e neutrosophic framework of the Pareto distribution and
its applications in applied statistical methods are presented
in this work. Statistical characteristics of the newly proposed
model using the neutrosophic logic have been widely ex-
plored. (e key expressions for the suggested model, such as

Table 5: Interval estimates of infant death rates for the age less than five years.

Infant mortality rates
[31.53, 31.81] [29.33, 30.08] [27.23, 28.67] [25.09, 26.34] [24.20, 24.88] [22.00, 23.50]
[20.66, 22.09] [19.74, 20.59] [18.57, 20.03] [18.04, 18.77] [16.89, 17.89] [15.92, 16.21]
[14.51, 15.92] [13.92, 14.71] [12.73, 14.32] [12.20, 13.35] [11.18, 12.68 ] [10.21, 11.75]
[10.12, 11.03] [9.12, 10.69] [8.47, 9.42] [8.59, 9.28] [7.65, 9.03] [7.77, 8.59]
[7.23, 7.98] [6.81, 8.06]
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Figure 6: Probability plots of the average childhood mortality rates data using the Pareto model.

Table 6: Descriptive statistics of the child death rates data using
suggested distribution.

Descriptive measures Estimated values
Mean [1.90, 1.74]
Standard deviation [0.33, 0.25]
Estimated shape parameter [6.85, 8.02]
Estimated scale parameter [1.52, 1.63]
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cumulative function, hazard function, reliability function,
and survival function, have been derived and discussed in
detail. (e ML estimates for the unknown parameters of
NPD have been developed. (e theoretical characteristics of
the proposed model have been evaluated using the Monte
Carlo simulation approach. (e effectiveness of the sug-
gested NPD has been demonstrated by using a real dataset
on average dioxins consumption data collected from food
samples throughout the country of Japan.

A future study might concentrate on enhancing the
capacity of the suggested distribution for various inference
techniques and its utility for processing high-dimensional
data.
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