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�e concept of locating number for a connected network contributes an important role in computer networking, loran and sonar
models, integer programming and formation of chemical structures. In particular it is used in robot navigation to control the
orientation and position of robot in a network, where the places of navigating agents can be replaced with the vertices of a network.
In this note, we have studied the latest invariant of locating number known as local fractional locating number of an antiprism
based convex polytope networks. Furthermore, it is also proved that these convex polytope networks posses boundedness under
local fractional locating number.

1. Introduction

Slater [1] introduced the methodology to compute the lo-
cating set of a connected network. He de�ned the minimum
cardinality of a locating set as a locating number of a con-
nected network. Melter and Harary independently studied
the concept of location number but they used the di�erent
term called as metric dimension. �ey also brie�y studied
the locating number of serval type of networks such as cycles,
complete and complete bipartite networks [2]. Applications
of locating number can be found for navigation of reboots
[3], chemical structures [4], combinatorial optimization [5]
image processing & pattern recognition [6].

Chartrand et al. [4] played a vital role in the study of
locating number (LN), they characterized all those con-
nected networks of order p having locating number 1, p − 2,
and p − 1. Furthermore, they also presented a new technique
to compute bounds of locating number of unicyclic net-
works. Since then researchers have computed locating
number of many connected networks such as generalized
Peterson network [7], Cartesian products [8], constant lo-
cating number of some convex polytopes and generalized
convex polytopes [9, 10], Mobius ladders [11], Toeplitz
networks [12], k—dimensional networks, and fan networks

[13, 14]. Moreover, LN of corona product and partition
dimension of di�erent products of networks can be seen in
[15, 16] and fault tolrent LN of some families of convex
polytopes studied in [17, 18]. For the study of edge LN of
wheel and k level wheel networks, we refer [19, 20].�ere are
various new invariants of LN which have been introduced in
recent times such as partition dimension [21], Strong—LN
[5], fault-tolerant LN [22], edge LN [23], mixed—LN [24],
independent resolving sets [25], and K—LN [26].

Chartared et al. use the concept of LN to solve an integer
programming problem (IPP) with speci�c conditions [4]
and Currie and Olllermann used the idea of fractional lo-
cating number (FLN) to �nd solution of speci�c IPP as well
[27]. �e FLN formally introduced in networking theory by
Arguman and Mathew and they computed exact values of
FLN of a path, cycles, wheels, complete and friendship
networks. Furthermore, they also developed some new
techniques to compute exact values of FLN of connected
networks with speci�c conditions [28]. Later on Arguman
et al. characterized all those networks have FLN exactly
|V(G)|/2 and they also presented many results on FLN of
Cartesian product of two networks [29]. Feng et al. com-
puted FLN of distance regular and vertex transitive networks
[30]. For the study of FLN of corona, lexicographic, and

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 3723427, 14 pages
https://doi.org/10.1155/2022/3723427

mailto:ebbonya@gmail.com
https://orcid.org/0000-0001-7241-8172
https://orcid.org/0000-0003-0808-4504
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3723427


hierarchical products of connected networks see [31, 32].
Recently, Alkhalidi et al. established sharp bound of FLN of
all the connected networks [33].

�e latest version of FLN called by local fractional lo-
cating number (LFLN) is de�ned by Aisyah et al. and they
computed LFLN of di�erent connected networks [34].
Javaid et al. developed sharp bounds of LFLN of all the
connected networks and they computed upped bounds of
local FLN of wheel-related networks. Furthermore, they also
improved the lower bound of LFLN di�erent from unity and
also developed a technique to compute exact value of LFLN
under speci�c conditions [35, 36]. For the study of LFLN of
generalized gear, sunlet and convex polytope networks see
[37–39].

In this manuscript, our main objective is to compute
LFLN of cretin family of convex polytopes in the form of
sharp upper and lower bounds. It has been proved that in
every case the convex polytopes remain bounded. �e
manuscript is organised as Section 2 contains preliminaries
and Sections 3 and 4 have main results and conclusion
respectively.

2. Preliminaries

A network G is an order pair (V(G), E(G))), where V(G) is
the vertex set and E(G) is the edge set. A walk is a �nite
sequence of edges and vertices between two vertices. A trail
is a walk in which all edges are distinct and a path is a trail in
which all vertices are distinct. A network G is connected if
there is a path between each pair vertices. �e distance
between two vertices a and b is donated by d(a, b) is de�ned
as the length of the shortest path between a and b. For
further preliminary results of networking theory see [40]. A
vertex c ∈ V(G) is said to resolve a pair a, b ∈ V(G), if
d(a, c)≠d(b, c). Suppose that W � w1, w2, w3,{
. . . , wp}⊆V(G) and x ∈ V(G), then p tuple representation of
x with respect to W is de�ned as
d(x|W) � (d(x, w1), d(x, w2), d(x, w3), . . . , d(x, wp)). If
distinct vertices of G have unique representation with re-
spect to W then W is known as locating/resolving set. �e

minimum cardinality ofW is called locating number (LN) of
G that is de�ned as

LN(G) � min |W|: W is the resolving set of G{ }. (1)

For an edge ab ∈ E(G) the local resolving neighbour-
hood set (LRN) is the collection of all vertices of G which
resolve an edge ab and it is donated by
Rl(ab) � c: d(c, a)≠ d(c, b){ }, where c ∈ V(G). A real val-
ued function h: V(G)⟶ [0, 1] becomes local resolving
function of G if h(Rl(ab))≥ 1 for each Rl(ab) in G, where
h(Rl(ab)) � ∑x∈Rl(ab)h(x). A local resolving function (LRF)
is called minimal LRF if there exist another function
h′: V(G)⟶ [0, 1] such that h′ ≤ h and h(a)≠ h′(a) for at
least one a ∈ V(G), that is not LRF of G. If
|h| � ∑v∈V(G)h(v), then local fractional locating number
(LFLN) of G is de�ned as

LFLN(G) � min |h|: h isminimal local resolving function of G{ }.
(2)

3. Main Results

�is section is devoted to the main results in which, we have
examined the LFLN of cretin family convex polytope net-
works Dp and Ep and it has been proved that these polytope
networks remain bounded under LFLN when their order
approaches to in�nity.

3.1. LFLN of Convex Polytpoe NetworkDp. In this particular
subsection, we have computed resolving local neighbour-
hood sets and LFLN of Dp in the form of exact values and
sharp lower and upper bounds.

�e convex polytope network is introduced by Bača [41]
and LN of Dp is 3 is proved in [10]. �e vertex set V(D)p
consists of inner ( ai: 1≤ i≤p{ }), middle a1i : 1≤ i≤p{ },
bi: 1≤ i≤p{ } and outer vertices b1i : 1≤ i≤p{ }. �e edge set
Dp is de�ned as E(Dp) � aiai+{ 1: 1≤ i≤
p}∪ a1i ai: 1≤ i≤p{ } ∪ a1i bi: 1≤ i≤p{ }∪ b1i bi: 1≤ i≤p{ }∪
b1i b

1
i+1: 1≤ i≤p{ }∪ a1i+1bi: 1≤ i≤p{ }. Furthermore, the
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Figure 1: Convex polytope network Dp.
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order and size of Dp are 4p and 6p respectively and for
complete details see Figure 1.

Lemma 1. Let Dp be a convex polytope network, with p≥ 5
and p � 1(mod2). 1en.

(i) |Rl(a1
i bi)| � |Rl(bia

1
i+1)| � 5p + 7/2 and ⋃ i �

1pRl(a1
i bi) � V(Dp).

(ii) |(Rl(a1
i bi))|≤ |Rl(e)| and |Rl(e)∩ ⋃ i �

1p(Rl(a1
i bi))|≥ |(Rl(a1

i bi))|∀e ∈ E(Dp).

Proof. Consider ai inner, a1
i , bi middle and b1i are outer

vertices of Dp, where 1≤ i≤p and p + 1 � 1(modp).

(i) Rl(a1
i bi) � V(Dp) − ai+1, ai+2, ai+3, . . . ., ap+2i−1/2,􏽮

a1
p+2i−1/2, bp+2i+ 1/21, b1p+2i+3/2, b1p+2i+1/5, . . . , b1p+i−1}

and Rl(bia
1
i+1) � V(Dp)− ai, ap+2i+3/2, ap+2i+5/2,􏽮

ap+2i+7/2, . . . ., ap+i−1, b1i+1, b1i+2, . . . , b1p+2i+1/5}. Note
that ⋃ i � 1pRl(a1

i bi) � V(Dp) and |Rl(a1
i bi)|

� 5p + 7/2.
(ii) Rl(aiai+1) � V(Dp) − ap+2i+1/2, a1

p+2i+1/2, b1i , bi􏽮 􏽯, Rl

(b1i b1i+1) � V(Dp) − ai+1, a1
i+1, b1p+2i+1/2, bp+2i+1/2􏽮 􏽯,

Rl(aia
1
i ) � V(Dp) − a1

i+2, a1
p, bi+2, bp􏽮 􏽯 and Rl(bi

b1i ) � V(Dp) − a1
i+3, a1

p, bi+2, bp􏽮 􏽯.

)e cardinalities of all the LRN sets of Dp are illustrated
in Table 1.

From Table 1, we note that |Rl(a1
i bi)|≤ |Rl(e)|. Since

|⋃ i � 1pRl(a1
i bi)| � 4p therefore |Rl(e)∩ ⋃ i � 1p

Rl(a1
i bi)|≥ |Rl(a1

i bi)|∀e ∈ E(Dp). □

Theorem 1. Let D3 be a convex polytope network. 1en
6
5
≤LFLN D3( 􏼁≤

3
2
. (3)

Proof. )e LRN sets of convex polytope network D3 are:
Rl(1) � Rl(a1a2) � V(D3) − a3, a1

3, b1, b11􏼈 􏼉,

Rl(2) � Rl a2a3( 􏼁 � V D3( 􏼁 − a1, a
1
2, b2, b

1
2􏽮 􏽯

Rl(3) � Rl a3a1( 􏼁 � V D3( 􏼁 − a2, a
1
1, b3, b

1
3􏽮 􏽯

Rl(4) � Rl a
1
1b1􏼐 􏼑 � V D3( 􏼁 − a2, a

1
3, b2, b

1
3􏽮 􏽯

Rl(5) � Rl a
1
2b2􏼐 􏼑 � V D3( 􏼁 − a3, a

1
1, b3, b

1
1􏽮 􏽯

Rl(6) � Rl a
1
3b3􏼐 􏼑 � V D3( 􏼁 − a1, a

1
2, b1, b

1
2􏽮 􏽯

Rl(7) � Rl b
1
1b

1
2􏼐 􏼑 � V D3( 􏼁 − b

1
3, b3, a

1
2, a2􏽮 􏽯

Rl(8) � Rl b
1
2b

1
3􏼐 􏼑 � V D3( 􏼁 − b

1
1, b1, a

1
3, a3􏽮 􏽯

Rl(9) � Rl b
1
3b

1
1􏼐 􏼑 � V D3( 􏼁 − b

1
2, b2, a

1
1, a1􏽮 􏽯

Rl(10) � Rl b
1
1b1􏼐 􏼑 � V D3( 􏼁 − b2, b3, a

1
3􏽮 􏽯

Rl(11) � Rl b
1
2b2􏼐 􏼑 � V D3( 􏼁 − b3, b1, a

1
1􏽮 􏽯

Rl(12) � Rl b
1
3b3􏼐 􏼑 � V D3( 􏼁 − b1, b2, a

1
2􏽮 􏽯

Rl(13) � Rl a
1
1a1􏼐 􏼑 � V D3( 􏼁 − a

1
2, a

1
3􏽮 􏽯

Rl(14) � Rl a
1
2a2􏼐 􏼑 � V D3( 􏼁 − a

1
3, a

1
1􏽮 􏽯

Rl(15) � Rl a
1
3a3􏼐 􏼑 � V D3( 􏼁 − a

1
1, a

1
2􏽮 􏽯

Rl(16) � Rl a
1
2b1􏼐 􏼑 � V D3( 􏼁 − a1, a

1
2􏽮 􏽯

Rl(17) � Rl a
1
3b2􏼐 􏼑 � V D3( 􏼁 − a2, a

1
3􏽮 􏽯

Rl(18) � Rl a
1
1b3􏼐 􏼑 � V D3( 􏼁 − a3, a

1
1􏽮 􏽯.

(4)

Since, |Rl(aiai+1)| � |Rl(b1i b1i+1)| � |Rl(b1i bi)| �

|Rl(a1
i ai)| � 8 which is less then the other LRN sets, where

1≤ i≤ 3. Furthermore, ∪ 3i�1Rl(aiai+1) � V(D3) and
|Rl(e)∩ ∪ 3i�1Rl(aiai+1)|≥ |Rl(aiai+1)|∀e ∈ E(D3).

Table 1: )e cardinalities of all the LRN sets of Dp.

RLN set Comparison
Rl(aiai+1) 4p − 4> |Rl(a1

i bi)|

Rl(b1i b1i+1) 4p − 4> |Rl(a1
i bi)|

Rl(aia
1
i ) 4p − 4> |Rl(a1

i bi)|

Rl(bib
1
i ) 4p − 4> |Rl(a1

i bi)|
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)erefore, we define an upper LRF h: (D3)⟶ [0, 1] as
h(v) � 1/8∀v ∈ V(D3). In order to show that h is minimal
LRF consider another upper LRF h′: V(D3)⟶ [0, 1] as
h(v)< 1/8∀v ∈ V(D3) therefore h(Rl(e))< 1 and |h|′ < |h|

which shows that h′ is not LRF of D3 hence
LFLN(D3)≤􏽐

12
i�11/8 � 3/2. Likewise for 1≤ i≤ 3 cardinality

of LRN set Rl(a1
i bi) is 10 which is greater then the cardi-

nalities of all other LRN sets of D3. )erefore, we define
a maximal lower LRF g: (Dp)⟶ [0, 1] as g(v) � 1/
10∀v ∈ V(D3). Hence LFLN(D3)≥􏽐

12
i�11/10 � 6/5.

Consequently,

6
5
≤LFLN D3( 􏼁≤

3
5
. (5)

□

Theorem 2. Let D5 be a convex polytope network. 1en

LFLN D5( 􏼁 �
5
4
. (6)

Proof. )e LRN sets are given by:
Rl(1) � Rl(a1a2) � V(D5) − a4, a1

4, b1, b11􏼈 􏼉,

Rl(2) � Rl a2a3( 􏼁 � V D5( 􏼁 − a5, a
1
5, b2, b

1
2􏽮 􏽯

Rl(3) � Rl a3a4( 􏼁 � V D5( 􏼁 − a1, a
1
1, b3, b

1
3􏽮 􏽯

Rl(4) � Rl a4a5( 􏼁 � V D5( 􏼁 − a2, a
1
2, b4, b

1
4􏽮 􏽯

Rl(5) � Rl a5a1( 􏼁 � V D5( 􏼁 − a3, a
1
3, b5, b

1
5􏽮 􏽯

Rl(6) � Rl b1b
1
1􏼐 􏼑 � V D5( 􏼁 − a

1
3, a

1
5, b2, b5􏽮 􏽯

Rl(7) � Rl b2b
1
2􏼐 􏼑 � V D5( 􏼁 − a

1
4, a

1
1, b3, b1􏽮 􏽯

Rl(8) � Rl b3b
1
3􏼐 􏼑 � V D5( 􏼁 − a

1
5, a

1
2, b4, b2􏽮 􏽯

Rl(9) � Rl b4b
1
4􏼐 􏼑 � V D5( 􏼁 − a

1
1, a

1
3, b5, b1􏽮 􏽯

Rl(10) � Rl b5b
1
5􏼐 􏼑 � V D5( 􏼁 − a

1
2, a

1
4, b1, b2􏽮 􏽯

Rl(11) � Rl b
1
1b

1
2􏼐 􏼑 � V D5( 􏼁 − a

1
2, a2, b4, b

1
4􏽮 􏽯

Rl(12) � Rl b
1
2b

1
3􏼐 􏼑 � V D5( 􏼁 − a

1
3, a3, b5, b

1
5􏽮 􏽯

Rl(13) � Rl b
1
3b

1
4􏼐 􏼑 � V D5( 􏼁 − a

1
4, a4, b1, b

1
1􏽮 􏽯

Rl(14) � Rl b
1
4b

1
5􏼐 􏼑 � V D5( 􏼁 − a

1
5, a5, b2, b

1
2􏽮 􏽯

Rl(15) � Rl b
1
5b

1
1􏼐 􏼑 � V D5( 􏼁 − a

1
1, a1, b3, b

1
3􏽮 􏽯

Rl(16) � Rl a1a
1
1􏼐 􏼑 � V D5( 􏼁 − a

1
2, a

1
5, b2, b4􏽮 􏽯

Rl(17) � Rl a2a
1
2􏼐 􏼑 � V D5( 􏼁 − a

1
3, a

1
1, b3, b5􏽮 􏽯

Rl(18) � Rl a3a
1
3􏼐 􏼑 � V D5( 􏼁 − a

1
4, a

1
2, b4, b1􏽮 􏽯

Rl(19) � Rl a4a
1
4􏼐 􏼑 � V D5( 􏼁 − a

1
5, a

1
3, b5, b2􏽮 􏽯

Rl(20) � Rl a5a
1
5􏼐 􏼑 � V D5( 􏼁 − a

1
1, a

1
4, b1, b3􏽮 􏽯

Rl(21) � Rl a
1
1b1􏼐 􏼑 � V D5( 􏼁 − a2, a3, b

1
4, b

1
5􏽮 􏽯

Rl(22) � Rl a
1
2b2􏼐 􏼑 � V D5( 􏼁 − a3, a4, b

1
5, b

1
1􏽮 􏽯

Rl(23) � Rl a
1
3b3􏼐 􏼑 � V D5( 􏼁 − a4, a5, b

1
1, b

1
2􏽮 􏽯

Rl(24) � Rl a
1
4b4􏼐 􏼑 � V D5( 􏼁 − a5, a1, b

1
2, b

1
3􏽮 􏽯

Rl(25) � Rl a
1
5b5􏼐 􏼑 � V D5( 􏼁 − a1, a2, b

1
3, b

1
4􏽮 􏽯

Rl(26) � Rl a
1
2b1􏼐 􏼑 � V D5( 􏼁 − a1, a5, b

1
2, b

1
3􏽮 􏽯

Rl(27) � Rl a
1
3b2􏼐 􏼑 � V D5( 􏼁 − a2, a1, b

1
3, b

1
4􏽮 􏽯

Rl(28) � Rl a
1
4b3􏼐 􏼑 � V D5( 􏼁 − a3, a2, b

1
4, b

1
5􏽮 􏽯

Rl(29) � Rl a
1
5b4􏼐 􏼑 � V D5( 􏼁 − a4, a3, b

1
5, b

1
1􏽮 􏽯

Rl(30) � Rl a
1
1b5􏼐 􏼑 � V D5( 􏼁 − a5, a4, b

1
1, b

1
2􏽮 􏽯.

(7)
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It is clear that the cardinality of each RLN set of D5 is 16.
)erefore, we define a constant function
h: V(D5)⟶ [0, 1] as h(v) � 1/16∀v ∈ V(D5). Hence
LFLN(D5) � 􏽐

20
i�11/16 � 5/4. □

Theorem 3. Let Dp be a convex polytope network, with p≥ 7
and p � 1(mod2). 1en

p

p − 1
≤ LFLN Dp􏼐 􏼑≤

8p

5p + 7
. (8)

Proof. To prove the result, we split it into two cases □

Case 1. For p � 7 , we have following LRN sets;
Rl(1) � Rl(a1

1b1) � V(D7) − a2, a3, a4, a1
4, b15, b16, b17􏼈 􏼉,

Rl(2) � Rl a
1
2b2􏼐 􏼑 � V D7( 􏼁 − a3, a4, a5, a

1
5, b

1
6, b

1
7, b

1
1􏽮 􏽯

Rl(3) � Rl a
1
3b3􏼐 􏼑 � V D7( 􏼁 − a4, a5, a6, a

1
6, b

1
7, b

1
1, b

1
2􏽮 􏽯

Rl(4) � Rl a
1
4b4􏼐 􏼑 � V D7( 􏼁 − a5, a6, a7, a

1
7, b

1
1, b

1
2, b

1
3􏽮 􏽯

Rl(5) � Rl a
1
5b5􏼐 􏼑 � V D7( 􏼁 − a6, a7, a1, a

1
1, b

1
2, b

1
3, b

1
4􏽮 􏽯

Rl(6) � Rl a
1
6b6􏼐 􏼑 � V D7( 􏼁 − a7, a1, a2, a

1
2, b

1
3, b

1
4, b

1
5􏽮 􏽯

Rl(7) � Rl a
1
7b7􏼐 􏼑 � V D7( 􏼁 − a1, a2, a3, a

1
3, b

1
4, b

1
5, b

1
6􏽮 􏽯

Rl(8) � Rl a
1
2b1􏼐 􏼑 � V D7( 􏼁 − a1, a6, a7, b

1
2, b

1
3, b

1
4, b

1
5􏽮 􏽯

Rl(9) � Rl a
1
3b2􏼐 􏼑 � V D7( 􏼁 − a2, a7, a1, b

1
3, b

1
4, b

1
5, b

1
6􏽮 􏽯

Rl(10) � Rl a
1
4b3􏼐 􏼑 � V D7( 􏼁 − a3, a1, a2, b

1
4, b

1
5, b

1
6, b

1
7􏽮 􏽯

Rl(11) � Rl a
1
5b4􏼐 􏼑 � V D7( 􏼁 − a4, a2, a3, b

1
5, b

1
6, b

1
7, b

1
1􏽮 􏽯

Rl(12) � Rl a
1
6b5􏼐 􏼑 � V D7( 􏼁 − a5, a3, a4, b

1
6, b

1
7, b

1
1, b

1
2􏽮 􏽯

Rl(13) � Rl a
1
7b6􏼐 􏼑 � V D7( 􏼁 − a6, a4, a5, b

1
7, b

1
1, b

1
2, b

1
3􏽮 􏽯

Rl(14) � Rl a
1
1b7􏼐 􏼑 � V D7( 􏼁 − a7, a5, a6, b

1
1, b

1
2, b

1
3, b

1
4􏽮 􏽯,

Rl(15) � Rl a1a2( 􏼁 � V D7( 􏼁 − a5, a
1
5, b1, b

1
1􏽮 􏽯

Rl(16) � Rl a2a3( 􏼁 � V D7( 􏼁 − a6, a
1
6, b2, b

1
2􏽮 􏽯,

Rl(17) � Rl a3a4( 􏼁 � V D7( 􏼁 − a7, a
1
7, b3, b

1
3􏽮 􏽯,

Rl(18) � Rl a4a5( 􏼁 � V D7( 􏼁 − a1, a
1
1, b4, b

1
4􏽮 􏽯,

Rl(19) � Rl a5a6( 􏼁 � V D7( 􏼁 − a2, a
1
2, b5, b

1
5􏽮 􏽯,

Rl(20) � Rl a6a7( 􏼁 � V D7( 􏼁 − a3, a
1
3, b6, b

1
6􏽮 􏽯,

Rl(21) � Rl a7a1( 􏼁 � V D7( 􏼁 − a4, a
1
4, b7, b

1
7􏽮 􏽯,

Rl(22) � Rl b
1
1b

1
2􏼐 􏼑 � V D7( 􏼁 − a2, a

1
2, b5, b

1
5􏽮 􏽯

Rl(23) � Rl b
1
2b

1
3􏼐 􏼑 � V D7( 􏼁 − a3, a

1
3, b6, b

1
6􏽮 􏽯,

Rl(24) � Rl b
1
3b

1
4􏼐 􏼑 � V D7( 􏼁 − a4, a

1
4, b7, b

1
7􏽮 􏽯,

Rl(25) � Rl b
1
4b

1
5􏼐 􏼑 � V D7( 􏼁 − a5, a

1
5, b1, b

1
1􏽮 􏽯,

Rl(26) � Rl b
1
5b

1
6􏼐 􏼑 � V D7( 􏼁 − a6, a

1
6, b2, b

1
2􏽮 􏽯,

Rl(27) � Rl b
1
6b

1
7􏼐 􏼑 � V D7( 􏼁 − a7, a

1
7, b3, b

1
3􏽮 􏽯,

Rl(28) � Rl b
1
7b

1
1􏼐 􏼑 � V D7( 􏼁 − a1, a

1
1, b4, b

1
4􏽮 􏽯,

Rl(29) � Rl a1a
1
1􏼐 􏼑 � V D7( 􏼁 − a

1
2, a

1
7, b2, b6􏽮 􏽯,

Rl(30) � Rl a2a
1
2􏼐 􏼑 � V D7( 􏼁 − a

1
3, a

1
1, b3, b7􏽮 􏽯,

Rl(31) � Rl a3a
1
3􏼐 􏼑 � V D7( 􏼁 − a

1
4, a

1
2, b4, b1􏽮 􏽯,

Rl(32) � Rl a4a
1
4􏼐 􏼑 � V D7( 􏼁 − a

1
5, a

1
3, b5, b2􏽮 􏽯,

Rl(33) � Rl a5a
1
5􏼐 􏼑 � V D7( 􏼁 − a

1
6, a

1
4, b6, b3􏽮 􏽯,

Rl(34) � Rl a6a
1
6􏼐 􏼑 � V D7( 􏼁 − a

1
7, a

1
5, b7, b4􏽮 􏽯,

Rl(35) � Rl a7a
1
7􏼐 􏼑 � V D7( 􏼁 − a

1
1, a

1
6, b1, b5􏽮 􏽯,

Rl(36) � Rl b1b
1
1􏼐 􏼑 � V D7( 􏼁 − a

1
3, a

1
7, b2, b7􏽮 􏽯,

Rl(37) � Rl b2b
1
2􏼐 􏼑 � V D7( 􏼁 − a

1
4, a

1
1, b3, b1􏽮 􏽯,

Rl(38) � Rl b3b
1
3􏼐 􏼑 � V D7( 􏼁 − a

1
5, a

1
2, b4, b2􏽮 􏽯,

Rl(39) � Rl b4b
1
4􏼐 􏼑 � V D7( 􏼁 − a

1
6, a

1
3, b5, b3􏽮 􏽯,

Rl(40) � Rl b5b
1
5􏼐 􏼑 � V D7( 􏼁 − a

1
7, a

1
4, b6, b4􏽮 􏽯,

Rl(41) � Rl b6b
1
6􏼐 􏼑 � V D7( 􏼁 − a

1
1, a

1
5, b7, b5􏽮 􏽯,

Rl(42) � Rl b7b
1
7􏼐 􏼑 � V D7( 􏼁 − a

1
2, a

1
6, b1, b6􏽮 􏽯.

(9)
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Since, |Rl(a1
i bi)| � |Rl(bia

1
i+1)| � 16 and |Rl(a1

i bi)|≤
|Rl(e)|∀e∈E(D7), where 1≤ i≤7.

Furthermore, ∪ 7i�1Rl(a1
i bi) � V(D)7 and

|Rl(e)∩ ∪ 7i�1Rl((a1
i bi)))|≥ |Rl((a1

i bi)))|∀e ∈ E(D7). Hence,
we define an upper LRF h: V(D)7⟶ [0, 1] as
h(v) � 1/21∀v ∈ V(D)7. In order to show that h is minimal
upper LRF consider another mapping h′: V(D7)⟶ [0, 1]

as h(v)< 1/21∀v ∈ V(D)7 therefore h(Rl(e))< 1 and
|h|′ < |h| which shows that h′ is not LRF of D3 hence
LFLN(D7)≤􏽐

28
i�11/21 � 4/3. Likewise for 1≤ i≤ 7 cardi-

nality of LRN set Rl(aiai+1) is 24 which is greater then the
cardinalities of all other RLN sets. )erefore, we define
a lower LRF g: V(D)7⟶ [0, 1] as h(v) � 1/24∀v ∈ V(D)7
is a maximal lower LRF hence LFLN(D)7 ≥􏽐

28
i�11/24 � 7/6.

Consequently,
7
6
≤LFLN D7( 􏼁≤

4
3
. (10)

Case 2. For p≥ 7, 1≤ i≤p by Lemma 1, |Rl(a1
i bi)| � 5p +

7/2 and |Rl(a1
i bi)|≤ |Rl(e)|∀e ∈ E(Dp). Furthermore,

|Rl(e)∩ ∪ p
i�1|Rl(a1

i bi)||≥ |Rl(a1
i bi)|. Hence an upper LRF

h: V(Dp)⟶ [0, 1] is defined as
h(v) � 2/5p + 7∀v ∈ V(Dp). In order to show that h is
minimal upper LRF consider another function
h′: V(Dp)⟶ [0, 1] as h(v)< 2/5p + 7∀v ∈ V(D)p there-
fore h′(Rl(e))< 1 and |h|′ < |h| which shows that h′ is not
LRF of Dp hence LFLN(Dp)≤􏽐

4p

i�12/5p + 7 � 8p/5p + 7.
Likewise the cardinality of RLN set Rl(aiai+1) is 4p − 4
which is greater then the cardinalities of all other LRN sets.
)erefore, we define a maximal LRF g: (Dp)⟶ [0, 1] as
g(v) � 1/4p − 4∀v ∈ V(Dp), hence LFLN(Dp)≥􏽐

4p
i�11/4p−

4 � p/p − 1.
Consequently,

p

p − 1
≤ LFLN Dp􏼐 􏼑≤

8p

5p + 7
. (11)

Lemma 2. Suppose that Dp is a convex polytope network,
with p≥ 6 and p � 0(mod2). 1en.

(i) |Rl(a1
i bi)| � |Rl(a1

i+1bi)| � 5p/2 and ∪ 4p
i�1(a1

i bi) �

V(Dp).
(ii) |Rl(a1

i bi)|≤ |Rl(e)| and |Rl(e)∩ ∪ p
i�1Rl(a1

i bi)|≥ |Rl

(a1
i bi)|∀e ∈ E(Dp).

Proof. Consider ai inner, a1
i , bi middle and b1i are the outer

vertices of Dp, where 1≤ i≤p and p + 1 � 1(modp).

(i) Rl(a1
i bi) � V(Dp) − ai+2, ai+3, ai+4, . . . .,􏼈 ap+2i/2,

a1
p+2i−1/2, a1

p+2i/2, bp+2i/ 21, b1p+2i+2/2, b1p+2i+4/2, . . . ,

b1p, bp+2i/2, bp+2i+2/2, bp+2i+4/2, . . . , bp+i−3} and Rl(bi

a1
i+1) � V(Dp) − ai,􏼈 ap+2i+2/2, ap+2i+4/2, ap+2i+ 6/2,

. . . ., api−1, a1
p+2i+2/2, a1

p+2i+3/2, a1
p+2i+5/2, . . . ., a1

p+i−1,

bi+3, bi+4, . . . , bp+2i/2, b1p+2i+2/2, b1p+2i+4/2, b1p+2i+6/2,

. . . ., b1p+i−1}. Note that ∪ 4p

i�1Rl(a1
i bi) � V(Dp) and

|Rl(a1
i bi)| � 5p/2.

(ii) Rl(a
1
i+1bi) � V(Dp)− ai, ap+2i+2/2, ap+2i+4/2, . . . .,􏽮

ap, ap+ 2i + 2/21, a
1
p+2i+4/2, . . . , a

1
p, b

1
i+1, b

1
i+2, b

1
i+3,

. . . b
1
p+2i/2, bp+2i/2, bp+2i+2/2, bp+2i+4/2, . . . , bp−2}Rl(ai

ai+1) � V(Dp) − bp+2i/2, b
1
p+2i/2, b

1
i , bi􏽮 􏽯, Rl(b1i b1i+1) �

V(Dp) − ai+1, a1
i+1, ap+2i+2/2, a1

p+2i+2/2􏽮 􏽯, Rl(aia
1
i ) �

V(Dp) − a1
i+2, a1

p, bi+2, bp−1􏽮 􏽯, Rl(bib
1
i ) � V

(Dp) − a1
i+3, a1

p, bi+2, bp􏽮 􏽯. )e cardinalities of each
LRN set of Dp is illustrated in Table 2.

It is can be observed with the help of Table 2 that
|Rl(a1

i bi)|≤ |Rl(e)|. Since |∪ p
i�1Rl(a1

i bi)| � 4p therefore
|Rl(e)∩ ∪ p

i�1Rl(a1
i bi)|≥ |Rl(a1

i bi)|∀e ∈ E(Dp). □

Theorem 4. Let Dp be a convex polytope network, with p≥ 4
and p � 0(mod2). 1en

p

p − 1
≤LFLN Dp􏼐 􏼑≤

8
5
. (12)

Proof. In order to prove the result, we split into two cases:
□

Case 3. For p � 4, we have following LRN sets;

Table 2: Cardinality of each LRN set.

LRN set Comparison
Rl(aiai+1) 4p − 4> |Rl(a1

i bi)|

Rl(b1i b1i+1) 4p − 4> |Rl(a1
i bi)|

Rl(aia
1
i ) 4p − 4> |Rl(a1

i bi)|

Rl(bib
1
i ) 4p − 4> |Rl(a1

i bi)|
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Rl(1) � Rl a
1
1b1􏼐 􏼑 � V D4( 􏼁 − a2, a3, b3, b

1
3, b

1
4􏽮 􏽯,

Rl(2) � Rl a
1
2b2􏼐 􏼑 � V D4( 􏼁 − a3, a4, b4, b

1
4, b

1
1􏽮 􏽯,

Rl(3) � Rl a
1
3b3􏼐 􏼑 � V D4( 􏼁 − a4, a1, b1, b

1
1, b

1
2􏽮 􏽯,

Rl(4) � Rl a
1
4b4􏼐 􏼑 � V D4( 􏼁 − a1, a2, b2, b

1
2, b

1
3􏽮 􏽯,

Rl(5) � Rl a
1
2b1􏼐 􏼑 � V D4( 􏼁 − a1, a4, b

1
2, b

1
3􏽮 􏽯,

Rl(6) � Rl a
1
3b2􏼐 􏼑 � V D4( 􏼁 − a2, a1, b

1
3, b

1
4􏽮 􏽯,

Rl(7) � Rl a
1
4b3􏼐 􏼑 � V D4( 􏼁 − a3, a2, b

1
4, b

1
1􏽮 􏽯,

Rl(8) � Rl a
1
5b4􏼐 􏼑 � V D4( 􏼁 − a4, a3, b

1
1, b

1
2􏽮 􏽯,

Rl(9) � Rl a1a2( 􏼁 � V D4( 􏼁 − b1, b3, b
1
1, b

1
3􏽮 􏽯,

Rl(10) � Rl a2a3( 􏼁 � V D4( 􏼁 − b2, b4, b
1
2, b

1
4􏽮 􏽯,

Rl(11) � Rl a3a4( 􏼁 � V D4( 􏼁 − b3, b1, b
1
3, b

1
1􏽮 􏽯,

Rl(12) � Rl a4a1( 􏼁 � V D4( 􏼁 − b4, b2, b
1
4, b

1
2􏽮 􏽯,

Rl(13) � Rl a1a
1
1􏼐 􏼑 � V D4( 􏼁 − a

1
2, a

1
4, b

1
3, b2, b3􏽮 􏽯,

Rl(14) � Rl a2a
1
2􏼐 􏼑 � V D4( 􏼁 − a

1
3, a

1
1, b

1
4, b3, b4􏽮 􏽯,

Rl(15) � Rl a3a
1
3􏼐 􏼑 � V D4( 􏼁 − a

1
4, a

1
2, b

1
1, b4, b1􏽮 􏽯,

Rl(16) � Rl a4a
1
4􏼐 􏼑 � V D4( 􏼁 − a

1
1, a

1
3, b

1
2, b1, b2􏽮 􏽯,

Rl(17) � Rl b1b
1
1􏼐 􏼑 � V D4( 􏼁 − a

1
3, b2, b4􏽮 􏽯,

Rl(18) � Rl b2b
1
2􏼐 􏼑 � V D4( 􏼁 − a

1
4, b3, b1􏽮 􏽯,

Rl(19) � Rl b3b
1
3􏼐 􏼑 � V D4( 􏼁 − a

1
1, b4, b2􏽮 􏽯,

Rl(20) � Rl b4b
1
4􏼐 􏼑 � V D4( 􏼁 − a

1
2, b1, b3􏽮 􏽯,

Rl(21) � Rl b
1
1b

1
2􏼐 􏼑 � V D4( 􏼁 − a2, a4, a

1
2, a

1
4􏽮 􏽯,

Rl(22) � Rl b
1
2b

1
3􏼐 􏼑 � V D4( 􏼁 − a3, a1, a

1
3, a

1
1􏽮 􏽯,

Rl(23) � Rl b
1
3b

1
4􏼐 􏼑 � V D4( 􏼁 − a4, a2, a

1
4, a

1
2􏽮 􏽯,

Rl(24) � Rl b
1
4b

1
1􏼐 􏼑 � V D4( 􏼁 − a1, a3, a

1
1, a

1
3􏽮 􏽯.

(13)

Since, |Rl(a1
i bi)| � 11 and |Rl(a1

i bi)|≤ |Rl(e)|

∀e ∈ E(D4), where 1≤ i≤ 4. Furthermore, ∪ 4i�1Rl(a1
i bi) �

(D4) and |Rl(e)∩ ∪ 4i�1Rl(a1
i bi)|≥ |Rl(a1

i bi)|∀e ∈ E(D4).
Hence, we define an upper LRF h: (D4)⟶ [0, 1] as
h(v) � 1/10∀v ∈ V(D)4. In order to show that h is minimal
upper LRF consider another function h′: V(D4)⟶ [0, 1]

as h′(v)< 1/11∀v ∈ V(D4) therefore h′(Rl(e))< 1 and
|h|′ < |h| which shows that h′ is not LRF of D4 therefore
LFLN(D4)≤􏽐

16
i�11/11 � 16/11. Likewise for 1≤ i≤ 4 cardi-

nality of LRN set Rl(bib
1
i ) is 13 which is greater then the

cardinalities of all other LRN sets. )erefore there exist
a maximal lower LRF g: (D4)⟶ [0, 1] and which is de-
fined as g(v) � 1/13∀v ∈ V(D4) hence
LFLN(D4)≥􏽐

16
i�11/13 � 16/13. Consequently,

16
13
≤LFLN D4( 􏼁≤

16
11

. (14)

Case 4. For p≥ 6, 1≤ i≤p by Lemma 2, |Rl(a1
i bi)| � 5p/2

and |Rl(a1
i bi)|≥ |Rl(e)|∀e ∈ E(Dp). Furthermore,

|Rl(e)∩ ∪ p

i�1|Rl(a1
i bi)||≥ |Rl(a1

i bi)|. Hence there exist an
upper LRF h: V(Dp)⟶ [0, 1] and is defined as
h(v) � 2/5p∀v ∈ V(Dp). In order to show that h is minimal
upper LRF consider another function h′: V(Dp)⟶ [0, 1]

as h(v)< 2/5p∀v ∈ V(D)p therefore h′(Rl(e))< 1 and
|h|′ < |h| which shows that h′ is not LRF of Dp hence
LFLN(Dp)≤􏽐

4p
i�12/5p � 8/5. Likewise the cardinality of

LRN set Rl(b1i b1i+1) is 4p − 4 which is greater or equal to the
cardinalities of all other LRN sets of Dp. Hence, we define
a maximal lower LRF g: V(Dp)⟶ [0, 1] is as
g(v) � 1/4p − 4∀v ∈ V(Dp), therefore
LFLN(Dp)≥􏽐

4p

i�11/4p − 4 � p/p − 1.
Consequently,
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p

p − 1
≤ LFLN Dp􏼐 􏼑≤

8
5
. (15)

3.2. LFLN of Convex Polytpoe Ep. In this particular sub-
section, we have computed the LRN sets and LFLN of convex
polytope network Ep. )e V(Ep) � V(Dp) and
E(Ep) � E(Dp)∪ bibi+1: 1≤ i≤p􏼈 􏼉. )e order and size of Ep

is 4p and 7p respectively. For more details see Figure 2.

Lemma 3. Let Ep be a convex polytope network, with p≥ 3
and p � 1(mod2). 1en.

(i) |Rl(a1
i bi)| � |Rl(bi+1a

1
i )| � 2p +2 and ∪p

i�1Rl(a1
i bi) �

V(Ep),
(ii) |Rl(a1

i bi)|≤ |Rl(e)| and |Rl(e)∩ ∪ p
i�1Rl(a1

i bi)|≥
|Rl(a1

i bi)|∀e ∈ E(Ep).

Proof. Consider ai inner, a1
i , bi middle and b1i are outer

vertices of Ep, where 1≤ i≤p and p + 1 � 1(modp).

(i) Rl(a1
i bi) � V(Ep) − ai+1, ai+2, ai+3, . . . ., ap+2i−1/2,􏽮

a1
p+2i+1/2, a1

p+2i+3/2, a1
p+2i+5/2, . . . ., a1

p,

b1p+2i+1/2, b1p+2i+3/2, . . . ., bp, b1p+2i+1/2, b1p+2i+3/2,

b1p+2i+5/2, . . . , b1p+i−1} and
Rl(bia

1
i+1) � V(Ep) − ai, a1

p+2i+3/2, ap+􏽮

2i + 5/21, a1
p+2i+7/2, . . . ., a1

p+i−1, b1i+1, b1i+2, . . . ,

b1p+2i+1/2, b1p+2i+3/2, b1p+2i+5/2, . . . , b1p+i−1, bp+2i+1/
2, bp+2i+3/2, bp+2i+5/2, . . . , bp+i−1}. Note that
∪ p

i�1Rl(a1
i bi) � 4p and |Rl(a1

i bi)| � 2p + 2.
(ii) Rl(aiai+1) � V(Ep) − ap+2i+1/2, a1

p+2i+1/2, b1i , bi􏽮 􏽯,
Rl(b1i b1i+1) � V(Ep) − ai+1, a1

i+1, b1p+2i+1/2, bp+2i+1/2􏽮 􏽯,
Rl(aia

1
i ) � V(Ep) − a1

i+1, ai+􏼈

21, . . . , a1
p+2i+1/2, bp+2i+1/2, b1p+2i+1/2, },

Rl(bib
1
i ) � V(Ep),

Rl(bibi+1) � V(Ep) − ai+1, a1
i+1, bp+2i+1/2, b1p+2i+1/2􏽮 􏽯

Now, we illustrate the cardinalities of the LRN sets in
Table 3 and also compare them.

It can be observed with the help of Table 3 that
|Rl(a1

i bi)|≤ |Rl(e)|. Since ∪ p
i�1Rl(a1

i bi) � 4p therefore
|Rl(e)∩ ∪ p

i�1Rl(a1
i bi)|≥ |Rl(a1

i bi)|∀e ∈ E(Ep). □

Theorem 5. Let E3 be a convex polytope network. 1en
6
5
≤ LFLN E3( 􏼁≤

3
2
. (16)

Proof. )e LRN for convex polytope E3 are

Rl(1) � Rl a1a2( 􏼁 � V E3( 􏼁 − a3, a
1
3, b1, b

1
1􏽮 􏽯,

Rl(2) � Rl a2a3( 􏼁 � V E3( 􏼁 − a1, a
1
2, b2, b

1
2􏽮 􏽯,

Rl(3) � Rl a3a1( 􏼁 � V E3( 􏼁 − a2, a
1
1, b3, b

1
3􏽮 􏽯

Rl(4) � Rl b1b2( 􏼁 � V E3( 􏼁 − a2, b3, a
1
2, b

1
2􏽮 􏽯

Rl(5) � Rl b2b3( 􏼁 � V E3( 􏼁 − a3, b1, a
1
3, b

1
3􏽮 􏽯,

Rl(6) � Rl b3b1( 􏼁 � V E3( 􏼁 − a1, b2, a
1
1, b

1
1􏽮 􏽯,

Rl(7) � Rl b
1
1b

1
2􏼐 􏼑 � V E3( 􏼁 − b

1
3, b3, a

1
2, a2􏽮 􏽯,

Rl(8) � Rl b
1
2b

1
3􏼐 􏼑 � V E3( 􏼁 − b

1
1, b1, a

1
3, a3􏽮 􏽯,

Rl(9) � Rl b
1
3b

1
1􏼐 􏼑 � V E3( 􏼁 − b

1
2, b2, a

1
1, a1􏽮 􏽯,

Rl(10) � Rl a
1
1b1􏼐 􏼑 � V E3( 􏼁 − a2, a

1
3, b2, b

1
3􏽮 􏽯,

Rl(11) � Rl a
1
2b2􏼐 􏼑 � V E3( 􏼁 − a3, a

1
1, b3, b

1
1􏽮 􏽯,

Rl(12) � Rl a
1
3b3􏼐 􏼑 � V E3( 􏼁 − a1, a

1
2, b1, b

1
2􏽮 􏽯,

Rl(13) � Rl a
1
2b1􏼐 􏼑 � V E3( 􏼁 − a1, b2, b

1
2􏽮 􏽯,

Rl(14) � Rl a
1
3b2􏼐 􏼑 � V E3( 􏼁 − a2, b3, a

1
3􏽮 􏽯;

Rl(15) � Rl a
1
1b3􏼐 􏼑 � V E3( 􏼁 − a3, b1, a

1
1􏽮 􏽯,

Rl(16) � Rl a
1
1a1􏼐 􏼑 � V E3( 􏼁 − a

1
2, a

1
3,􏽮 􏽯,

Rl(17) � Rl a
1
2a2􏼐 􏼑 � V E3( 􏼁 − a

1
3, a

1
1,􏽮 􏽯,

Rl(18) � Rl a
1
3a3􏼐 􏼑 � V E3( 􏼁 − a

1
1, a

1
2,􏽮 􏽯,

Rl(19) � Rl b
1
1b1􏼐 􏼑 � V E3( 􏼁,

Rl(20) � Rl b
1
2b2􏼐 􏼑 � V E3( 􏼁,

Rl(21) � Rl b
1
3b3􏼐 􏼑 � V E3( 􏼁.

(17)

For 1≤ i≤ 3 the cardinality of each LRN set Rl(aiai+1) is
8 which is less then the other LRN sets of E3. Furthermore,
∪ 12i�1Rl(aiai+1) � V(E3) and |Rl(e)∩ ∪ 3i�1Rl(aiai+1)|≥
|Rl(aiai+1)|∀e ∈ E(E3).

Hence there exist an upper LRF h: V(Ep)⟶ [0, 1] is
defined as h(v) � 1/8∀v ∈ V(E3). In order to show that h is
minimal upper LRF consider another function
h′: V(E3)⟶ [0, 1] as h′(v)< 1/10∀v ∈ V(E3) therefore
h′(Rl(e))< 1 and |h|′ < |h| which shows that h′ is not LRF of
E3 hence LFLN(E3)≤􏽐

12
i�11/8 � 3/2. Likewise for 1≤ i≤ 3

cardinality of LRN setRl(b1i bi) is 12 which is greater then the
cardinalities of all other LRN sets. Hence there exist
a maximal lower LRF g: (Dp)⟶ [0, 1] is defined as
g(v) � 1/12∀v ∈ V(E3), therefore LFLN(E3)>􏽐

12
i�11/12 �

1. Consequently,
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1< LFLN E3( )≤
3
2
. (18)

□

Theorem 6. Let Ep be a convex polytope network, with p≥ 5
and p � 1(mod2). �en

1<LFLN Ep( )≤
2p
p + 1

. (19)

Proof. In order to prove the result, we split it into two
cases □

Case 5. For p � 5, we have the following LRN sets;

ap–3

ap–2

ap–1

ap
a1 a2

a3
a4

a5bp–4

bp–4
1

bp–3
1

bp–2
1

bp–1
1

bp
1 b1

1

b2
1

ap–21

ap–31

ap–11

ap1
a11

a21

a31

a5
1

a4
1

b4
1

b3
1

b5
1

b5

b4

b3

b2
b1bp

bp–1

bp–2

bp–3

Figure 2: Convex polytope network Ep.

Table 3: Cardinality of each LRN set.

RLN set Comparison
Rl(aiai+1) 4p − 4> |Rl(a1i bi)|
Rl(b1i b1i+1) 4p − 4> |Rl(a1i bi)|
Rl(aia1i ) 4p − 4> |Rl(a1i bi)|
Rl(bib1i ) 4p> |Rl(a1i bi)|
Rl(bibi) 4p − 4> |Rl(a1i bi)|
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Rl(1) � Rl a
1
1b1􏼐 􏼑 � V E5( 􏼁 − a2, a3, a

1
4, b4, b5, a

1
5, b

1
4, b

1
5􏽮 􏽯,

Rl(2) � Rl a
1
2b2􏼐 􏼑 � V E5( 􏼁 − a3, a4, a

1
5, b5, b1, a

1
1, b

1
5, b

1
1􏽮 􏽯,

Rl(3) � Rl a
1
3b3􏼐 􏼑 � V E5( 􏼁 − a4, a5, a

1
1, b1, b2, a

1
2, b

1
1, b

1
2􏽮 􏽯,

Rl(4) � Rl a
1
4b4􏼐 􏼑 � V E5( 􏼁 − a5, a1, a

1
2, b2, b3, a

1
3, b

1
2, b

1
3􏽮 􏽯,

Rl(5) � Rl a
1
5b5􏼐 􏼑 � V E5( 􏼁 − a1, a2, a

1
3, b3, b4, a

1
4, b

1
3, b

1
4􏽮 􏽯,

Rl(6) � Rl a
1
2b1􏼐 􏼑 � V E5( 􏼁 − a1, a5, a

1
3, a

1
4, b2, b3, b

1
2, b

1
3􏽮 􏽯,

Rl(7) � Rl a
1
3b2􏼐 􏼑 � V E5( 􏼁 − a2, a1, a

1
4, a

1
5, b3, b4, b

1
3, b

1
4􏽮 􏽯,

Rl(8) � Rl a
1
4b3􏼐 􏼑 � V E5( 􏼁 − a3, a2, a

1
5, a

1
1, b4, b5, b

1
4, b

1
5􏽮 􏽯,

Rl(9) � Rl a
1
5b4􏼐 􏼑 � V E5( 􏼁 − a4, a3, a

1
1, a

1
2, b5, b1, b

1
5, b

1
1􏽮 􏽯,

Rl(10) � Rl a
1
1b5􏼐 􏼑 � V E5( 􏼁 − a5, a4, a

1
2, a

1
3, b1, b2, b

1
1, b

1
2􏽮 􏽯,

Rl(11) � Rl a1a2( 􏼁 � V E5( 􏼁 − a4, a
1
4, b1, b

1
1􏽮 􏽯,

Rl(12) � Rl a2a3( 􏼁 � V E5( 􏼁 − a5, a
1
5, b2, b

1
2􏽮 􏽯,

Rl(13) � Rl a3a4( 􏼁 � V E5( 􏼁 − a1, a
1
1, b3, b

1
3􏽮 􏽯,

Rl(14) � Rl a4a5( 􏼁 � V E5( 􏼁 − a2, a
1
2, b4, b

1
4􏽮 􏽯,

Rl(15) � Rl a5a1( 􏼁 � V E5( 􏼁 − a3, a
1
3, b5, b

1
5􏽮 􏽯,

Rl(16) � Rl b
1
1b

1
2􏼐 􏼑 � V E5( 􏼁 − a2, a

1
2, b4, b

1
4􏽮 􏽯,

Rl(17) � Rl b
1
2b

1
3􏼐 􏼑 � V E5( 􏼁 − a3, a

1
3, b5, b

1
5􏽮 􏽯,

Rl(18) � Rl b
1
3b

1
4􏼐 􏼑 � V E5( 􏼁 − a4, a

1
4, b1, b

1
1􏽮 􏽯,

Rl(19) � Rl b
1
4b

1
5􏼐 􏼑 � V E5( 􏼁 − a5, a

1
5, b2, b

1
2􏽮 􏽯,

Rl(20) � Rl b
1
5b

1
1􏼐 􏼑 � V E5( 􏼁 − a1, a

1
1, b3, b

1
3􏽮 􏽯,

Rl(21) � Rl a1a
1
1􏼐 􏼑 � V E5( 􏼁 − a

1
2, a

1
3, b4, b

1
4􏽮 􏽯,

Rl(22) � Rl a2a
1
2􏼐 􏼑 � V E5( 􏼁 − a

1
3, a

1
4, b5, b

1
5􏽮 􏽯,

Rl(23) � Rl a3a
1
3􏼐 􏼑 � V E5( 􏼁 − a

1
4, a

1
5, b1, b

1
1􏽮 􏽯,

Rl(24) � Rl a4a
1
4􏼐 􏼑 � V E5( 􏼁 − a

1
5, a

1
1, b2, b

1
2􏽮 􏽯,

Rl(25) � Rl a5a
1
5􏼐 􏼑 � V E5( 􏼁 − a

1
1, a

1
2, b3, b

1
3􏽮 􏽯,

Rl(26) � Rl b1b2( 􏼁 � V E5( 􏼁 − a2, a
1
2, b4, b

1
4􏽮 􏽯,

Rl(27) � Rl b2b3( 􏼁 � V E5( 􏼁 − a3, a
1
3, b5, b

1
5􏽮 􏽯,

Rl(28) � Rl b3b4( 􏼁 � V E5( 􏼁 − a4, a
1
4, b1, b

1
1􏽮 􏽯,

Rl(29) � Rl b4b1( 􏼁 � V E5( 􏼁 − a5, a
1
5, b2, b

1
2􏽮 􏽯,

Rl(30) � Rl b5b2( 􏼁 � V E5( 􏼁 − a1, a
1
1, b3, b

1
3􏽮 􏽯,

Rl(31) � Rl b1b
1
1􏼐 􏼑 � V E5( 􏼁,

Rl(32) � Rl b
2
b
1
2􏼐 􏼑 � V E5( 􏼁,

Rl(33) � Rl b3b
1
3􏼐 􏼑 � V E5( 􏼁,

Rl(34) � Rl b4b
1
4􏼐 􏼑 � V E5( 􏼁,

Rl(35) � Rl b5b
1
5􏼐 􏼑 � V E5( 􏼁.

(20)
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Since, |Rl(a1
i bi)| � |Rl(a1

i+1bi)| � 12 and |Rl(a1
i bi)|≤

|Rl(e)|∀e ∈ E(E5), where 1≤ i≤ 5. Furthermore,
∪ 4i�1(R(a1

i bi)l) � V(E5) and |Rl(e)∩ ∪ 4i�1(Rl(a1
i bi))|≥

|Rl(a1
i bi)|∀e ∈ E(E5). Hence, we define an upper LRF

h: V(E5)⟶ [0, 1] as h(v) � 1/12∀v ∈ V(E5). In order to
show that h is minimal upper LRF consider another function
h′: V(E5)⟶ [0, 1] as h(v)< 1/12∀v ∈ V(E5) therefore
h′(Rl(e))< 1 and |h|′ < |h| which shows that h′ is not LRF of
Dp therefore LFLN (E5)≤􏽐

20
i�11/12 � 5/3. Likewise for

1≤ i≤ 5 cardinality of LRN setRl(bib
1
i ) is 20 which is greater

then the cardinalities of all other LRN sets. Hence there exist
a maximal lower LRF g: V(E5)⟶ [0, 1] and it is defined
by g(v) � 1/20∀v ∈ V(E5), therefore LFLN(E5)>
􏽐

20
i�11/20 � 1. Consequently,

1< LFLN E5( 􏼁≤
5
3
. (21)

Case 6. For p≥ 5, 1≤ i≤p by Lemma 3, |Rl(a1
i bi)| � 2p + 2

and |Rl(a1
i bi)|≥ |Rl(e)|∀e ∈ E(Ep). Furthermore,

|Rl(e)∩ ∪ p
i�1|Rl(a1

i bi)||≥ |Rl(a1
i bi)|.)erefore, we define an

upper LRF h: (Ep)⟶ [0, 1] as h(v) � 1/2p+ 4∀v ∈ V(Ep).
In order to show that h is minimal upper LRF consider
another function h′: V(Ep)⟶ [0, 1] as h′(v)< 1/2p+

2∀v ∈ V(E)p therefore h′(Rl(e))< 1 and |h|′ < |h| which
shows that h′ is not LRF of Dp hence
LFLN(Ep)≤􏽐

4p
i�11/2p + 2 � 2p/p + 1. Likewise the cardi-

nality of LRN set Rl(bib
1
i ) is 4p which is greater then the

cardinalities of all other LRN sets of Ep . Hence there exist
a maximal LRF g: (Ep)⟶ [0, 1] and it is defined as g(v) �

1/4p∀v ∈ V(Ep) therefore LFLN(Ep)>􏽐
4p
i�11/4p � 1.

Consequently,

1<LFLN Ep􏼐 􏼑≤
2p

p + 1
. (22)

Lemma 4. Let Ep be a convex polytope network, with p≥ 4
and p � 0(mod2). 1en.

(i) |Rl(a1
i bi)| � |Rl(bia

1
i+1)| � 2p +1 and ∪p

i�1Rl(a1
i bi) �

V(Ep).
(ii) |Rl(a1

i bi)|≤ |Rl(e)| and |Rl(e)∩ ∪ p
i�1Rl(a1

i bi)|≥
|Rl(a1

i bi)|∀e ∈ E(Ep).

Proof. Consider ai inner, a1
i , bi middle and b1i are outer

vertices of Ep respectively, where 1≤ i≤p and
p + 1 � 1(modp).

(i) Rl(a1
i bi) � V(Ep) − ai+1, ai+2, ai+3, . . . ., ap+2i/2, ap+􏽮

2i + 2/21, a1
p+2i+4/2, a1

p+2i+6/2, . . . ., a1
p+i−1, b1p+2i/2,

b1p+2i+2/2, b1p+2i+4/2, . . . ., b1p+i−1, bp+2i/2,

bp+2i+2/2, bp+2i+4/2, . . . ., bp+i−1} and
Rl(bia

1
i+1) � V(Ep) − ai,􏼈

ap+2i+2/2, ap+2i+4/2, . . . ., ap+i−1, a1
i+2, a1

i+3, . . . ,

a1
p+2i/2, b1i+1, b1i+2, . . . , b1p+2i/2, bi+1, bi+2, . . . , bp+2i/2}.

Note that ∪ p

i�1Rl(a1
i bi) � 4p and

|Rl(a1
i bi)| � 2p + 1.

(ii) Rl(aiai+1) � V(Ep) − bp+2i/2, b1p+2i+1/2, b1i , bi􏽮 􏽯,
Rl(b1i b1i+1) � V(Ep) − ap+2i/2, a1

p+2i/2􏽮 􏽯,
Rl(aia

1
i ) � V(Ep) − a1

i+1, a1
i+2, . . . , a1

p,􏽮

bp+2i/2, b1p+2i/2}, Rl(bib
1
i ) � V(Ep),

Rl(bibi+1) � V(Ep) ai+1, a1
i+1􏼈 􏼉. , )e cardinalities of

all the LRN sets are illustrated in Table 4.

Now it is clear that |Rl(a1
i bi)|≤ |Rl(e)|. Since

|∪ p
i�1Rl(a1

i bi)| � 4p therefore |Rl(e)∩ ⋃ i � 1pRl(a1
i bi)|≥

|Rl(a1
i bi)|∀e ∈ E(Ep). □

Theorem 7. Let Ep be a convex polytope network, where
p≥ 4 and p � 0(mod2). 1en

1<LFLN Ep􏼐 􏼑≤
4p

2p + 1
. (23)

Proof. In order to prove the result, we split it into two
cases □

Case 7. For p � 4, we have following LRN sets;

Table 4: Cardinality of each LRN set of Ep.

LRN set Comparison
Rl(aiai+1) 4p − 4> |Rl(a1

i bi)|

Rl(b1i b1i+1) 4p − 4> |Rl(a1
i bi)|

Rl(aia
1
i ) 3p> |Rl(a1

i bi)|

Rl(bib
1
i ) 4p> |Rl(a1

i bi)|

Rl(bibi+1) 4p − 2> |Rl(a1
i bi)|
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Rl(1) � Rl a
1
1b1􏼐 􏼑 � V E4( 􏼁 − a2, a3, a

1
4, b3, b4, b

1
3, b

1
4􏽮 􏽯,

Rl(2) � Rl a
1
2b2􏼐 􏼑 � V E4( 􏼁 − a3, a4, a

1
1, b4, b1, b

1
4, b

1
5􏽮 􏽯,

Rl(3) � Rl a
1
3b3􏼐 􏼑 � V E4( 􏼁 − a4, a1, a

1
2, b1, b2, b

1
1, b

1
1􏽮 􏽯,

Rl(4) � Rl a
1
4b4􏼐 􏼑 � V E4( 􏼁 − a1, a2, a

1
3, b2, b3, b

1
2, b

1
2􏽮 􏽯,

Rl(5) � Rl a
1
2b1􏼐 􏼑 � V E4( 􏼁 − a1, a4, a

1
3, b2, b3, b

1
2, b

1
3􏽮 􏽯,

Rl(6) � Rl a
1
3b2􏼐 􏼑 � V E4( 􏼁 − a2, a1, a

1
4, b3, b4, b

1
3, b

1
4􏽮 􏽯,

Rl(7) � Rl a
1
4b3􏼐 􏼑 � V E4( 􏼁 − a3, a2, a

1
1, b4, b1, b

1
4, b

1
1􏽮 􏽯,

Rl(8) � Rl a
1
1b4􏼐 􏼑 � V E4( 􏼁 − a4, a3, a

1
2, b1, b2, b

1
1, b

1
2􏽮 􏽯,

Rl(9) � Rl a1a2( 􏼁 � V E4( 􏼁 − b
1
3, b

1
1, b1, b3􏽮 􏽯,

Rl(10) � Rl a2a3( 􏼁 � V E4( 􏼁 − b
1
4, b

1
2, b2, b4􏽮 􏽯,

Rl(11) � Rl a3a4( 􏼁 � V E4( 􏼁 − b
1
1, b

1
3, b3, b1􏽮 􏽯,

Rl(12) � Rl a4a1( 􏼁 � V E4( 􏼁 − b
1
2, b

1
4, b4, b2􏽮 􏽯,

Rl(13) � Rl a1a
1
1􏼐 􏼑 � V E4( 􏼁 − a

1
2, a

1
3, a

1
4, b3􏽮 􏽯,

Rl(14) � Rl a2a
1
2􏼐 􏼑 � V E4( 􏼁 − a

1
3, a

1
4, a

1
1, b4􏽮 􏽯,

Rl(15) � Rl a3a
1
3􏼐 􏼑 � V E4( 􏼁 − a

1
4, a

1
1, a

1
2, b1􏽮 􏽯,

Rl(16) � Rl a4a
1
4􏼐 􏼑 � V E4( 􏼁 − a

1
1, a

1
2, a

1
3, b2􏽮 􏽯,

Rl(17) � Rl b
1
1b

1
2􏼐 􏼑 � V E4( 􏼁 − a2, a4, a

1
2, a

1
4􏽮 􏽯,

Rl(18) � Rl b
1
2b

1
3􏼐 􏼑 � V E4( 􏼁 − a3, a1, a

1
3, a

1
1􏽮 􏽯,

Rl(19) � Rl b
1
3b

1
4􏼐 􏼑 � V E4( 􏼁 − a4, a2, a

1
4, a

1
2􏽮 􏽯,

Rl(20) � Rl b
1
4b

1
1􏼐 􏼑 � V E4( 􏼁 − a1, a3, a

1
1, a

1
3􏽮 􏽯,

Rl(21) � Rl b1b2( 􏼁 � V E4( 􏼁 − a2, a4, a
1
2, a

1
4􏽮 􏽯,

Rl(22) � Rl b2b3( 􏼁 � V E4( 􏼁 − a3, a1, a
1
3, a

1
1􏽮 􏽯,

Rl(23) � Rl b3b4( 􏼁 � V E4( 􏼁 − a4, a2, a
1
4, a

1
2􏽮 􏽯,

Rl(24) � Rl b4b1( 􏼁 � V E4( 􏼁 − a1, a3, a
1
1, a

1
3􏽮 􏽯,

Rl(25) � Rl b1b
1
1􏼐 􏼑 � V E4( 􏼁,

Rl(26) � Rl b2b
1
2􏼐 􏼑 � V E4( 􏼁,

Rl(27) � Rl b3b
1
3􏼐 􏼑 � V E4( 􏼁,

Rl(28) � Rl b4b
1
4􏼐 􏼑 � V E4( 􏼁.

(24)

Since, |Rl(a1
i bi)| � |Rl(a1

i+1bi)| � 9 and
|Rl(a1

i bi)|≤ |Rl(e)|∀e ∈ E(E4), where 1≤ i≤ 4. Further-
more, ∪ 4i�1Rl(a1

i bi) � V(E4) and |Rl(e)∩ ∪ 4i�1
(Rl(a1

i bi))|≥ |(Rl(a1
i bi))|∀e ∈ E(E4). Hence, we define an

upper LRF h: V(E4)⟶ [0, 1] as h(v) � 1/9∀v ∈ V(E4). In
order to show that h is minimal upper LRF consider another
function h′: V(E4)⟶ [0, 1] as h(v)< 1/9∀v ∈ V(E)4
therefore h′(Rl(e))< 1 and |h|′ < |h| which shows that h′ is
not LRF of E4 therefore LFLN(E4)≤􏽐

16
i�11/9 � 16/9.

Likewise for 1≤ i≤ 3 cardinality of LRN set Rl(bib
1
i ) is 20

which is greater then the cardinalities of all other LRN sets.

Hence there exist a maximal lower LRF g: V(E4)⟶ [0, 1]

is defined by g(v) � 1/20∀v ∈V(E4), therefore LFLN(E4)>
􏽐

20
i�11/20� 1. Consequently,

1<LFLN E4( 􏼁≤
16
9

. (25)

Case 8. For p≥ 4, 1≤ i≤p by Lemma 4, |Rl(a1
i bi)| � 2p + 1

and |Rl(a1
i bi)|≥ |Rl(e)|∀e ∈ E(Ep). Furthermore, |Rl(e)∩

∪ p
i�1|Rl(a1

i bi)||≥ |Rl(a1
i bi)|. Hence, we define an upper LRF

h: (Ep)⟶ [0, 1] as h(v) � 1/2p + 1∀v ∈ V(Ep). In order
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to show that h is minimal upper LRF consider another
function h′: V(Dp)⟶ [0, 1] as h(v)< 1/2p + 1∀v ∈ V(E)p

this implies h′(Rl(e))< 1 and |h|′ < |h| which shows that h′
is not LRF of Ep therefore
LFLN(Ep)≤􏽐

4p
i�11/2p + 1 � 4p/2p + 1. Likewise the cardi-

nality of LRN set Rl(bib
1
i ) is 4p which is greater then the

cardinalities of all the other LRN sets. )erefore there exist
a maximal lower LRF g: (Ep)⟶ [0, 1] and it is defined as
g(v) � 1/4p∀v ∈ V(Ep) therefore
LFLN(Ep)>􏽐

4p

i�11/4p � 1. Consequently,

1<LFLN Ep􏼐 􏼑≤
4p

2p + 1
. (26)

4. Conclusion

In this dissertation, we studied the LFLN of different families
of convex polytope networks (Dp, Ep) and after establishing
the bounds of LFLN of both convex polytope networks, we
conclude that both of them posses boundedness when
p⟶∞.

Exact value of LFLN in one case is,

(i) •LFLN(D5) � 5/4.
(ii) Boundedness of LFLN of Dp and Ep illustrated in

Table 5.

Now, we close our discussion with the following open
problem, characterize all the classes of convex polytopes
networks those attain exact value of local fractional locating
number.
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