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)is paper gives an analytical approach for investigating free and forced transverse vibrations of a clamped-free rotating annular
disk and obtaining the acoustic pressure distribution around the spinning disk. In the beginning, a modal analysis based on new
analytical methods is carried out to find natural frequencies and mode shapes of the disk. Forced vibration of the disk is then
investigated using Galerkin’s method. An analytical approach based on Laplace transformation is used to obtain time-dependent
coefficients of the transverse response. A passive control strategy is examined for reducing the amplitudes of the transverse
vibrations. )e properties of the absorbers are examined in order to obtain the best performance. Rayleigh integral method and
Durbin’s numerical Laplace transform inversion technique are adopted to compute the acoustic pressure around the rotating disk.
Finally, a parametric study is performed and the effects of the design parameters as well as rotational conditions on the vibrational
responses and the sound pressure of the spinning disk are examined.

1. Introduction

Many researchers have studied the dynamic behavior of the
rotating disks and the acoustic pressure radiated by them
because of their wide application in the engineering [1]. )e
importance of vibrations and acoustic radiation of rotating
disks can be found in a different array of practical appli-
cations such as circular saws, hard disks, gas turbines, au-
tomobile parts, and aerospace structures [2]. In the past
decades, some numerical, analytical, and experimental
studies have been performed to examine the dynamic
analysis of and the acoustic radiation from rotating disks.
For example, Qiu et al. [3] examined an active control
strategy to control the transverse vibration of a circular disk.
)e vibration and the noise reduction of an optical disk
derived using a vibration absorber was studied by Heo et al.
[4], and the required fundamental natural frequency of the
absorber was obtained using a finite-element model.

Ciğeroğlu and Özgüven [5] proposed a new model for the
vibration analysis of turbine blades with dry friction
dampers including both macroslip and microslip models
representing dry friction dampers. Koo [6] analyzed the
vibration and the critical speeds of polar orthotropic rotating
annular disks employing the Rayleigh–Ritz method. In-
plane free vibration of circular annular disks was studied by
Bashmal et al. [7]. )ey presented a generalized formulation
for the in-plane modal characteristics of circular annular
disks under combinations of all possible classical boundary
conditions. Hashemi et al. [8] performed vibration analysis
of rotating thick plates based on Mindlin plate theory
combined with second-order strain-displacement assump-
tions employing finite-element formulations. Damped vi-
brations of the double-sided fixed beams placed on a
rotational disk were analyzed by Żółkiewski [9]. Younesian
et al. [10] analytically studied vibration of a hollow circular
plate subjected to a rotating peripheral force adopting
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Galerkin’s approach. )e influence of shaft’s bending on the
coupling vibration of a flexible blade-rotor system was
analyzed by Li et al. [11]. Elastic stress analysis of a rotating
annular disk made of functionally graded material (FGM)
with variable thickness was studied by Jalali and Shahriari
[12] employing the finite difference method. Bagheri and
Jahangiri [13] studied the in-plane free vibration of the
functionally graded rotating disks with variable thickness.
An accurate solution for the in-plane vibration analysis of
rotating circular panels with general edge restraints was
proposed by Lyu et al. [14]. )e natural frequencies and
mode shapes of rotating turbo-machinery components from
both rotating and stationary reference frames were experi-
mentally analyzed by Presas et al. [15]. Yang et al. [16]
analyzed thermos-elastic coupling vibration and stability of
rotating circular plate in friction clutch. Nonlinear vibration
analysis of turbine bladed disks with mid-span dampers was
studied by Ferhatoglu et al. [17] utilizing Harmonic Balance
Method, Alternating Frequency/Time approach, and New-
ton–Raphson method. Large amplitude vibrations of thin-
walled rotating laminated composite cylindrical shell with
arbitrary boundary conditions were examined by Li et al.
[18] considering the large amplitude vibration of rotating
shells with geometric nonlinearity. )e coupling vibration
characteristics of a rotating disk-beam system with the
dovetail interfaces were analyzed by She et al. [19] based on a
continuummodel. On the other hand, the acoustic radiation
from rotating disks or other engineering structures has
attracted the attention of many researchers [20]. For in-
stance, the acoustic radiation from out-of-plane modes of an
annular disk using thin and thick plate theories was in-
vestigated by Lee and Singh [21]. )ey proposed a semi-
analytical procedure in which the disk surface velocity is
numerically defined by a finite-element model. Reduction of
flow-induced vibration and noise of an optical disk drive was
performed by Cheng et al. [22]. Maeder et al. [23] studied

numerical analysis of sound radiation from rotating disks
using a simplified form of the Rayleigh integral known as the
lumped parameter model. Recently, the average radiation
efficiency of rotating annular plates in the rotating frame was
studied analytically byWang et al. [24] employing Galerkin’s
method and Rayleigh integral technique. Norouzi and
Younesian [25] analyzed the transient and the steady-state
sound radiation of nonlinear plates using analytical
approaches.

Surveying the literature shows that studies have been
addressed the vibrations of the rotating disk do not deal with
proposing an analytical model to analyze the flexural vi-
brations, to mitigate the transverse response, and to reduce
the sound radiated from the spinning disk. So, the main
contribution of this paper is to represent a closed-form
analytical solution in order to cover this gap in the literature.
)e results of this study can be significant in analyzing the
disk brake squeal phenomena or in the study of the noise
generated from the railway wheels.

2. Problem Statement

2.1. Analytical Model. An isotropic, homogeneous, thin
annular disk of inner radius a, outer radius b, thickness h,
Young’s modulus E, mass density ρ, and Poisson’s ratio ]
subjected to a constant external load F is shown in Figure 1.
)e load is applied on the surface of the plate at the co-
ordinate of (rp, θp). )e disk has a constant angular speed Ω
about the z-axis and is assumed to be rigidly clamped at its
inner radius and free at outer radius.

Based on the classical plate theory, the transverse motion
of the disk has no significant effect on the in-plane mem-
brane forces of rotation. Moreover, the effects of the gravity
and in-plane vibrations are also negligible [26]. So, the
governing equation of transverse motion of the disk in
cylindrical coordinates (r, θ, z) can be expressed as [2]
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(1)

where w � w(x, y, t) is the transverse deflection, c is the
viscous damping, and D � Eh3/12(1 − ]2) is the rigidity of
the disk. Moreover, σ0r and σ0θ are the in-plane membrane

stresses due to the centrifugal effect. δ(.) also represents
Dirac’s delta function. )e boundary conditions for the
clamped-free disk are
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in which Q and M are the shear force and the bending
moment, respectively. One can employ Galerkin’s expansion
method and assume w (r, θ, t) as a periodic function of
period 2π and write the response of equation (1) as

w(r, θ, t) � 
∞

n�0


∞

m�0
Amn(t)cos nθ + Bmn(t)sin nθ( Wm(r),

(3)

where Amn(t) and Bmn(t) are time-dependent coefficients
and Wm(r) is mode shapes of the disk obtained from free
vibration analysis.

2.2. FreeVibrationAnalysis. One can let F� 0 in equation (1)
in order to study the free vibration of the annular disk shown
in Figure 1. So, the governing equation can be shown as
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(4)

Using separation of variables technique (SV) and con-
sidering w as a harmonic function, one may suppose the
response of equation (4) as

w � 
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∞

m�0
wmn � 
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iωmnt
, (5)

where ωmn and ϕmn(r, θ) are the natural frequencies and the
corresponding mode shapes, respectively, and m represents

the circular mode number and n describes the diametric
mode number. Additionally, using periodic property of the
response, ϕmn(r, θ) can also be expressed as

ϕmn(r, θ) � Wm(r)cos nθ. (6)

By substituting equation (6) into (5) and the result in
equation (3), an ordinary differential equation describing
W(r) is obtained as
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Figure 1: An isotropic, homogeneous, thin annular disk with the rotational speed of Ω.
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)e corresponding boundary conditions can be derived
as follows:
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For solving equation (7) with boundary conditions (8),
one may multiply both sides of equation (7) by
rWm(r)cos nθ and perform integral from a to b for r and 0

to 2π for θ and then use the orthogonality property of the
mode shapes of the disk [1, 20] and obtain
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Here, M and N are arbitrary parameters that show the upper
bound for the mode numbers and they are both specified.
Equation (9) forms an eigenvalue-eigenfunction problem.
)e solution of equation (9) can be written as follows [27]:

Wm(r) � 
P

j�0
cj,mr

j
+ RP,m(r), (10)

where cj and RP (j� 1, 2,. . .,P) are unknown linear inde-
pendent coefficients and the rest, respectively, and P is a
certain positive integer which is chosen large enough such

that the rest has a negligible error. )erefore, neglecting RP
in equation (9), the application of conditions (8) leads to
yield two linear equations of P+ 1 unknown coefficients of
c0, c1, c2, . . ., cP as follows:
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Equations (11) through (14) give four expressions about
the unknowns of ci. But, according to equation (10), without
considering RP,m, one needs obtaining P+ 1 coefficients. So,
another P− 3 independent equation should be produced.
Inserting polynomial equation (10) into (9) and multiplying
both sides of the result by ri (i� 4, 5, 6,. . .,P) and then
integrating with respect to r between a and b lead to
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)erefore, equations (11), (13), and (15) form a system of
P+ 1 linear algebraic equations for P+ 1 unknown coeffi-
cients ci (i� 0, 1,. . .,P), which can be rewritten in a compact
form as

(H − λK)(P+1)×(P+1) × c0c1c2 . . . cP( 
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To obtain a nontrivial solution of the system of equation
(19), the determinant of the coefficient matrix has to vanish.
)en, one gets a characteristic equation in eigenvalues λ as
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det(H − λK) � 0. (20)

Solving equation (20), one can obtain the natural fre-
quencies of the disk. After finding the natural frequencies,
the coefficient matrix c is obtained from equation (18) and,
finally, equation (10) gives the mode shapes.

2.3. Forced Vibration Analysis. Recalling equations (1) and
(3), one can replace equation (3) in (1) and multiply both
sides of the result first by rWm(r)cos nθ and then by
rWm(r)sin nθ and finally perform integration from 0 to 2π
in θ and from a to b in r to give a system of coupled ordinary
differential equations as follows:
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And, i �
���
−1

√
is the unit imaginary number. Replacing

equation (25) in conjunction with Wm(r) acquired in the
previous section into equation (3), the transverse vibrational
response of the disk is determined.

2.4. Vibration Absorption. In this section, the reduction in
the vibrational deflection of the annular rotating disk is
proposed by adding TMDs to the surface of the disk
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properly. Each TMD has the mass of mq, the stiffness of kq,
and the viscous damping of cq (q� 1, 2, 3,. . .,Q), respectively,
and is placed on the surface of the rotating disk at the
coordinate of (rq, θq) as shown in Figure 2.

Based on equation (1), the equation of transverse motion
of the disk-TMDs system can be expressed as
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where Γq(t) is the force acting from qth TMD on the surface
of the disk. )e equation of the motion of the qth TMD can
also be shown as follows:
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ma, the natural frequency of ωa, and the damping ratio of ζa
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r
,

(29)

where Γa(t) is the contact force created between the dynamic
absorber and the disk. Equation (29) should be solved
considering equation (28). Utilizing Galerkin’s approach,
the solution can be expressed as

w(r, θ, t) � 

∞

n�0


∞

m�0
Emn(t)cos nθ + Fmn(t)sin nθ( Wm(r), (30)

where Emn(t) and Fmn(t) are unknown coefficients.
Substituting equation (30) into (29) and multiplying both
sides of the result first by rWm(r)cos nθ and performing
integration from 0 to 2π in θ and from a to b in r and then by
rWm(r)sin nθ and performing the same integrations con-
structs a system of coupled ordinary differential equations as
follows:
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d2Eij

dt
2 + 2jΩ

dFij

dt
+ ω2

ij − j
2Ω2 Eij + 2ζ ijωij

dEij

dt
+ jΩFij  + FYi rp  − Γa(t)Yi ra( cos jθa(  � 0,

d2Fij

dt
2 − 2jΩ

dEij

dt
+ ω2

ij − j
2Ω2 Fij + 2ζωij

dFij

dt
− jΩEij  − Γa(t)Yi ra( sin jθa(  � 0,

(31)

in which (i � 0, 1, 2, . . . , M, j � 0, 1, 2, . . . , N). Considering
equations (29) and (28) and letting wa(t) � 

∞
n�0


∞
m�0(Emn(t)cos nθa + Fmn(t)sin nθa)Wm(ra), one can

obtain

d2Eij

dt
2 + 2jΩ

dFij

dt
+ ω2

ij − j
2Ω2 Eij + 2ζ ijωij

dEij

dt
+ jΩFij  + FYi rp 

− ma 2ζaωa

dua

dt
−
dEij

dt
−
dFij

dt
  + ω2

a ua − Eij − Fij  Yi ra( cos jθa(  � 0,

d2Fij

dt
2 − 2jΩ

dEij

dt
+ ω2

ij − j
2Ω2 Fij + 2ζωij

dFij

dt
− jΩEij 

− ma 2ζaωa

dua

dt
−
dEij

dt
−
dFij

dt
  + ω2

a ua − Eij − Fij  Yi ra( sin jθa(  � 0,

d2ua

dt
2 + 2ζaωa

dua

dt
−
dEij

dt
−
dFij

dt
  + ω2

a ua − Eij − Fij .

(32)

Equation (32) is a set of ordinary differential equations
which can be solved using numerical methods. )e Run-
ge–Kutta method is employed here in order to solve
equation (32) and to determine the parameters of Eij(t),
Fij(t), and ua(t). So, obtaining the parameters of Eij(t), Fij(t),
and ua(t), one can obtain the transverse vibrational response
of the system of disk-absorber using equation (30).

2.5. Acoustic Radiation. Figure 3 shows the disk of Figure 1
radiating the sound pressure. )e sound pressure distri-
bution P(r, θ, z, t) at an arbitrary point G can be obtained
based on Rayleigh integral as follows [25, 28]:

P rG, θG, zG, t(  �
ρ0
2π


2π

0


b

a

d
2

dt
2 w r, θ, t −

R

c0
 

1
R

rdrdθ,

(33)

where d2w/dt2 denotes the acceleration of the disk, ρ0 and c0
are the mass density and the sound speed of the
acoustic medium, respectively, and
R �

��������������������������
z2

G + r2G + r2 − 2rGr cos(θG − θ)


is the distance be-
tween the observation pointG and an element on the surface
of the disk at the location of (r, θ). Laplace transform
technique can be employed again to obtain the acoustic
pressure of equation (33). By taking Laplace transform from
both sides of equation (33), one has

r

z

F

r1r2

rp

rq θq
θ2 θ1

θ

mq

kq cq

m2

c2k2
k1

m1

c1

u1u2uq

Figure 2: TMDs placed on the surface of the rotating disk.
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P rG, θG, zG, s(  �
ρ0s

2

2π

2π

0


b

a
e

− R/c0s
w(r, θ, s)

1
R

rdrdθ,

(34)

in which P(rG, θG, zG, s) � 
+∞
0 P(rG, θG, zG, t)e− stdt.

Employing the Laplace transform inversion scheme, one can
acquire the acoustic pressure. Durbin’s approach is used to
obtain Laplace transform inversion of equation (34) as [29]

P(t) �
2e

η t

τ
×

1
2
Re(P(η)) + 

M

m�1
Re P η + i

2mπ
τ

  cos
2mπ
τ

t 

− Im P η + i
2mπ
τ

  sin
2mπ
τ

t ,

(35)

where η is an arbitrary real number greater than all the real
parts of the singularities of P(η) and P(η) should be defined
in the interval [0, 2τ]. For sufficient accuracy, the suggested
value of “η t” is given with the appropriate sign by [30]

η t � −2 ln Nτ , (36)

where Nτ is the number of points in the time signal.

3. Results and Discussion

In this section, a parametric study is performed in order to
investigate the effects of different parameters on the vi-
brational response and the acoustic pressure radiated from
the spinning annular disk. In Table 1, the natural frequencies
of the rotating disk obtained from the present study have
been compared with the results from other references. )e
agreement between the results shows the accuracy of the
proposed analytical approach. Table 2 also contains the
geometrical properties of the disk and the physical prop-
erties of the acoustic medium.

Figures 4(a) through 4(f) show the mode shapes and the
natural frequencies of the rotating annular disk for the first
six modes. Time-dependent coefficients of Amn(t) and Bmn(t)
are plotted in Figure 5 against the time.)e figures have been
plotted using two methods: the first graph in each figure by
using equation (25) and the second one employing the
numerical Runge–Kutta approach. )ere are excellent
agreements between the results.

Figures 6(a)–6(d) compare vibrational response of the
disk observed at the point with coordinate of (0.35, π/4) for
Ω � 5π rad/s and for different loading amplitudes. It can be
found from these figures that increasing the amplitude of the
external load causes the dynamical response to be more
regular. For fully forced vibration of the disk (Figure 6(d)),
one can see that the period of the response (0.4 sec) is the
same as the rotational period.

)e effect of the dynamic absorber attaching on the
surface of the disk has been illustrated in Figures 7(a)–7(d).
)e figures have been plotted with and without the absorber
existence and for different frequencies of the TMD. It can be
seen in Figure 7 that the efficiency of the TMD is variable in
different natural frequencies. For finding the best natural
frequency of the dynamic absorber, the root mean square
(RMS) of the response has been shown against the natural
frequency of the TMD in Figure 8. It is clear from Figure 8
that the efficiency of the absorber has the maximum value in
a certain natural frequency (about 2100Hz in this study).
Moreover, the frequencies in which the deflection is not
restrained well (about 1700Hz and 2800Hz), actually, are
the natural frequencies of the system of disk-absorber.
Figure 8 also shows that the performance of the TMD is
impaired by increasing its natural frequency after a certain
frequency (about 4 KHz in our study).

Figure 9 displays RMS of the transverse response versus
the natural frequency of the TMD which is located in the
different places on the surface of the disk. It is found from
Figure 9 that the absorber location plays an important role in
the performance of the vibration absorber. Figure 9 also
shows that for the natural frequencies of the TMD after a
certain frequency (about 3000Hz in this study), the location
of the TMD has no significant effect on the disk response.
Moreover, at any location where the absorber placed on, the
TMD has a maximum and a minimum effectiveness.

As it is shown in Figure 8, one can choose the best TMD
from the natural frequency point of view. On the other hand,
Figure 9 gives the best location on the surface of the disk in
which the attached TMD has the best efficiency (407.5mm
from the center of the disk in this study). In fact, considering
Figures 8 and 9, one can choose the best characters of TMD
with the optimum performance. Figure 10 shows the time
history of the transverse response of the disk before and after
using the best dynamic absorber. From Figure 10, one can

r

z

r

G (rG, θG, zG)

rG θG θ
θ

R
zG

Figure 3: )e observation point (G) in which the acoustic pressure should be determined.
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Table 1: )e natural frequencies (Hz) of the rotating disk compared with the results of Ref. [2].

Mode number Ref. [2] Present study Mode number Ref. [2] Present study
(1, 1) 478 480 (2, 1) 3100 3106
(1, 2) 484 485 (2, 2) 3118 3119
(1, 3) 506 506 (2, 3) 3175 3175
(1, 4) 550 553 (2, 4) 3268 3269
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Figure 4: Continued.

Table 2: )e properties of the studied disk and the acoustic medium.

Item Value
Disk outer radius (b) 0.5m
Disk inner radius (a) 0.2m
Disk thickness (h) 4 mm
Disk Young’s modulus (E) 210GPa
Disk Poisson’s ratio (]) 0.3
Disk mass density (ρ) 7800Kg/m3

Acoustic medium mass density (ρ0) 1.14Kg/m3

Sound speed (c0) 340m/s
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see a coincidence between two results at the beginning. )is
low quality of the TMD at the initial times is because the
respite TMD needs to be adapted in the system.

)e acoustic pressure radiated from the disk was plotted
against the time in Figure 11. )is figure compares the
analytical model of present study with numerical models. A
good agreement between the results is observed specially
after the transient response.

Figure 12 focuses on the effect of annulus radiuses on the
acoustic pressure. It is clear from the figure that increasing
the ratio of outer to inner radius of the disk (i.e., b/a) causes
dominant increasing in sound pressure. Figures 13(a) and
13(b) describe the effect of the rotational speed on the
acoustic response. In Figure 13(a), this effect has been il-
lustrated for different external forces while Figure 13(b)
shows these evolutions when the thickness of the disk
changes. Form Figures 13(a) and 13(b), one can find a

certain frequency (about 800Hz in our study) in which the
sound radiated from the spinning disk generates its mini-
mum pressure.)is frequency is independent of any changes
in the force amplitude and the disk thickness.

Figures 14(a) through 14(c) demonstrate time snapshots
of the acoustic pressure distribution at the plane parallel to
the surface of the rotating disk. )e figures were generated
when the disk has been rotated a half cycle, one, and one-
and-a-half cycles, respectively. It can be found from the
figure that the acoustic pressure has the minimum and the
maximum values in certain points around the disk, but the
field is completely symmetric. Comparing Figures 14(a)
through 14(c), one can see the changes in the sound pres-
sure intensity and the distribution pattern. It is also clear
from Figures 14(a) and 14(c) that the sound pressure will be
amplified in the higher cycles of rotation, but the distri-
bution pattern will be periodic.
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Figure 4: )e mode shapes and the natural frequencies of the rotating disk. (a) ω0,0 � 2.48Hz. (b) ω1,0 � 31.63Hz. (c) ω0,1 � 74.16Hz. (d)
ω1,1 � 122.44Hz. (e) ω2,1 � 134.14Hz. (f ) ω1,2 � 172.19Hz.
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Figure 5: )e time-dependent coefficients of (a) Amn(t) and (b) Bmn(t) using analytical and numerical methods.
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Figure 6: Time response of the disk with the rotational speed of Ω� 5π rad/s for (a) F� 0.1, (b) F� 1, (c) F� 10, and (d) F� 100.
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Figure 7: Continued.
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Figure 7: Time response of the disk with and without TMD for (a) ωa � 1000Hz, (b) ωa � 2000Hz, (c) ωa � 3000Hz, and (d) ωa � 4000Hz.
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)e time snapshots of the acoustic pressure field at the
plane parallel to the surface of the system of dynamic
absorber-rotating disk showing the location of the TMD
have been illustrated in Figures 15(a) through 15(c).
Comparing these figures with Figures 14(a) through 14(c),
one can obtain the acoustic pressure decreasing after

using TMD on the surface of the rotating disk. Fur-
thermore, the acoustic field at the plane parallel to the
surface of the disk is asymmetric when the dynamic ab-
sorber is attached. One can observe the reduction in the
acoustic pressure radiated from the vibrating disk after
using TMD.
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Figure 13: )e acoustic pressure evolutions against the rotational speed of the disk for different (a) external force amplitudes and
(b) thicknesses.
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Figure 14:)e acoustic pressure field (dB) parallel to the disk when the disk has been rotated (a) a half cycle, (b) exactly one cycle, and
(c) one-and-a-half cycle.
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4. Conclusions

)e analytical modeling of free and forced vibration and the
acoustic radiation mitigation for an annular rotating disk
was studied in this paper. Galerkin’s expansion method was
employed to obtain the vibrational response of the disk. )e
natural frequencies and the mode shapes of the disk were
found by analytical methods. Time-dependent coefficients
were obtained analytically, and the results were compared
with the numerical simulation results. A tuned-mass-
damped (TMD) mechanism was added to the main system
in order to reduce the amplitude of the vibrations. )e
influence of the different parameters on the efficiency of the
TMD was examined. Acoustic pressure radiated from the
rotating annulus was computed employing Rayleigh integral
method, Laplace transform technique, and Durbin’s Laplace
transform inversion scheme.)e most important results can
be mentioned as follows:

(i) )e acoustic pressure radiated from the vibrating
rotating annular disk is increased by increasing the
ratio of outer-inner radius.

(ii) )e rotating disk generates different sound levels in
different spinning speeds. Moreover, there is a
certain speed in which the sound pressure radiated
from the disk has a minimum value. )is merit

rotational speed is independent of forcing
conditions.

(iii) Rotating disks with higher thicknesses are noisier
than the thin disks.

(iv) )e acoustic pressure field generated by the disk is
symmetric, but adding TMD to the system makes
the sound field asymmetric.
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[9] S. Żółkiewski, “Damped vibrations problem of beams fixed on
the rotational disk,” International Journal of Bifurcation and
Chaos, vol. 21, no. 10, pp. 3033–3041, 2011.

[10] D. Younesian, M. H. Aleghafourian, and E. Esmailzadeh,
“Vibration analysis of circular annular plates subjected to
peripheral rotating transverse loads,” Journal of Vibration and
Control, vol. 21, no. 7, pp. 1443–1455, 2015.

[11] C.-f. Li, H. X. She, W. Liu, and B. C. Wen, “)e influence of
shaft’s bending on the coupling vibration of a flexible blade-
rotor system,” Mathematical Problems in Engineering,
vol. 2017, Article ID 7313956, 2017.

[12] M. H. Jalali and B. Shahriari, “Elastic stress analysis of rotating
functionally graded annular disk of variable thickness using
finite difference method,” Mathematical Problems in Engi-
neering, vol. 2018, Article ID 1871674, 2018.

[13] E. Bagheri and M. Jahangiri, “Analysis of in-plane vibration
and critical speeds of the functionally graded rotating disks,”
International Journal of Applied Mechanics, vol. 11, no. 2,
Article ID 1950020, 2019.

[14] P. Lyu, J. Du, Y. Wang, and Z. Liu, “Free in-plane vibration
analysis of rotating annular panels with elastic boundary
restraints,” Journal of Sound and Vibration, vol. 439,
pp. 434–456, 2019.

[15] A. Presas, D. Valentin, C. Valero, and M. E. Montagut,
“Experimental measurements of the natural frequencies and
mode shapes of rotating disk-blades-disk assemblies from the
stationary frame,” Applied Sciences, vol. 9, no. 18, 2019.

[16] Y. Yang, Z. Wang, and Y. Wang, “)ermoelastic coupling
vibration and stability analysis of rotating circular plate in
friction clutch,” Journal of Low Frequency Noise, Vibration
and Active Control, vol. 38, no. 2, pp. 558–573, 2019.

[17] E. Ferhatoglu, S. Zucca, D. Botto, J. Auciello, and L. Arcangeli,
“Nonlinear vibration analysis of turbine bladed disks with
mid-span dampers,” in Turbo Expo: Power for Land, Sea, and
AirAmerican Society of Mechanical Engineers (ASME), NY,
USA, 2020.

[18] C. Li, P. Li, B. Zhong, and X. Miao, “Large-amplitude vi-
brations of thin-walled rotating laminated composite cylin-
drical shell with arbitrary boundary conditions,”Pin-Walled
Structures, vol. 156, Article ID 106966, 2020.

[19] H. She, C. Li, Q. Tang, and B. Wen, “Nonlinear vibration
analysis of a rotating disk-beam system subjected to dry

friction,” Shock and Vibration, vol. 2020, Article ID 7604174,
2020.

[20] R. Shakeri and D. Younesian, “Broad-band noise mitigation in
vibrating annular plates by dynamic absorbers,” International
Journal of Structural Stability and Dynamics, vol. 16, no. 6,
Article ID 1550014, 2016.

[21] H. Lee and R. Singh, “Acoustic radiation from out-of-plane
modes of an annular disk using thin and thick plate theories,”
Journal of Sound and Vibration, vol. 282, no. 1, pp. 313–339,
2005.

[22] C. C. Cheng, F. T. Wu, and K. L. Ho, “Reduction of flow-
induced vibration and noise of an optical disk drive,” Journal
of Sound and Vibration, vol. 320, no. 1, pp. 43–59, 2009.

[23] M. Maeder, R. D. Auria, E. Grasso et al., “Numerical analysis
of sound radiation from rotating discs,” Journal of Sound and
Vibration, vol. 468, Article ID 115085, 2020.

[24] Z. Wang, Y. Jiao, Z. Chen, X. Qu, and T. Fu, “An analytical
study of average radiation efficiency of rotating annular plates
in rotating frame,” Applied Acoustics, vol. 174, Article ID
107786, 2021.

[25] H. Norouzi and D. Younesian, “Vibro-acoustic numerical
analysis for the geometrically nonlinear viscoelastic rectan-
gular plate subjected to subsonic compressible airflow,” Ap-
plied Acoustics, vol. 174, Article ID 107779, 2021.

[26] D.-S. Liang, H.-J. Wang, and L.-W. Chen, “Vibration and
stability of rotating polar orthotropic annular disks subjected
to a stationary concentrated transverse load,” Journal of Sound
and Vibration, vol. 250, no. 5, pp. 795–811, 2002.

[27] M. A. Hajji, Q. M. Al-Mdallal, and F. M. Allan, “An efficient
algorithm for solving higher-order fractional Sturm–Liouville
eigenvalue problems,” Journal of Computational Physics,
vol. 272, pp. 550–558, 2014.

[28] F. T. K. Au and M. F. Wang, “Sound radiation from forced
vibration of rectangular orthotropic plates under moving
loads,” Journal of Sound and Vibration, vol. 281, no. 3,
pp. 1057–1075, 2005.

[29] F. Durbin, “Numerical inversion of Laplace transforms: an
efficient improvement to dubner and abate’s method,” Pe
Computer Journal, vol. 17, no. 4, pp. 371–376, 1974.

[30] J.-F. Blais and A. Ross, “Forward projection of transient sound
pressure fields radiated by impacted plates using numerical
Laplace transform,” Journal of the Acoustical Society of
America, vol. 125, no. 5, pp. 3120–3128, 2009.

Mathematical Problems in Engineering 17


