
Research Article
Managing Peak-Hour Congestion in Urban Rail Transit with the
Sub-Train Price Adjustment Strategy

Hui Liang ,1 Zhiqiang Tian ,1 Renhua Liu,1 Guofeng Sun,2 and Fujing He1

1School of Tra�c and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
2School of Tra�c and Transportation, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Hui Liang; 12200958@stu.lzjtu.edu.cn

Received 24 November 2021; Revised 1 March 2022; Accepted 13 April 2022; Published 13 May 2022

Academic Editor: Yang Song

Copyright © 2022 Hui Liang et al. ­is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In urban rail transit, adjusting fares to satisfy passenger �ow requirements is a new method to relieve urban congestion. A bilevel
model is proposed herein to solve the congestion problem for an urban rail line. ­e upper level of the model determines the
discount factor to minimize the total number of passengers exceeding the full-load rate, and the lower level of the model
determines the distribution of passengers on the line, in which the cost-minimizing behavior of each passenger is considered using
the allocation method based on the probability of selection. To achieve a more realistic model, the range of acceptable train
numbers for each passenger is considered. A simulated annealing algorithm is introduced to solve the bilevel model. Based on an
example, we obtain the speci�c fare and passenger �ow distribution of each train after fare adjustment. ­e results show that the
objective function is reduced by 17.5%, the congested section is reduced by 9.1% when the full-load rate is 90% of the train loading
capacity, and the passenger �ow shifts to both ends of the peak period. Finally, relevant parameters are discussed.

1. Introduction

In recent years, tra�c congestion caused by the increasingly
prominent contradiction between urban tra�c demand and
supply has become a social problem in countries worldwide.
In this context, the development of public transportation has
been prioritized to alleviate urban tra�c problems. As the
main tool to alleviate urban tra�c congestion, the subway
can transport passengers rapidly. In some large cities, peak
and low periods are evident owing to the uneven distribution
of daily passenger �ow. In particular, during the peak period,
the subway platform is crowded, which poses a severe safety
hazard. ­e high degree of congestion in the section and the
insu�cient experience of passengers on the subway have
signi�cantly curbed the enthusiasm of urban residents in
opting for the subway as a transport mode.

Currently, the passenger �ow problem of urban rail
transit during peak periods is primarily considered in terms
of two aspects: tra�c supply management and tra�c de-
mand management, which aim to improve the supply of
transportation capacity through the construction of trans-
portation infrastructure and optimization of transportation

organization to satisfy the travel requirements of passengers.
­e primary methods include constructing new subway lines
and optimizing train schedules. As a dynamic input, the
train schedule should be changed with the change in pas-
senger �ow; however, the continued increase in subway
passenger �ow has resulted in a saturated train schedule,
which prevents optimization. Currently, the minimum
headway is approximately 1min. From a technical per-
spective, continuing the reduction in headways poses high
requirements in terms of both signals and vehicles. From a
practical perspective, owing to the confusion of passengers
boarding and alighting during peak hours and a few un-
controllable factors, certain risks are posed when continuing
to reduce headways. We considered solving this problem
from the perspective of transportation demandmanagement
by adjusting fares to change the travel time of passengers and
reasonably loading the passenger �ow to each train during
the peak period to alleviate the problem of congestion during
the peak period, balance the utilization rate of in-service
trains, and improve the quality of urban rail transit services.

­e fare adjustment method can be classi�ed into in-
centive policy and direct adjustment of fares. An
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investigation by Ben-Elia and Ettcema [1, 2] showed that
incentive measures effectively changed the travel time of
passengers, where a few passengers opted to travel during
off-peak hours. Zhang et al. [3] proposed an incentive policy
to provide measures such as price reduction in fast-food
restaurants for travelers who avoid traveling during peak
periods. Yang and Tang [4] proposed a new incentive
scheme to reduce the queue time of passengers at a station
while ensuring that the operator’s revenue remains un-
changed. Tang and Jiang [5] proposed a premium fare in-
centive scheme that not only encourages passengers to
change their travel time from peak to off-peak hours but also
reduces passenger individual travel costs and total queuing
time costs. Tang and Yang [6] proposed a hybrid fare scheme
to ensure that the fare income remains unchanged. Lu and
Zhang [7] proposed a fare scheme that alleviates congestion
and reduces the cost of travel for passengers while ensuring
that revenue is not reduced. Chen et al. [8] proposed a
congestion pricing scheme that reduces the number of
nonessential travel passengers during peak hours and pro-
vides road resources for commuters. Huang and Liu [9]
proposed a pricing method determined by the distance
between departure and terminal stations that allows pas-
sengers to select their travel routes. Zheng et al. [10] pro-
posed a dynamic congestion pricing scheme that effectively
reduces congestion and achieves savings for users. Wu and
Qin [11] established a high-speed rail seat allocation model
based on dynamic pricing to maximize the income of en-
terprises, which improves the revenue of railways.

In recent years, investigations pertaining to rail transit
fares have primarily focused on the effect of fares on pas-
senger travel behavior and adjustment methods of fares. Peer
et al. [12] conducted a month-long experiment regarding the
itinerary preferences of 1,000 Dutch citizens and then de-
veloped a departure time selection model. Kou and Tseng
et al. [13, 14] investigated the effects of income level and time
on passenger travel decisions. -orhauge et al. [15] used a
questionnaire survey to evaluate the psychological factors of
travelers, and the results showed that the constructed se-
lectivity model significantly affected people with fixed
working hours. Anupriya et al. [16] used appropriate rea-
soning methods to assess the effects of discount policies on
travelers’ travel preferences; however, the mitigation of
congestion by such policies is limited. Aboudina and
Abdulhai [17] proposed a congestion pricing system that
assesses the effect of charging on travelers’ timing and path
selections.

-e automatic fare collection system (AFC) is de-
veloped to provide data support for the differentiated
pricing of subways. To alleviate the problem of busy
passenger flow during peak periods, researchers often
adopt the peak-to-peak differentiated pricing method.
Huan and Hess [18] used a bilevel planning model to
consider pricing strategies for off-peak discounts and
additional peak-period charges. Vuuren [19] confirmed
that pricing during peak and nonpeak hours is primarily
aimed at maximizing welfare and revenue, respectively.
Whelan and John [20] established fare changes to ac-
commodate the changing flow requirements of

passengers throughout the day, which consequently
solved the problem of overcrowding. De Palma et al. [21]
derived the best dynamic pricing and seat share for the
same type of origin-destination (OD) passengers.

Currently, various studies pertaining to fare schemes and
comparisons have been conducted. Zhou and Li [22] used a
simulation system to compare two fare incentive policies.
Sun and Szeto [23] proposed a two-tier planning model to
determine fares to improve the interests of operators and
compared three different fare schemes. Huang [24] com-
pared three pricing schemes and proposed an optimal
combination that minimizes the total cost. Li and Guo [25]
investigated the effect of congestion charging and incentive
policies on car travelers, and the results showed that con-
gestion pricing strategies affect the change in travel patterns
of travelers more significantly than incentive policies. Lovrić
and Raveau [26] investigated and evaluated two off-peak
pricing strategies, and the results showed that the off-peak
pricing strategy is vital for solving congestion, particularly
during the afternoon peak period.

A summary of the recently developed fare adjustment
models is presented in Table 1. Existing fare pricing strat-
egies can be classified into hours or minutes, and the pas-
senger flow division is not sufficiently precise. To better
satisfy the actual requirements, we propose a strategy of
implementing differentiated pricing within the scope of
multiple trains to balance the utilization rate of each train,
thereby alleviating the problem of congestion during peak
periods. -e main contributions of this study are summa-
rized as follows:

(1) A method for determining fares, which is affected by
the distribution of passenger flow during peak hours,
is proposed

(2) -e concept of the range of acceptable train numbers
for each passenger (RATP) and allocating passenger
flow during the peak period to achieve more realistic
results are introduced

(3) A bilevel model with the smallest number of
passengers exceeding the full-load rate (NEFR) is
constructed, and a simulated annealing algorithm
and logit model are used to solve the model

(4) -e relationship between the value NEFR and the
number of congestion sections is discussed, and
RATP is analyzed

(5) A new subway fare and passenger flow distribution
are obtained, which provide a reference for subway
operating companies

-e remainder of this paper is organized as follows.
Section 2 presents the problem description, assumptions,
and notations. Section 3 presents our model. Section 4
presents the procedures of the proposed algorithm for
solving the price adjustment model of urban rail transit
congestion. Numerical examples are presented in Section 5
to illustrate the performance of the proposed fare schemes.
In Section 6, discussions as well as analyses of some pa-
rameters are presented. Finally, conclusions and future re-
search directions are provided in Section 7.
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2. Problem Description, Assumption,
and Notation

2.1. Problem Description. Owing to the continuous im-
provement in the division of urban functional areas, the
distribution of urban citizens in the city has become un-
balanced. Passenger and congestion sections are not nec-
essarily the same in the upward and downward directions of
a subway line. In this study, we considered only the problem
of morning peak congestion in one direction, with station
numbers 1, 2, . . ., s ∈ S, and the corresponding section
numbers 1, 2, . . ., s+ 1 ∈M.

Our price adjustment strategy is as follows: the period
before and after the morning peak period is specified as the
trough period, which encourages passengers to change their
travel time via price adjustment such that the passenger
demand for the morning peak hour is transferred in time
and space. We believe that the total passenger flow remains
the same before and after the fare adjustment; i.e.,
SG � SDL + SDR.

Figure 1 shows an example of a station, where TXO
D and

TXE
D denote the start and end times of the research period,

respectively, and tl
s and tr

s denote the start and end time and
end times of the morning peak hour at station s, respectively.
During the morning peak hours, the dynamic passenger
demand at the station is satisfied by the normal distribution
of time [27]. -erefore, we used the midpoint of each sta-
tion’s peak hour (superpeak hour) to indicate the most
congested state of this station. In Figure 1, tm

s represents the
superpeak hours of stations.

During the morning peak hours, the main purpose of
travel by passengers is for work. For fixed working hours, the
RATP is required before and after fare adjustment; it is not
an unlimited number of waiting trains with the least travel
resistance.

As shown in Figure 2, we believe that for each peak-hour
passenger, an acceptable earliest and latest departure train
exists, which is set as the previous train and the next train
adjacent to the ideal departure train in this study.

2.2. Model Assumptions. Based on a model of fare adjust-
ment with differentiated pricing across multiple trains, the
relationship between passenger flow and the fare was con-
sidered and optimized in this study. -e following as-
sumptions were introduced for some factors in the urban rail
transit service process:

(1) -e train is under a long-term optimized configu-
ration, all operating services are at full load, the train

is operating in accordance with the determined
timetable, and the headway is equal

(2) Considering the effect of price adjustment explicitly,
we assume that after fare adjustment, all passengers
will still opt to travel without changing the origin and
destination stations

(3) Passenger travel behavior is determined by the
passengers themselves, who always opt to travel on
the train with the least travel resistance

2.3. Variable Definitions. We first list all the notations and
parameters used in this study in Table 2.

3. Bilevel Model Establishment

3.1. Determination of Price. Before building the model, we
must first provide a method for determining the price during
peak hours. As shown in Figure 3, we assume that 11 stations
(labeled from A to K) and 10 trains (numbered from 1 to 10)
exist. -e time span of our study is [Tstart, Tend], which
reduces the passenger flow by the length of the headway.-e
colored regions of the figure represent the congestion pe-
riods for each section; t1A, t2A, . . . , t10A indicates the arrival
time of trains 1, 2, . . . , 10 at station A (if station A is the
origin station, it can be regarded as the departure time);
tl
A and tr

A represent the start and end times of peak hours in
section A, respectively; tm

A is the midpoint time during the
peak period of section A. We believe that the passenger flow
is the most active on the platform at this time, and we define
this moment as the superpeak hour.

In summary, we believe that two primary scenarios exist.
In the first scenario, train k is in the off-peak period at station
s (the train represented by the blue line in Figure 3), which
can be determined as follows:

1
2

t
l
s + t

r
s􏼐 􏼑 − t

k
s − t

m
s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕< 0. (1)

In the second scenario, train k is in the peak period at
station s (the train represented by the black line in Figure 3),
which can be determined as follows:

1
2

t
l
s + t

r
s􏼐 􏼑 − t

k
s − t

m
s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕> 0. (2)

In essence, the two formulas above express the time
difference between the arrival time of train k at station s and
the superpeak time of station s. To express this time dif-
ference, we introduce a new variable, Δtk

s . Subsequently, the
following conditions specify the scenario of the train:

Table 1: A summary of models.

References Objective function Solving algorithm
Tang et al. -e total equilibrium costs Sequential iterative solution algorithm
Huan et al. Max the sum of the operator and com-muter surplus and min the peak ridership Genetic algorithms
Huang et al. Maximization of the social welfare Hybrid artificial bee colony algorithm
Wu et al. Maximize the total ticket revenue A two-stage algorithm
Sun et al. Maximize transit operator’s profit Sensitivity-based descent search method
-is paper Minimize the total number of passengers exceeding the full-load rate (NEFR) Simulated annealing algorithm
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Figure 2: RATP diagram.

Table 2: Notations and parameters in this problem.

Notations Detailed definition
S Set of involved stations
M Set of involved stations
K Set of in-service trains
tk
s Arrival time of train k at station s on the line

tl
s Start time of the peak hour at station s

tm
s Superpeak hour at the station s

tr
s End time of the peak hour at station s

pko
ij Fare of passengers who take the train k at station i heading to station j before the price adjustment

pk
ij Fare of passengers who take the train k at station i heading to station j after the price adjustment
Δtk

s Time difference between the train k at the station s and the super-peak time of station s
qko

ij -e volume of passengers who take the train k at station i heading to station j before the price adjustment
qk

ij -e volume of passengers who take the train k at station i heading to station j after the price adjustment
C In-service train loading capacity
qk

m -e volume of the passenger on the train k passing through the section m
flr Value of full-load rate
qcrowdm -e number of passengers in the section m larger than flr · C

λk
s -e discount factor for the train k in the section s

pa
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ng
er

 v
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e

Time

Pasenger volume before price adjustment
Pasenger volume after price adjustment

SG
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SDL

TD
XO TD
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Figure 1: Passenger flow transfer diagram.
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Δtk
s

< 0, k − th train is in off − peak period at the s − th station,

> 0, k − th train is in peak period at the s − th station.
􏼨

(3)

In this study, the time difference and discount factor
were used jointly to determine the price. As multiple OD
streams exist for each train, the variable parameters in the
problem will be difficult to address if a discount factor is
specified for each OD. To simplify this problem, we intro-
duce a new variable λs (0< λs < 1), which represents the
discount factor in section s and use the discount combi-
nation of each section to express the discount factor of the
entire train. We believe that the closer it is to the peak hours,
the greater the value of the discount factor is and that a linear
relationship exists between both parameters. Considering
the factors described above, we use the following formula to
express the adjusted fare:

p
k
ij � p

ko
ij + 􏽘

j

s�i

λs · Δtk
s􏼐 􏼑. (4)

3.2. Passenger Flow Loading Instructions

3.2.1. Path Flow. -e sum of passenger flows allocated to
each path (train) for any OD pair should be equal to the
passenger flow demand. For example, in Figure 3, the
passenger flow between OD pair (A, C) is allocated to train
k� 3, k� 4, and k� 5, whose flow is denoted as f3

AC,f4
AC, and

f5
AC, respectively, and satisfies f3

AC + f4
AC + f5

AC � qAC.

3.2.2. Section Flow. -e flow of any section is equal to the
sum of the passenger flows of all the paths passing through
the section. For example, in Figure 3, suppose that train k� 3
loads the passenger flow of OD pairs (A, C), (A, D), and (A,
E); subsequently, q3BC � f3

AC + f3
AD + f3

AE. We introduce a
0-1 variable to represent the relationship between the path
(train) and section. If train k passes through section m, then
δk,m

ij � 1; otherwise, δk,m
ij � 0.

3.3. Passenger Travel Impedance. Passengers select the
transportation mode based on a decision-making process, in
which they expect to select the travel mode with the lowest
cost. Fare is the most intuitive factor in this context. Owing
to the improvement in living standards and changes in
consumption concepts, convenience (transfer distance and
transfer queue time), comfort (degree of congestion), safety,
reliability (on-time rate), and other factors will affect the
choice of transportation mode; therefore, travel impedance
should be included as a factor. Based on an analysis of the
travel requirements of citizens, it can be concluded that the
main influencing factors of citizens’ travel behavior are time,
economy, and comfort. Citizens comprehensively consider
the effect of the generalized travel cost and typically select the
method with the lowest generalized travel cost.

3.3.1. Economy. -e total cost of a passenger completing a
trip includes the basic fare and various connection and
transfer fees, such as the cost of passengers from the de-
parture point to the subway station and from the origin
station to the destination station. Herein, we consider only
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G
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K
Tstart Tend

Time

St
at
io
n

Trains in off-peak period
Trains in peak period

t1A tlA tmA tkA trAt2A t3A t4A t5A t6A t8A t9A t10
A

Figure 3: Diagram depicting passenger accumulation.
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the process of passengers traveling via the subway and di-
rectly use the fare to reflect the economic indicators. -e
average annual national product [27] is used to convert the
fare D� 7.4min/yuan, as follows:

p
k′
ij � D · p

k
ij. (5)

3.3.2. Convenience. Travel time impedance can be catego-
rized into section and station impedances. In an urban rail
transit system, the section impedance is represented by the
operating time of the train, and the station impedance is
represented by the dwelling time of the train, as follows:

W
k
m � tm + ts, (6)

where tm is the operating time of the train in section m, and
ts is the dwelling time of the train at station s (including the
acceleration and deceleration times of the train).

3.3.3. Comfort. Passenger well-being, time-saving value, and
fares are affected by congestion [28] and future comfort
improvements that increase the possibility of working,
reading a book, watching a movie, and communicating
during a trip [29]. For railway transportation, passenger
comfort depends primarily on the train travel time and
hardware/software service facilities. Comfort is an indicator
that depends on the travel time, which can be quantified by
the time required for passengers to recover from fatigue. For
the urban rail transit, we use the congestion of the section to
reflect comfort.

First, when the number of passengers on the train is less
than the number of seats, i.e., when each passenger has a
seat, the passengers will not feel any discomfort. When the
number of passengers is greater than the number of seats, the
additional time cost caused by discomfort is 0. At this time,
because the passengers must stand or endure an over-
crowded environment, the additional time caused by con-
gestion per unit of travel time can be expressed as follows:

Y
k
m q

k
m􏼐 􏼑 �

0, q
k
m <Zm,

q
k
m − Z

Z
A, Z< q

k
m ≤C,

q
k
m − Z

Z
A +

q
k
m − C

Z
B, q

k
m >C,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
k
m � tm · Y

k
m q

k
m􏼐 􏼑,

(7)

where Z is the number of seats in the train, A is the ad-
ditional time cost coefficient for general crowding, B is the
additional time cost coefficient for overcrowding, and Tk

m is
the weighted comfort cost.

In summary, the generalized cost (path impedance) of
the OD pair passenger’s selection of route (train) travel is
expressed as follows:

gc
k
ij � α1 􏽘

i

􏽘
j

P
k′
ij + α2 􏽘

m

W
k
m + α3 􏽘

m

T
k
m

⎡⎢⎢⎣ ⎤⎥⎥⎦ · δk,m
ij . (8)

In the formula above, αi(i � 1, 2, 3) represents the
weighting coefficient, i.e., the degree to which passengers
traveling on different trains attach importance to each travel
cost; in this study, α1 � 0.5, α2 � 0.1, and α3 � 0.4.

3.4. Upper-Level Model. -e core purpose of the price ad-
justment model used in this study is to change the arrival
time of passengers to alleviate the problem of busy passenger
flow during the peak period, thereby rendering the utili-
zation rate of trains during peak periods as balanced as
possible and improving the overall service level of rail
transit. Hence, the minimum NEFR was used as the opti-
mization goal in this study, as shown in (9): if flr is 90%,
then the objective function represents the function of any
adjacent section, thereby resulting in the minimum number
of passengers exceeding 90% of the train capacity, as follows:

min
����������������

􏽘 q
crowd
m − flr · C

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

. (9)

3.4.1. Revenue Constraints. -e income of subway operators
is an important factor that must be considered. When the
revenue from inducing passenger flow cannot compensate
for the loss in peak passenger flow transfer, the fare inev-
itably results in reduced total operating revenue. Herein, we
use only the fare revenue to represent the overall revenue of
the operator; in other words, the total revenue after the price
adjustment must not be less than the total revenue before the
price adjustment.

􏽘
i

􏽘
j

􏽘
k

p
k
ij · q

k
ij ≥ 􏽘

i

􏽘
j

􏽘
k

p
ko
ij · q

ko
ij . (10)

3.5.Lower-LevelModel. -e lower-level model is a passenger
distribution model that considers the passenger departure
time. -e multipath probability selection problem in the
urban rail transit network is explained by behavioral science,
which is a decision-making problem, i.e., the manner by
which passengers select the travel path during urban rail
travel; furthermore, the travel impedance of the path can be
used as a basis for passengers to select the path.-e objective
function of lower-level planning is to minimize the travel
impedance of the passengers, as shown in (8).

3.5.1. Passenger Flow Constraints. We believe that the
purpose of implementing fare adjustment is to divert pas-
senger flow rather than to eliminate passenger flow. In this
process, the total passenger flow remains unchanged; i.e.,

􏽘
K

k�1
q

ko
ij � 􏽘

K

k�1
q

k
ij, (i, j) ∈ S. (11)
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3.5.2. Capacity Constraints. -e passenger flow of each train
during peak hours should be controlled under the corre-
sponding train loading capacity as follows:

􏽘
i

􏽘
j

q
k
ij · δkm

ij ≤C,∀k, m. (12)

4. Algorithm Solution

In this study, the simulated annealing algorithm and allo-
cation method based on selection probability were used to
solve the model above. -e idea of the algorithm solution is
as follows: the decision variable λs of the upper model is
encoded and input to the lower model as a known condition,
and the lower model obtains the distribution of passengers
on the train through the distribution method based on the
selection probability and then returns the result to the upper
model. -e upper model uses the simulated annealing al-
gorithm to obtain the corresponding fitness function value
and finally obtains the optimal solution iteratively.

4.1. Passenger Flow Allocation Model Based on Selection
Probability. An improved logit model was used as the
probability model to solve the lower model. -e specific
procedures are as follows:

Step 1. -e effective path for each OD pair is deter-
mined. For each OD pair, the optional path includes the
ideal departure train and the previous train, and the
next train deviates from the ideal departure train
among the three optional paths (trains). -e set of
optional paths is represented by l.
Step 2. Calculate the generalized cost of each path gck

ij

in the optional paths set and obtain the minimum
generalized cost between OD pairs, which is denoted as
gcmin

ij ;
Step 3. According to the improved logit model (13) used
to calculate the selection ratio of each alternative route,
θ is an index that measures the overall familiarity of
passengers with the road network.

probk
ij �

exp −θgc
k
ij/gc

min
ij􏼐 􏼑

􏽐lexp −θgc
l
ij/gc

min
ij􏼐 􏼑

. (13)

Step 4. According to probk
ij, the passenger flow dis-

tribution of each path is calculated as follows:

f
k
ij � qijprob

k
ij, ∀k, i, j. (14)

Step 5. -e passenger flow of each section in the al-
ternative path is calculated as follows:

q
k
m � 􏽘

i

􏽘
j

􏽘
k∈K

f
k
ijδ

k,m
ij . (15)

4.2. Simulated Annealing Algorithm Critical Step Design.
-e main procedures of the algorithm are as follows:

Step 1. Initialization of parameters: the parameters are
set as follows: initial temperature temperature� 1000,
cooling_rate� 0.94, number of internal and external
cycles LK� 100, and maxgen� 500.
Step 2.-e passenger flow distribution of platforms and
sections under the existing operating organization is
calculated. -e fitness function value, which is denoted
by previous_fitness, is calculated using (9).
Step 3. Generate the initial solution λs, and calculate the
fare revenue. If the fare revenue satisfies Equation (10),
then proceed to the next step; otherwise, regenerate the
solution.
Step 4. Use the passenger flow allocation model based
on the selection probability to obtain the passenger
flow distribution; if the passenger flow satisfies (11)
and (12), then proceed to the next step; otherwise,
return to Step 4.
Step 5. Based on the new passenger flow distribution,
calculate the fitness function value using (9), which is
denoted as current_fitness. Record the solution and its
corresponding platform and section population
distribution.
Step 6. Calculate the increment diff � current_fitness
−previous_fitness,

1, diff < 0,

exp
diff

temperature
􏼠 􏼡, diff ≥ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

If diff < 0, the new solution is accepted with 100%
probability, and if diff ≥ 0, the new solution is accepted
with probability exp(diff/temperature). If the new
solution is accepted, then the new fitness function value
is also accepted, i.e., previous_fitness � current_fitness.
Step 7. Determine whether the number of inner loops is
satisfied. If it is satisfied, perform the cooling operation,
i.e., temperature� cooling_rate× temperature; other-
wise, return to Step 3.
Step 8. Determine whether the number of outer loops is
satisfied. If it is satisfied, then the algorithm terminates,
and the optimal solution is output. Otherwise, it returns
to Step 3.

5. Numerical Experiments

-is study is based on the passenger flow data on a subway
line. We number each station by numbers 1–26 and number
the corresponding sections by numbers 1–25. -e param-
eters used in this study and their values are shown in Table 3.

To facilitate the calculation of the example, we set the fare
for all adjacent sections to 1 yuan. We define the departure
time of the first bus as 6 a.m., based on the passenger flow
information provided by the AFC. Passengers on trains
12–31 were selected as the research objects in this study
(hereinafter collectively referred to as trains 1–20). MAT-
LAB programming calculations were used to obtain the
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convergence curve, as shown in Figure 4. As shown in
Figure 4, the initial value of the objective function is 114, and
the objective function decreases with the decrease in tem-
perature. When iterating around 230 generations, the op-
timal solution and objective function remain stable, and the
model reaches a state of convergence. -e optimal objective
function is 94, which is reduced by 17.5%. -e number of
congested sections (the congested section is defined as more
than 90% of the train’s loading capacity) changes from 55 to
50, which is a reduction of 9.1%.

-e price-added value of the section is listed in Table 4.
-e price of the relatively congested section increases, and
the price of the adjacent relatively idle section decreases. For
example, passengers who board the 9th train and pass
through the 10th section will be charged an additional 2.1
yuan fare in this section, whereas passengers passing
through the 18th section are entitled to a 1 yuan fare subsidy
in this section. -is encourages the passengers to select the
fare subsidized section as well as change their travel time.
-e fare revenue before the price adjustment was 94146
yuan, and the fare revenue after the price adjustment was
107,700 yuan, which is an increase of 13,554 yuan to satisfy
the revenue of the operator. We applied the section price
adjustment amount to the in-world subway fare table. Ta-
ble 5 shows the subway fare table for the 9th train. -e OD
pair (1,11) in the table is 4/6.1, which represents the price
before the price adjustment. -e fare was 4 yuan, and the
adjusted fare was 6.1 yuan. After calculation, the total fare
revenue before the price adjustment was 40236 yuan, and the
total fare revenue after the price adjustment was 44243 yuan,
which translates to an increase of 4007 yuan and a growth
rate of 10%. -e fare for the other train is shown in the
supplemental file.

During peak hours, in addition to the balanced train
utilization rate, the congestion problem should be consid-
ered. Figure 5 shows the distribution of the crowded section
before and after the price adjustment. We consider a section
with 1440 or more passengers as an overcrowded section, a
section with 1296–1440 passengers as a crowded section, and
a section with less than 1296 as a safe section [30]. Com-
paring the number of congested sections before and after the
price adjustment, it was discovered that the total number of
congested sections reduced from 55 to 50, which is a re-
duction of 9.1%, whereas the total numbers of overcrowded
and congested sections reduced from 31 to 27 and 24 to 23,
respectively.

To better reflect the congestion section and passenger
flow changes in the congestion section during peak hours,
we use PS to denote the set of congested sections before the
price adjustment, NS to the set of congested sections after
the price adjustment, and PS∪NS� 65 to represent the total
set of congested sections. As shown in Table 6, the sections
marked in yellow are the congestion sections that coexist
before and after the price adjustment (40 in total); the
sections marked in blue are the unique congestion sections
before the price adjustment (15 in total); the sections marked
in red are the unique congestion sections after the price
adjustment (10 in total); the congestion section changed
from 55 (40 + 15) before the price adjustment to 50 (40 + 10)
after the price adjustment.

We numbered the 65 congestion sections based on the
following numbering rules. In general, the sections were
numbered in the increasing order, and the same sections
were numbered in the increasing order of train number.
Figure 6 shows the passenger flow fluctuations in the
congested section before and after the price adjustment. -e
solid green line indicates passenger flow fluctuations in
crowded sections before the price adjustment, the solid blue
line indicates passenger flow fluctuations in crowded sec-
tions after the price adjustment, and the dotted pink line
indicates the number of passengers at a loading capacity of
90%. Compared with before the price adjustment, the
number of congested sections was 65, of which 42 sections
had fewer people, primarily between the 8th and 13th trains;
after the price adjustment, the number of people increased in
23 trains, primarily between the 6th–7th and 15th–20th
trains. -e passenger flow distribution was more balanced,
and the fluctuation decelerated.

6. Parametric Analysis

In the proposed model, it is assumed that three alternative
routes exist for passengers: the ideal departure train, the

Table 3: Values of main parameters.

Parameter Value
tm 5 min
ts 1 min
Z 360
C 1440
A 1
B 2
flr 90%
θ 1
H 5 min

0 50 100 150 200 250 300 350 400 450 500
40

50

60

70

80

90

100

110

120

130

Number of iterations

Change trend of objective function value
Change trend of congestion sectionvalue

Figure 4: Convergence curve of the objective function.
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Table 4: -e price-added value of the section.

Section
Train

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 −0.1 0.0 −0.1 0.0 0.0 −0.1 0.0 0.0
10 0.0 −1.0 0.0 0.5 0.0 −1.0 0.0 1.0 2.1 3.1 2.1 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 −1.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.1 3.1 4.2 3.1 2.1 1.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 3.2 3.2 1.6 0.0 0.0 0.0 −1.6 0.0 0.0 −1.6 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 −0.2 0.0 0.2 0.4 0.2 0.0 −0.2 0.0 0.0 −0.2 0.0 0.0 −0.2 0.0 0.0
14 0.0 0.0 −1.5 0.0 0.0 −1.5 −1.5 0.0 1.5 0.0 −1.5 0.0 −1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 −0.2 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 −3.2 0.0 3.2 3.2 0.0 −3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0 0.0 −4.0 0.0 4.0 0.0 −4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0 0.0 −1.0 0.0 0.0 −1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0 −4.0 0.0 4.0 0.0 −4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 −2.0 0.0 2.0 4.0 2.0 0.0 −2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: -e 9th train subway fare table.

OD 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
3.0

3/
3.0

3/
3.0

3/
3.0

4/
6.1

4/
5.5

4/
7.1

4/
5.6

4/
5.6

4/
5.6

5/
6.9

5/
6.9

5/
6.5

5/
5.7

5/
5.5

5/
5.5

6/
6.5

6/
6.5

6/
6.5

6/
6.5

2 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
3.0

3/
3.0

3/
3.0

3/
5.1

4/
5.5

4/
7.1

4/
5.6

4/
5.6

4/
5.6

4/
5.9

5/
6.9

5/
6.5

5/
5.7

5/
5.5

5/
5.5

5/
5.5

6/
6.5

6/
6.5

6/
6.5

3 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
3.0

3/
3.0

3/
5.1

3/
4.5

4/
7.1

4/
5.6

4/
5.6

4/
5.6

4/
5.9

4/
5.9

5/
6.5

5/
5.7

5/
5.5

5/
5.5

5/
5.5

5/
5.5

6/
6.5

6/
6.5

4 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
3.0

3/
5.1

3/
4.5

3/
6.1

4/
5.6

4/
5.6

4/
5.6

4/
5.9

4/
5.9

4/
5.5

5/
5.7

5/
5.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

6/
6.5

5 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
5.1

3/
4.5

3/
6.1

3/
4.6

4/
5.6

4/
5.6

4/
5.9

4/
5.9

4/
5.5

4/
4.7

5/
5.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

6 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
5.1

3/
4.5

3/
6.1

3/
4.6

3/
4.6

4/
5.6

4/
5.9

4/
5.9

4/
5.5

4/
4.7

4/
4.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

7 2/
2.0

2/
2.0

2/
2.0

2/
4.1

3/
4.5

3/
6.1

3/
4.6

3/
4.6

3/
4.6

4/
5.9

4/
5.9

4/
5.5

4/
4.7

4/
4.5

4/
4.5

5/
5.5

5/
5.5

5/
5.5

5/
5.5

8 2/
2.0

2/
2.0

2/
4.1

2/
3.5

3/
6.1

3/
4.6

3/
4.6

3/
4.6

3/
4.9

4/
5.9

4/
5.5

4/
4.7

4/
4.5

4/
4.5

4/
4.5

5/
5.5

5/
5.5

5/
5.5

9 2/
2.0

2/
4.1

2/
3.5

2/
5.1

3/
4.6

3/
4.6

3/
4.6

3/
4.9

3/
4.9

4/
5.5

4/
4.7

4/
4.5

4/
4.5

4/
4.5

4/
4.5

5/
5.5

5/
5.5

10 2/
4.1

2/
3.5

2/
5.1

2/
3.6

3/
4.6

3/
4.6

3/
4.9

3/
4.9

3/
4.5

4/
4.7

4/
4.5

4/
4.5

4/
4.5

4/
4.5

4/
4.5

5/
5.5

11 2/
3.0

2/
4.1

2/
3.5

2/
3.5

3/
4.5

3/
4.8

3/
4.8

3/
4.3

3/
3.6

4/
4.3

4/
4.3

4/
4.3

4/
4.3

4/
4.3

4/
4.3

12 2/
5.2

2/
3.8

2/
3.7

2/
3.7

3/
5.0

3/
5.0

3/
4.4

3/
3.5

3/
3.2

4/
4.2

4/
4.2

4/
4.2

4/
4.2

4/
4.2

13 2/
2.4 2/3 2/

3.0
2/
3.7

3/
4.7

3/
4.0

3/
2.8

3/
2.5

3/
2.5

4/
3.5

4/
3.5

4/
3.5

4/
3.5

14 2/
3.5

2/
3.5

2/
4.3

2/
4.3

3/
4.2

3/
2.6

3/
0.0

3/
0.0

3/
0.0

4/
0.3

4/
0.3

4/
0.3
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Figure 5: Continued.

Table 5: Continued.

OD 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

15 2/
2.0

2/
5.2

2/
5.2

2/
3.1

3/
2.3

3/
2.0

3/
2.0

3/
2.0

3/
2.0

4/
3.0

4/
3.0

16 2/
5.2

2/
5.2

2/
3.1

2/
1.3

3/
2.0

3/
2.0

3/
2.0

3/
2.0

3/
2.0

4/
3.0

17 2/
2.0

2/
1.0

2/
0.0

2/
0.0

3/
1.0

3/
1.0

3/
1.0

3/
1.0

3/
1.0

18 2/
1.0

2/
0.0

2/
0.0

2/
0.0

3/
1.0

3/
1.0

3/
1.0

3/
1.0

19 2/
0.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

3/
3.0

3/
3.0

20 2/
0.0

2/
0.0

2/
0.0

2/
0.0

3/
1.0

3/
1.0

21 2/
2.0

2/
2.0

2/
2.0

2/
2.0

3/
3.0

22 2/
2.0

2/
2.0

2/
2.0

2/
2.0

23 2/
2.0

2/
2.0

2/
2.0

24 2/
2.0

2/
2.0

25 2/
2.0
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previous train adjacent to the ideal departure train, and the
next train adjacent to the ideal departure train. Next,
consider the case involving five alternative routes for pas-
sengers: the ideal departure train, the first two trains ad-
jacent to the ideal departure train, and the final two trains
adjacent to the ideal departure.

As shown in Figure 7, the passenger flows shown in
Figure 7(a) are primarily concentrated in Sections 10–15 on
trains 6–12. Meanwhile, the passenger flows shown in
Figure 7(b) are primarily concentrated in Sections 10–13 on
trains 7–16, where the passenger flow is more evenly shared
by the trains and is not as dense as that shown in Figure 7(a).

Table 6: Distribution of congestion sections.

Section
Train

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
9 1/0
10 1/0 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/0 1/0 0/1 1/0
11 0/1 1/1 1/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/1 1/1 1/1 1/1 0/1
12 0/1 1/1 1/0 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/0 1/1 0/1 1/1 0/1 1/1
13 1/1 1/1 1/1 1/1 1/0 1/0
14 1/1 1/1 1/1 1/0
15 0/1 1/1 1/1 1/0
16 1/1 1/0
17 1/1
18
19 1/0
20 1/0
Note. 1/1 indicates the coexisting congestion section before and after the price adjustment. 1/0 indicates the unique congestion section before the price
adjustment. 0/1 indicates the unique congestion section after the price adjustment.
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Figure 5: Congestion section distribution before and after the price adjustment. (a) Congestion section distribution before the price
adjustment. (b) Congestion section distribution after the price adjustment.
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Figure 8 shows a comparison of the distribution of pas-
senger flows before and after the price adjustment. -e solid
blue line indicates passenger flow fluctuations in crowded
sections under the three alternative routes for passengers, the
solid brown line indicates passenger flow fluctuations in
crowded sections under the five alternative routes for pas-
sengers, and the dotted pink line indicates the number of
passengers at a full-load rate of 90%. As shown in the figure, 70
congestion sections exist in the two abovementioned situations.
Five alternative routes exist for the passengers instead of three
routes: in 34 sections, the number of people decreases, pri-
marily between trains 7 and 11, whereas in 36 sections, the

number of people increases, primarily between trains 4–6 and
12–20. It can be observed that when the RATP increases, the
distribution becomes balanced.

-e value of the full-load rate affects the value of the
objective function. To ensure that the objective function is
valid, the number of congested sections is reduced by only
five to minimize the number of congested sections during
peak hours. Next, we discuss the relationship between the
full-load rate, NEFR, and the number of congested sections
based on Table 7.

In Table 7, Situation 1 indicates that the minimum
NEFR is the objective function; we calculated only the
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Figure 6: Passenger flow fluctuations in crowded sections.
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Figure 7: Passenger flow distribution for different RATPs. (a) RATP� 3. (b) RATP� 5.
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section where the full-load rate is greater than the
specified full-load rate, and the other sections are not
discussed. Situation 2 indicates that the minimum number
of congested sections is the objective function. It is be-
lieved that when congestion in the peak period is high, the
optimization objective should be to reduce the number of
congested sections. When congestion in the peak period is
low, the NEFR can be considered the optimization
objective.

7. Conclusion

In this study, a scheme with differentiated pricing across
multiple trains was formulated, an integer programming
model with NEFR was built, and a simulated annealing
algorithm was used to solve the model based on the selection
probability; subsequently, the distribution of passenger flow
after fare adjustment was obtained.

A method for determining the fare during peak hours
using the concept of graphical time difference is proposed
herein to reflect the position of the train during peak hours.
-e results of the calculation example show that the ob-
jective function and number of congested sections were
reduced, and the passenger flow shifted to the trains at both
ends of the study period, achieving the effect of cutting peaks
and filling valleys.

In a parametric analysis, we discovered that the trends of
the NEFR and congestion sections differed when different

full-load rates were used.When the requirements for the two
situations were different, the distribution of passenger flow
after optimization differed as well. -is provides a reference
for formulating fare policies during peak periods based on
the conditions and demands of urban rail transit.

-e method for determining fares in this study is not
fully developed and was investigated for only one line. In
the future, multiple lines and transfers should be inves-
tigated to develop more reasonable section fare strategies
and obtain more balanced passenger flow allocation
results.
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Figure 8: Passenger flow fluctuations for different RATPs.

Table 7: Change of objective function under different full-load rate values.

Flr

Situation 1 Situation 2
NEFR Number of congestion sections NEFR Number of congestion sections

Before price
adjustment

After price
adjustment

Before price
adjustment

After price
adjustment

Before price
adjustment

After price
adjustment

Before price
adjustment

After price
adjustment

100 84 62 31 33 84 69 31 23
90 114 95 55 50 114 98 55 45
80 152 139 88 92 152 161 88 77
70 197 190 129 141 197 199 129 118
60 248 244 189 188 248 249 189 167
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Refer to the fares of other trains: (PDF) Fares for each of the
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