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Enhanced index tracking (EIT) is an active research area in portfolio management that focuses on adding reliable value relative to
the index on the basis of mimicking the behavior of the benchmark index. To solve the EITproblem, many approaches have been
proposed. However, it still remains a critical challenge to efficiently generate a portfolio with good quality. In this study, we
propose a learning-based approach named IntelliPortfolio for the EITproblem. IntelliPortfolio uses PCA and clustering to select
stock and estimates the investment weight for each constituent stock using a long short-term memory (LSTM) network. Two
advantages of the proposed algorithm are as follows. (1) It considers both the fundamentals and the price information for stocks
and can balance the trade-off between the performance and the diversity of the selected stocks. (2) It uses a LSTM model to
estimate investment weights, which is more capable to handle long sequences of input and is more robust to predict the future
trend of stock market. Experimental results on the five real-world datasets of the international stock market illustrate the
significant performance superiority of the proposed approach in comparison with five state-of-the-art algorithms.

1. Introduction

As one of the most important strategies of passive invest-
ment, index tracking describes the process of investing in a
portfolio that attempts to match the performance of some
specified benchmark indexes. Today, indexed portfolios
often function as the core holding in an investor’s overall
equity allocation. ,e idea of “enhanced index tracking
(EIT)” has recently gained tremendous importance because
more and more fund managers seek to outperform the index
by appreciating the core of index investing. ,e reasons are
pretty obvious. By design, index tracking can only produce a
similar return to the index, which makes index funds always
underperform the index by the amount of fund costs [1].
Enhanced return, therefore, could often bring fund man-
agers competitive advantages after deducting expenses to
track and reward new customers. In fact, enhanced index
tracking is a dual-objective problem seeking the optimal

decisions in the trade-off between maximizing expected
performance and minimizing tracking risk.

Existing methods for enhanced index tracking include
statistic-based, heuristic, and learning-based, as discussed in
Section 2. Statistic-based approaches are the most mature
method and have been studied for many years. However,
such approach requires a significant amount of calculation
and becomes instable when the covariance matrix of the
dataset is ill-conditioned or nonpositive [2]. Heuristic
methods have been shown to be effective in finding good
portfolios [3], but are inefficient in solving high-dimensional
EIT problems. More specifically, they are prone to fall into
local minimums when searching for a large solution space
and often result in suboptimal portfolios [4]. Learning-based
approaches, although still in their infancy, are continuously
popular. Methods belonging to this category are sensitive to
the stability of the stock market, and their performance often
fluctuates significantly.
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To address the above issues, we propose an Intelligent
Portfolio algorithm for enhanced index tracking problem,
referred to as IntelliPortfolio, which aims to automatically
select the constituent stocks for the portfolio from a
benchmark index and determine the investment weight for
each constituent stock.,e key ideas of IntelliPortfolio are to
select constituent stocks for the portfolio using principal
component analysis (PCA) and k-means clustering algo-
rithm and to estimate the investment weight for each
constituent stock using a long short-term memory (LSTM)
network. ,e motivation here is twofold. (1) ,e use of PCA
and clustering algorithm to select stock is that it can consider
both the fundamentals and the price information for stocks
and can balance the trade-off between the performance and
the diversity of the selected stocks. (2) ,e use of LSTM to
estimate investment weights is that LSTM is more capable to
handle long sequences of input when compared to other
recurrent neural networks and is more robust to predict the
future trends of stock [5]. ,is strategy is shown to produce
better solutions in our practical experiments.

In summary, our work makes the following contribu-
tions to the field:

(i) We propose a novel, principal component analysis
(PCA) and clustering-based stock selection algo-
rithm to select constituent stocks for a portfolio
from the benchmark index. Our algorithm con-
siders both the fundamentals and the price infor-
mation for each stock and can balance the trade-off
between the performance and the diversity of the
selected stocks. Our extensive experiments also
show the effectiveness and the generality of pro-
posed stock selection algorithm.

(ii) We propose IntelliPortfolio algorithm to solve EIT
problem, which seamlessly integrates the stock se-
lection algorithm with a long short-term memory
(LSTM)-based investment weight estimation algo-
rithm. Given a stock dataset and the number of
stocks in a portfolio, IntelliPortfolio can both select
the constituent stocks of the portfolio and deter-
mine the investment weight for each constituent
stock.

(iii) We evaluate the performance of IntelliPortfolio
through extensive experiments using five real-world
datasets of international stock markets. We show
that IntelliPortfolio outperforms five state-of-the-
art enhanced index tracking algorithms by 8.78%–
665.97% in terms of four well-known performance
metrics.

2. Related Work

Enhanced index tracking is an active research area in
portfolio management based on index tracking which
aims to replicate the performance of the benchmark. We
can classify the previous studies for index tracking on
this problem into three categories: statistic-based, heu-
ristic, and learning-based approaches, as discussed
below.

2.1. Statistic-Based Approach. Traditionally, index tracking
problem has been treated as linear or quadratic program-
ming problems. Wu et al. [6] presented several constrained
cluster-based linear mixed-integer optimization models for
tracking broad market indices using the developed La-
grangian and semi-Lagrangian relaxation approaches for
computing near optimal solutions. Chen and Kwon [2]
developed a 0-1 integer program model considering initial
portfolio selection and subsequent investment in assets.
Fang and Wang [7] proposed a bi-objective programming
model for the index tracking portfolio selection problem.
Edirisinghe [8] developed a closed-form cost-free solution to
the index tracking portfolio selection problem. Wu and Wu
[9] designed a multifactor liner regression model as the basis
of the tracking models and to enhance the capacity of the
decisionmodel, and a Lagrangian-based algorithm is applied
to approximate optimal solutions. Oliver and Baumann [10]
proposed a value-based mixed-integer linear programming
(MILP) formulation for the index tracking problem that
leads to a high similarity in terms of the normalized his-
torical value developments between the tracking portfolio
and the index and to low rebalancing costs.

Statistic-based approach is a category of classic solutions
to the EIT problem and has been studied for many years.
However, such approach requires high-precision dataset and
a significant amount of calculation. Moreover, they suffer
from the poor stability when the covariance matrix of the
dataset is ill-conditioned or nonpositive [2].

2.2. Heuristic Approach. Because the enhanced index
tracking problem has been proven to be NP hard [11–15],
many previous studies apply heuristic algorithms to solve it.
Mutunge and Haugland [16] proposed a greedy constructive
heuristic algorithm that can extend the current portfolio by a
single asset in each iteration. Sant’Anna et al. [17] applied a
hybrid solution approach combining mathematical pro-
gramming and genetic algorithm to deal with the volatility
problem of stock markets in developing countries. Chen
et al. [18] introduced an indexed portfolio optimization
model using the mean-variance-skewness framework and
proposed a hybrid algorithm combining the firefly algorithm
(FA) and the genetic algorithm (GA). Strub and Oliver [19]
developed an iterated greedy heuristic for replicating the 1/N
portfolio by investing in a subset from a given investment
universe. Salehpoor and Molla-Alizadeh-Zavardehi [20]
presented a hybrid metaheuristic algorithm to solve the
index tracking problem. Beasley et al. [21] presented an
evolutionary heuristic algorithm for the index tracking
problem. Orito et al. [22] proposed a two-step stock selection
algorithm that uses a heuristic method to select stocks and
then uses a genetic algorithm to construct a portfolio. Oh
et al. [23] used GA to optimize index funds, aiming at
tracking stock index and minimizing tracking error. Roland
and Berg [24] proposed a hybrid algorithm combining GA
with quadratic programming to search for the optimal
tracking portfolio. Kumar and Mishra [11] proposed a
multiobjective optimizer for portfolio optimization which is
based on covariance-guided Artificial Bee Colony (ABC)

2 Mathematical Problems in Engineering



algorithm. Chen et al. [3] proposed a grouping genetic al-
gorithm for solving the group trading strategy portfolio
(GTSP) problem. Saborido et al. [25] proposed the mean-
downside risk skewness (MDRS) model and defined the new
mutation, crossover, and reparation operators for an evo-
lutionary multiobjective optimization to solve the index
tracking problem. Benidis et al. [26] provided a unified
framework for a large variety of sparse index tracking
formulations and derived a mixed-integer programming
(MIP)-based algorithm considering various tracking error
functions and constraints. Canakgoz and Beasley [27] pre-
sented a mixed-integer linear programming formulations
for index tracking problem. Garćıa et al. [28] proposed a
genetic algorithm and Tabu search-based for index tracking
optimization.

Heuristic methods have been proven to be effective in
finding good portfolios [3], but they often suffer from the
inefficiency in the EIT problem with a high-dimensional
space [29]. ,ey are prone to fall into the local minimum
when searching for the large solution space [4] and often
result in suboptimal portfolios.

2.3. Learning-Based Approach. Fu et al. [29] presented a
stacking stock selection model based on supervised learning,
used a genetic algorithm to select stock features, and labelled
stocks according to the return-to-volatility ratio ordering.
Dose and Cincotti [30] presented a stochastic-optimization
technique based on time-series cluster analysis for index
tracking problem. Ouyang et al. [4] used the deep autoen-
coder to select the portfolio and then used the deep neural
network to dynamically determine the portfolio weight.
Zhang and Tan [31] proposed a new stock selection model
named DeepStockRanker to predict the future stock return
ranking based on the historical data without handcrafted
features. Chalvatzis and Hristu-Varsakelis [32] proposed a
deep long short-term memory (LSTM) model to predict
asset prices and a prediction-based trading strategy. Paiva
et al. [33] proposed a method combining support vector
machine (SVM) and mean-variance (MV) for portfolio
selection. Jiang et al. [34] proposed a deep reinforcement
learning framework aiming to maximize cumulative returns
using deterministic policy gradient (DPG). Liang et al. [35]
implemented three new continuous reinforcement learning
algorithms, namely, deep deterministic policy gradient
(DDPG), proximal policy optimization (PPO), and policy
gradient (PG), in portfolio management. Moody et al. [36]
trained two kinds of reinforcement learning methods,
namely, real-time recurrent learning (RTRL) and Q-learn-
ing, to solve index tracking problem. Park et al. [37] pro-
posed an approach for deriving amultiasset portfolio trading
strategy using deep Q-learning. Lu [38] implemented a
learning model using LSTM with reinforcement learning or
evolution strategies as agents. Zhang and Maringer [39]
developed a model that combines GA with recurrent re-
inforcement learning (RRL) for asset trading. Garćıa-Galicia
et al. [40] provided a reinforcement learning model in

continuous-time discrete-state portfolio management with
time penalization for transaction cost. Vo et al. [41] in-
troduced a deep responsible investment portfolio model
containing a multivariate bidirectional LSTM neural net-
work to predict stock returns.

Learning-based approach has received much attention
recently. However, many learning-based algorithms con-
struct the portfolio by predicting the future price of stocks,
which has been proven to be inaccurate [41]. Reinforcement
learning-based algorithms, on the contrary, can construct
the portfolio adaptively. However, our experiment shows
that they are very sensitive to the stability of the stock
market, and their performance fluctuates significantly.

3. Problem Statement

,is study focuses on the enhanced index tracking problem,
referred to as EIT, that aims to produce a portfolio that
attempts to earn a higher return than the benchmark index
(excess return) while minimizing the risk of deviating from
the benchmark (tracking risk). In this section, we introduce
notations and terminology first and then define the EIT
problem formally.

3.1. Notations and Terminology

(i) t: time point.
(ii) T: decision time point. [1, T] is the in-sample time

period to select tracking portfolio, and [T, T + L] is
the out-of-sample time period to evaluate it.

(iii) N: number of stocks in the benchmark index.
(iv) K: number of stocks in the portfolio.
(v) pt

i : price of stock i (i � 1, 2, . . . , N) at time point t

(t � 1, 2, . . . , T + L).
(vi) It: index value at time t (t � 1, 2, . . . , T + L).
(vii) xt

i : stock selection indicator for a portfolio. If the
ith stock is selected to form the portfolio at time
point t, xt

i � 1; otherwise xt
i � 0.

(viii) wt
i : investment weight for the ith stock in the

tracking portfolio (i � 1, 2, . . . , N).
(ix) rt

i : the single period continuous time return of the
tracking portfolio at time point t and t − 1
(t � 2, 3, . . . , T + L):
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(x) Rt: the single period continuous time return of the
benchmark index at time point t and t − 1
(t � 2, 3, . . . , T + L):

R
t
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I
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(2)

(xi) TE: tracking error of the portfolio, which is defined
as the distance between the returns of the tracking
portfolio and its benchmark index [1]:
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(xii) ER: excess return of the portfolio, which is assessed
by the average excess return per period achieved by
the tracking portfolio [1]:
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3.2. Problem Formulation. As shown in Figure 1, the EIT
problem consists of two phases named in-sample and out-
of-sample, respectively, and the decision time point isT. Any
solutions to the EIT problem need to construct a tracking
portfolio first according to the performance of stock market
during the in-sample phase (from the time point 1 to T in
Figure 1). ,e ultimate goal is to find an optimal tracking
portfolio that can obtain the minimized tracking error and
the maximized excess return during the out-of-sample phase
(from the time point T to T + L in Figure 1). However, it is
impossible to optimize this problem directly because a so-
lution has to finish the construction of a portfolio at the
decision time point T, and the price of a stock during the
out-of-sample period (i.e., [T, T + L]) is unknown at T. To
deal with this issue, we follow the previous studies [1] and
simplify the EITproblem by optimizing the portfolio during
the in-sample phase instead of the out-of-sample phase, which
assumes that the stock prices between [1, T] and [T, T + L]

are independent and identical distributed (i.i.d).
In summary, our EIT can be defined as a two-objective

optimization problem:
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s.t. 
N
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i � K, ∀t ∈ [1, T], (7)

w
t
i ≥ 0; ∀t ∈ [1, T], i ∈ [1, N], (8)



N
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i � 1, ∀t ∈ [1, T], (9)

where T and K is given, and equations (5) and (7) state that
the goal of EIT is to optimize the tracking error and excess
return simultaneously.

Equations (9)–(11) state the constraints for the EIT
problem. Equation (9) ensures that the number of stocks
selected in the tracking portfolio is equal to K at any time
point. Equation (9) ensures that no short positions are
considered in a tracking portfolio. Equation (10) normalizes
the investment weight for each stock in the tracking
portfolio.

3.3. Complexity Analysis. ,is formulation shows that the
goal of EIT problem is to search for an optimal portfolio
consisting of K stocks, each of which is selected from a
known benchmark index containing N (N≫K) stocks, to
minimize tracking error and maximize excess return.
According to previous studies [11–15], the enhanced index
tracking problem is essentially a classic combinatorial op-
timization (CO) problem and has been proven to be NP
hard. ,e NP-completeness proof is established in [15].
,erefore, a naive exhaustive search solutions would not be
practical due to the high dimensionality of decision space
and the combinatorial nature of brutal force search.

4. Algorithm Design and Implementation

In this section, we introduce IntelliPortfolio, an efficient
clustering and LSTM-based portfolio construction algo-
rithm to solve the EITproblem. Its key idea is twofold: firstly,
it applies principal component analysis (PCA) and k-means
clustering algorithm to automatically select K constituent
stocks for the portfolio from the benchmark index; secondly,
it uses a long short-term memory (LSTM) network to de-
termine the investment weight for each constituent stock in
the portfolio. In the following, we first present the overview
of our IntelliPortfolio algorithm. We then present the
constituent stock selection algorithm and the weight esti-
mation algorithm. Finally, we discuss the details of the
IntelliPortfolio algorithm.

Time

Decision
time 

T T+L1 t1

Stock 1
Stock 2

Stock N

Index

t2

In-sample phase Out-of-sample phase

pN
t1

pN
t2

p2
t1

p2
t2

p1
t1

p1
t2

It1

It2

Figure 1: Overview of EIT problem.
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4.1. Overview. Figure 2 illustrates the detailed steps of
IntelliPortfolio. IntelliPortfolio contains two phases: con-
stituent stock selection and investment weight estimation.
At the constituent stock selection phase, after normalizing
the original dataset, we use a PCA-based algorithm to reduce
the dimensionality of the original dataset and apply a k-
means clustering algorithm to generate K clusters from the
benchmark index and then add K stocks that are closest to
the center in each cluster to the portfolio. At the investment
weight estimation phase, we adopt a novel windowed-ran-
dom sampling strategy to generate random samples with
fixed-window size and apply the LSTM model to estimate
the investment weight for each constituent stock, which
finally finishes the construction of the portfolio.

4.2.Constituent StockSelection. ,efirst step of constructing
a tracking portfolio is to select K constituent stocks from the
benchmark index consisting of N stocks. Previous studies on
this problem include industry-based method [34], trading
volume-based method [23], and autoencoder-based method
[4]. Industry-based method takes into account of the in-
formation on industry, market capitalization, and trading
amount for each stock. Such approach is interpretable and
easy to understand, but fail to reflect the trend in stock
market [1]. Trading volume-based method, by contrast, can
indicate the fluctuation of stock price effectively, but ignores
the fundamentals of a stock. Autoencoder-based method
trains a deep encoder-decoder network by using the stock
price dataset and can adaptively select K stocks with the
largest and smallest training error. However, it suffer from
the low performance issue when the benchmark index
contains a large number of stocks.

To deal with these issues, we propose a novel stock
selection algorithm integrating PCA and clustering method.
,e key of the our algorithm is twofold. (1) It considers both
the fundamentals and the price information for each stock
by receiving all known features from a dataset and using a
PCA algorithm to find out the major factors. (2) It uses a
clustering algorithm to automatically divide the stocks in the
benchmark index into K clusters and selects stocks that are
closest to the center in each cluster as the constituent stocks
of the portfolio. Our intensive experiment shows that this
selection strategy has the ability to balance the trade-off
between the performance and the diversity of the selected
stocks.

Specifically, the detailed process of our stock selection
algorithm is listed in Algorithm 1.

As shown in Algorithm 1, the stock selection algorithm
starts by performing mean-variance normalization on every
feature in the original dataset D (line 3). After that, it applies
a PCA algorithm [42] to reduce the dimensionality of D to R,
where R is a small, positive integer given by a human expert
(line 4). ,e idea here is to retain the important features
containing as much as the variance of the dataset, while
removing the insignificant features whose variance is near to
zero.

Given the time point τ and the time interval P that are
used to select the stocks, we repeat P times of applying a k-

means clustering algorithm with cluster number K to
generate P different sets of clusters, each of which represent
the clustering result during time period [τ, τ + P] (line 6).
For each time point t ∈ [τ, τ + P], we find the stocks that are
closest to the center of each cluster as the candidate con-
stituent stocks of the portfolio (line 7), where the function
Distance(s, st

c) measures the distance between a stock s and
the center st

c of a cluster. Once we get the candidate stocks in
each time point, we put them together (line 8) and compute
the total number of occurrences during [τ, τ + P] (line 11)
and then find the stocks with the K-maximum number of
occurrences (i.e., S∗) as the constituent stocks of the port-
folio. Finally, the algorithm extracts the information for
stocks in S∗ from the dataset D′ (line 14) and returns the
two-tuple (S∗, D∗). Note that the characteristic of this se-
lection algorithm is that it can consider both the funda-
mentals and the price information for each stock over a
period of time.

4.3. Investment Weight Estimation. After determining K

constituent stocks for the portfolio, we need to assign the
investment weight for each constituent stock. In this study,
we propose a long short-term memory (LSTM) network to
estimate the investment weight for each constituent stock, as
shown in Figure 3.

As shown in Figure 3, our LSTM networks are composed
of an input layer, a hidden layers, and an output layer. ,e
number of neurons in the input layer is equal to the number
of explanatory variables (feature space) reduced in stock
selection. ,e number of neurons in the output layer reflects
the output space, i.e., K neurons in our case indicating the
weight for each constituent stock in the portfolio in t + 1.
,e main characteristic of LSTM networks is contained in
the hidden layer consisting of so-called memory cells. Each
of the memory cells has three gates maintaining and
adjusting its cell state st: a forget gate (ft), an input gate (it),
and an output gate (ot).

When processing an input sequence, its features are
presented time point by time point to the LSTM network.
Hereby, the input at each time point t (in our case, the
information of constituent stocks) is processed by the
network as denoted in the equations above. Once the last
element of the sequence has been processed, the final output
for the whole sequence is returned. ,e detailed process is
described as follows.

Dataset

Stock selection phase

Weight estimation

Data for the
portfolio 

Normalization Dimensionality
reduction (PCA) 

Clustering
(K-means)

Portfolio
dataset 

Windowed-random
sampling 

Weight values
for portfolio LSTM

Figure 2: Overview of IntelliPortfolio approach.
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Require: D: original dataset; K: the number of stocks in the portfolio; R: the desired number of features after dimensionality
reduction; τ: the start time point for selection; P: the decision time interval for stock selection.
Ensure: S∗: constituent stocks in the portfolio; D∗: the dataset consisting of the information of K constituent stocks in the
portfolio.

(1) S⟵∅;
(2) S∗⟵∅;
(3) Perform mean-variance normalization on every feature of all stocks in D;
(4) D′⟵PCA(D, R);
(5) for t � τ: τ + P do
(6) St⟵K − means[D′[t], K];
(7) St⟵ argmin

∀s∈St

Distance(s, st
c);

(8) S⟵ S∪ St;
(9) end for
(10) for i � 1: K do
(11) S∗⟵ S∗ ∪ argmax

∀s∈S
(Count(S, s{ }));

(12) S⟵ S − s{ };
(13) end for
(14) D∗⟵Extract(D′, S∗); return (S∗, D∗);

ALGORITHM 1: Stock selection algorithm: StockSelection (D, K, R, τ, P).
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Figure 3: ,e architecture of our LSTM model.

Require: D: the dataset consisting of information of K constituent stocks; Q: the length of a data sequence for training; iter: training
iterations.
Ensure: M∗: the LSTM model for weight estimation.

(1) M∗⟵RandomInit;
(2) T D⟵DataSplit(D, Q);
(3) for i � 1: iter do
(4) Seq⟵RandomPick(T D);
(5) M⟵ LSTM(Seq, M∗);
(6) M∗⟵ argmin

∀
MLoss(M, f);

(7) end for return M∗;

ALGORITHM 2: Weight estimation algorithm: WeightEstimation (D, Q, iter).
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,e weight estimation algorithm first initializes the
LSTMmodel with random parameters (line 1) and splits the
dataset D into training dataset T D containing |D| − Q + 1
continuous data sequences (line 2). During each iteration, it
randomly picks a data sequence Seq from T D (line 3),
generates a newer LSTM model M (line 4), and finally
optimizes the model according to the loss function (lines 5
and 6). More specifically, the loss function f is defined as the
weighted sum of TE and ER: f � α · TE + (1 − α) · ER, and
the ADAM optimizer [43] is used in the training process.

4.4. IntelliPortfolioAlgorithm. We are now ready to describe
our IntelliPortfolio algorithm in Algorithm 3. Intelli-
Portfolio first cleans the original dataset by removing stocks
with missing data (line 1) and selects K stocks to form the
initial portfolio (line 2). After that, it obtains a LSTM-based
weight estimation model using stock information on port-
folio (line 3). To finish the final optimization, IntelliPortfolio
constructs the test dataset DΔT by extracting the data with
ΔT length of time interval from T − ΔT toT inD (line 4) and
produces the final investment weights for constituent stocks
according to M∗ and DΔT (line 5).

Note that, according to the definition of the EITproblem,
D, T, and K are given. Our IntelliPortfolio algorithm
contains seven hyperparameters, namely, R, τ, P, Q, α, iter,
and ΔT, respectively, where

(i) R: the desired number of features after dimen-
sionality reduction on D

(ii) τ: the start time point for stock selection
(iii) P: the time period for stock selection
(iv) Q: the length of a data sequence used for training a

LSTM model
(v) α: the weight value for two-objectives TE and ER

(vi) iter: the training iterations of the LSTM model
(vii) ΔT: the time interval for final optimization

We will report the values of these hyperparameters in
Section 5 and explain the basic principle for determining the
values for some important hyperparameters.

5. Experiments

We have implemented our approach and conducted ex-
tensive experiments on five real-world datasets of interna-
tional stock market. ,e source code and the data can be
found in https://github.com/anon4review/IntelliPortfolio.
In this section, we first describe our experiment setup and
then present the experimental results to prove the efficiency
and effectiveness of the proposed approach.

5.1. Experimental Settings

5.1.1. Datasets and Running Environment. We choose five
well-known stock indices in the international stock markets
as our datasets to evaluate our IntelliPortfolio algorithm,

namely, SSE constituent index (SSE180) [44], Dow Jones
Industrial Average (DJIA) [45], Financial Time Stock Ex-
change 100 Index (FTSE100) [46], Hang Seng Index (HSI)
[47], and Nikkei stock average (Nikkei225) [48]:

(i) SSE180 chooses 180 sample stocks from all 1000
A-share stocks registered Shanghai, China. It re-
flects the profile and operation of the Shanghai stock
market.

(ii) DJIA consists of stocks of 30 representative large
industrial and commercial companies, which can
roughly reflect the price level of the entire industrial
and commercial stocks in the United States.

(iii) FTSE100 contains 100 representative stocks of in-
fluential companies in European. It is one of the
most important indicators for global investors to
observe the trend of European stocks [21].

(iv) HSI is an important indicator of Hong Kong stock
market prices and represents 63% of the 12-month
average market capitalization rate of all listed
companies on the Hong Kong Stock Exchange; it
contains 50 representative stocks.

(v) Nikkei225 contains 225 stocks with good continuity
and comparability. It is the most common and
reliable indicator for examining and analyzing the
long-term evolution and dynamics of the Japanese
stock market.

,e available features of each dataset are shown in
Table 1.

For each index, we extract ten-year (2431 trading days)
data from 2009 to 2018 and remove stocks with missing data.
As a result, we have 111 stocks in SSE180, 28 in DJIA, 58 in
FTSE100, 39 in HSI, and 201 in Nikkei225. For each dataset,
we choose 2371 trading days as the in-sample period (i.e.,
training dataset) and use the last 60 trading days as out-of-
sample period (i.e., test dataset).

Table 2 lists the number of constituent stocks (i.e., K) in
the result portfolio.

All experiments run on a computer equipped with four
processors, 8GiB RAM, 512GB disk, and running windows
10. To ensure consistency, we run each algorithm five times
and calculate the average of these five runs.

5.1.2. Performance Metrics. We use four metrics to evaluate
the performance of the algorithms, namely, tracking error
(TE) [4, 16, 23], excess return (ER) [21], information ratio
(IR) [2, 49], and the Sharp ratio (SR) [34, 36, 38], defined as
follows:

(i) Tracking error (TE↓): the performance difference
between the portfolio and the benchmark index,
which measures the tracking accuracy of the
portfolio. We have defined TE in equation (3) and
want to minimize the value of TE.

(ii) Excess return (ER↑): the average excess return per
period achieved by the tracking portfolio compared
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to its benchmark index, which is defined in equation
(4). We want to maximize the value of ER.

(iii) Information ratio (IR↑): a measurement of port-
folio returns beyond the returns of a benchmark
index, compared to the volatility of those returns. IR

during the time interval [1, T] can be defined as

IR �
ER

TE
, (10)

where ER is the excess return and TE is the tracking
error. We want to maximize the value of SR.

(iv) Sharp ratio (SR↑): a well-known measurement that
indicates the performance of an investment (i.e. the
portfolio in our case) compared to a risk-free asset,
after adjusting for its risk. SR during the time in-
terval [1, T] is defined as

SR �
E r

t
 

s r
t

 
, t ∈ [1, T], (11)

where E is expectation and s is the standard vari-
ance. We want to maximize the value of SR.

,e performance improvement of an algorithm over a
baseline algorithm in comparison is defined as

Imp(baseline) �
P − Pbaseline

Pbaseline
· 100%, (12)

where Pbaseline is the performance of the baseline algorithm
and P is that of the algorithm being evaluated.

5.1.3. Baseline Algorithms and Hyperparameters. Because
IntelliPortfolio is a two-step optimization approach

Require: D: the original dataset; K: the number of stocks in the portfolio; T the decision time point.
Ensure: W: the set of weight values of constituent stocks in the portfolio.

(1) Dc⟵DataClean(D);
(2) Dp⟵ StockSelection(Dc, K, R, τ, P);
(3) M∗⟵WeightEstimation(Dp, Q, iter);
(4) DΔT⟵Extract(Dc, [T − ΔT, T]);
(5) W⟵ LSTM(M∗, DΔT); return W;

ALGORITHM 3: ,e proposed IntelliPortfolio algorithm: IntelliPortfolio (D, K, T).

Table 1: Features of each dataset.

SSE180 Other four indices
Opening price
Closing price
Highest price
Lowest price
Average price
Volume
Turnover Opening price
Ups and downs Closing price
Quote change Highest price
Hand turnover rate Lowest price
A-share market capitalization Volume
,e total market capitalization Adjusted closing price
A-share tradable share capital
Total share capital
Price-to-earnings ratio (PE)
Price-to-book ratio (PB)
Price-to-sales ratio (PS)
Price cash flow ratio (PCF)

Table 2: Number of constituent stocks in the portfolio.

Datasets No. of constituent stocks K
SSE180 111 10
DJIA 28 5
FTSE100 58 5
HSI 39 5
Nikkei225 201 20
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consisting of stock selection and weight estimation algo-
rithms, we need to evaluate the performance of our stock
selection algorithm first. Specifically, we compare it with
four state-of-the-art methods, namely, random method
(Random), industry-based method (Industry) [34], trading
volume-based method (Volume) [23], and autoencoder-
based method (Autoencoder) [4]. We provide a brief de-
scription for each method as follows and report its hyper-
parameters (including IntelliPortfolio) in Table 3.

Random method (Random) randomly selects K con-
stituent stocks from the benchmark index
Industry-based method (Industry) selects K constituent
stocks from the benchmark index considering the in-
dustry, the market capitalization, and the trading
amount information for each stock in the market
Trading volume-based method (Volume) chooses the
top K stocks from the benchmark index by sorting the
total trading volume from large to small during a fixed
period
Autoencoder-based method (Autoencoder) trains a en-
coder-decoder network using the historical dataset and
selects K stocks with the largest and smallest training
error

Finally, to evaluate the overall performance of our
IntelliPortfolio method, we compare it with five state-of-the-
art algorithms, namely, genetic algorithm and recurrent
reinforcement learning (GA-RRL) [39], deep deterministic
policy gradient (DDPG) [35], recurrent reinforcement
learning (RRL) [38], DPG [34], and heuristic genetic al-
gorithm (HGA) [21]. We provide a brief description for each
algorithm as follows and report its hyperparameters (in-
cluding IntelliPortfolio) in Table 4.

GA-RRL uses a genetic algorithm (GA) to improve the
trading results of a RRL-type equity trading system. It
takes the advantage of GA’s capability to select an
optimal combination of technical indicators, funda-
mental indicators, and volatility indicators for im-
proving out-of-sample trading performance.
DDPG adopts a deep deterministic policy gradient
algorithm to implement portfolio management, in
which the agent takes the stock data during a fixed time
interval and the current stock weights as the observed
environment, and derives the weights of portfolio for
the next day.
RRL uses trading volume-based method to select
constituent stocks of a portfolio and adopts the re-
current reinforcement learning and LSTM model to
implement portfolio management.
DPG is a financial-model-free reinforcement learning
framework to provide a deep machine learning solution
to the portfolio management problem. It consists of the
Ensemble of Identical Independent Evaluators (EIIE)
topology, a Portfolio-Vector Memory (PVM), an
Online Stochastic Batch Learning (OSBL) scheme, and
a fully exploiting and explicit reward function.

HGA selects stocks and determines portfolio weights
based on the genetic algorithm (GA) and uses a heu-
ristic method to update the population.

5.2. Experiment Results

5.2.1. Hyperparameter Estimation Results for Stock Selection
Algorithm. Two important hyperparameters, namely, τ and
P, are involved in our stock selection algorithm. τ represents
the start time point for stock selection process, and P de-
notes the length of the time interval for stock selection.
Specially, we divide each dataset into three subsets: a vali-
dation set containing 60 days of data, a test set consisting of
60 days of data, and a training set containing all of the
remaining data. In our experiment, we choose time intervals
of 60, 90, and 120 days for stock selection (i.e., P � 60/90/
120), as suggested in [1, 21, 38, 39]. For each time interval, we
try the first, the middle, and the last time point as our start
time point for stock selection process.

Based on the above experiment design, we have per-
formed 45� 5 ∗ 3 ∗ 3 groups of experiments, and only report
the results on SSE180 dataset in Table 5 due to length
limitations. Detailed results can be found in our online
repository.

We can see from Table 5 that the results during the last
stages containing 120 days (i.e., τ � 2191 and P � 120,
denoted as 2191-120) outperform other eight combinations
by obtaining three out of four best values of our performance
metrics, with the only exception of the TE. Considering the
TE values obtained by these combinations are not signifi-
cantly different and all others are, we can safely take TE as an
unimportant metrics. Moreover, in terms of SR metric,
which reflects both the risks and the benefits of a portfolio,
the results of 2191-120 combination outperform others
significantly.

,e above results are reasonable because of the fol-
lowing. (1) ,e latest time point can reflect the recent trend
of stock market. ,is is consistent with the findings of many
previous studies in [1, 23, 35]. (2) ,e longest period of time
interval can fully reflect the trends of stock, which are in turn
utilized by our LSTM model. In summary, we make a
conclusion that we should use the latest 120 days of data for
stock selection, which is adopted in the following
experiments.

5.2.2. Comparison Results with Different Stock Selection
Algorithms. To prove the effectiveness and the robustness of
our selection algorithm, we mix five stock selection algo-
rithms (i.e., Random, Industry, Volume, Autoencoder, and
IntelliPortfolio), five EIT algorithms requiring stock selec-
tion process (i.e., GA-RRL, DDPG, RRL, DPG, and Intel-
liPortfolio), and five dataset (i.e., SSE180, DJIA, FTSE100,
HSI, and Nikkei225) together and conduct 225 groups of
tests. Due to limited space, Table 6 shows the 25 groups of
testing results on the SSE180 dataset and highlights the best
values. For the complete experimental results, please check
our online repository.
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Table 3: Hyperparameters for stock selection methods.

Algorithm Hyperparameters
Random N/A
Industry N/A
Volume N/A
Autoencoder HiddenUnitsNum: 640; CodeUnitsNum: 300; LearningRate: 0.001; TrainNum: 2000; TrainEpoch: 1
IntelliPortfolio R: 3; τ: T − 120; P: 120

Table 4: Hyperparameters for EIT algorithms.

Algorithms Hyperparameters

GA-RRL SequenceStep:30; WindowLen:20; LearningRate: 0.0001; stddev: 0.05; ElitistsNum: 10; ChoosenEliNum: 4; TrainEpoch: 15;
TradeEpoch: 10; PopulationSize: 50; GenerationNum: 20; CrossoverProb: 0.5; MutationProb: 0.2

DDPG λ: 0.3; MaxEpisodes: 1000; MaxEpSteps: 200; LrA: 0.001; LrC: 0.002; c: 0.9; τ: 0.1; MemoryCapacity: 1000; BatchSize: 32
RRL LearningRate: 0.0001
DPG TrainingSteps: 8000; LearningRate: 0.0001; BatchSize: 40; FeatureNum: 3

HGA Epsilon: 0.01; delta: 0.5; WinLen: 300; gamma: 0.1; Lambda: 0.3, α: 2.0; PopuationSize: 100; LoopNum: 10000; CrossoverProb:
0.5; MutationProb: 0.5

Table 5: Hyperparameter estimation results for stock selection algorithm.

τ P TE↓ ER↑ SR↑ IR↑
1 60 0.00198 −0.00026 −0.13240 0.95168
1 90 0.00221 0.00086 0.38720 0.87584
1 120 0.00293 0.00142 0.48443 1.37334
1156 60 0.00222 0.00006 0.02733 0.86875
1156 90 0.00144 −0.00045 −0.30875 0.73049
1156 120 0.00428 0.00018 0.04302 1.05809
2251 60 0.00541 0.00101 0.18715 1.56098
2221 90 0.00495 0.00066 0.13293 1.45561
2191 120 0.00465 0.00115 0.24705 1.57182

Table 6: Results of different selection algorithms on the SSE180 dataset.

IntelliPortfolio
Selection algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00554 0.00116 1.76507 0.24298
Random 0.00200 0.00002 0.44814 0.01141
Industry 0.00215 −0.00120 0.87021 −0.55862
Volume 0.00171 −0.00030 0.62009 −0.17336
Autoencoder 0.00475 0.00055 1.26564 0.09968

GA-RRL
Selection algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.01103 0.00094 0.58642 0.11496
Random 0.00510 0.00050 0.24446 0.09727
Industry 0.00546 −0.00144 0.35697 −0.26416
Volume 0.00441 0.00011 0.35448 0.02391
Autoencoder 0.00818 0.00084 0.52252 0.07605

DDPG
Selection algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.02431 0.00047 0.16269 0.01950
Random 0.00365 0.00012 0.07826 0.03227
Industry 0.00581 −0.00017 0.05993 −0.02978
Volume 0.00296 −0.00006 −0.23251 −0.02252
Autoencoder 0.01785 0.00021 −0.17050 0.01179
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Table 6: Continued.
RRL

Selection algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.04002 0.00117 0.02298 0.01953
Random 0.01092 −0.00011 −0.01936 −0.01017
Industry 0.01738 −0.00008 −0.03844 −0.00483
Volume 0.01029 0.00019 −0.04926 0.01857
Autoencoder 0.04593 0.00090 0.02032 0.00753

DPG
Selection algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00266 0.00118 −0.03730 0.36666
Random 0.00179 −0.00024 −0.14548 −0.13338
Industry 0.00085 −0.00018 −0.36048 −0.21024
Volume 0.00141 0.00008 −0.17127 0.05529
Autoencoder 0.00225 0.00060 −0.05151 0.26669
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Figure 4: Continued.
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Figure 4: Results for stock selection algorithms.

Table 7: Final results on five datasets.

SSE180
Algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00554 0.00055 1.76506 0.19968
DPG 0.00559 5.68095e− 05 −0.21228 0.09699
RRL 0.01029 0.00019 −0.04926 0.01857
DDPG 0.02431 0.00047 0.16268 0.01950
GA-RRL 0.00441 0.00010 0.35448 0.02391
HGA 0.04434 −0.01076 0.07013 −0.24273

Nikkei225
Algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00114 0.00116 1.12680 0.05055
DPG 0.00096 −0.00142 −0.20583 −1.48279
RRL 0.01669 −0.00150 −0.02886 −0.08960
DDPG 0.01055 0.00033 0.13347 0.03162
GA-RRL 0.00483 −0.00098 0.43392 −0.20310
HGA 0.01521 −0.01194 −0.10225 −0.78510

HSI
Algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00287 0.00072 0.66467 0.25105
DPG 0.00109 −0.00155 −0.10316 −1.42760
RRL 0.00694 −0.00147 −0.02697 −0.21127
DDPG 0.00280 0.00006 0.08823 0.02068
GA-RRL 0.00185 −0.00184 0.08630 −0.99876
HGA 0.01133 −0.01046 0.03701 −0.92311

DJIA
Algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00375 0.00063 0.41209 0.16682
DPG 0.00167 −0.00014 −0.18196 −0.08172
RRL 0.01434 0.00008 −0.06911 −0.00553
DDPG 0.01403 −0.00048 0.13292 −0.03438
GA-RRL 0.00289 −0.00223 0.22810 −0.77050
HGA 0.01046 −0.00951 −0.20269 −0.90926

FTSE100
Algorithms TE↓ ER↑ SR↑ IR↑
IntelliPortfolio 0.00238 −0.00002 0.43635 −0.00683
DPG 0.00212 −0.00080 −0.07507 −0.37783
RRL 0.02067 −0.00028 0.00667 −0.01370
DDPG 0.00156 −0.00049 −0.05788 −0.31460
GA-RRL 0.00516 −0.00060 0.40223 −0.11589
HGA 0.01884 −0.00855 0.07314 −0.45402
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We can see from Table 6 that our stock selection al-
gorithm outperforms other four algorithms on five EIT al-
gorithms over four performance metrics, i.e., obtaining 14
out of 20 best values in all. Note that the volume algorithm
outperforms other algorithms on TE metric; this is because
it only considers the trading volume while choosing stocks,
and stocks with large trading volume are influencing factors
for index pricing. Although volume algorithm performs well
on TE, it is underperforming in other three metrics. Another
important observation from Table 6 is that our stock se-
lection algorithm achieves more significant improvements
over the other algorithms on the SR metric, whichmeans our
algorithm has better performance when considering the TE

and ER metrics simultaneously. In summary, the above
results indicate that our selection algorithm not only has
better performance than others but also has strong generality
and is suitable for many EIT algorithms.

For a better illustration, we plot the four normalized
performance metrics of five stock selection algorithms on
SSE180 dataset in Figures 4(a)–4(e), respectively. In each
figure, the x-axis lists the five algorithms and the y-axis
represents the measurements of the four performance
metrics. We conclude from Figure 4 that our stock selection
algorithm achieves stable improvements compared with the
other five algorithms, and the improvements are more
significant in SR and IR metrics.

5.2.3. Overall Algorithm Performance Results. Finally, we
compare our IntelliPortfolio algorithm with five state-of-
the-art EIT algorithms on five international stock markets,
and the results are listed in Table 7.

We can see from Table 7 that IntelliPortfolio outper-
forms other five algorithms on five datasets over four per-
formance metrics, i.e., obtaining 16 out of 20 best values in
all. Specifically, in terms of ER, our algorithm achieves an
average performance improvement of 178.90% over DPG,
29.3% over RRL, 260.90% over DDPG, 98.01% over GA-
RRL, and 89.16% over HGA; in terms of SR, our algorithm
achieves an average performance improvement of 665.97%
over DPG, 364.57% over RRL, 136.47% over DDPG, 69.47%
over GA-RRL, and 130.73% over HGA; in terms of IR, our
algorithm achieves an average performance improvement of
120.20% over DPG, 98.54% over RRL, 8.78% over DDPG,
86.57% over GA-RRL, and 37.71% over HGA. Note that
although DPG and DDPG algorithms outperform other
algorithms on TE metric, they are still underperforming in
other three metrics. Such results illustrates the significant
and consistent performance superiority of the Intelli-
Portfolio algorithm in comparison with five state-of-the-art
algorithms.

Figure 5 illustrates the average performance measure-
ments of different algorithms.We observe from Figure 5 that
IntelliPortfolio outperforms all other five algorithms, fol-
lowed by GA-RRL, DDPG, PG, RRL, and HGA. ,e dif-
ference between IntelliPortfolio and other algorithms is
significant, and all others are not. Such results indicate that
IntelliPortfolio is stable and robust on different datasets in
comparison with other algorithms.

6. Conclusion and Future Work

In this study, we propose an learning-based approach named
IntelliPortfolio for the EIT problem. It applies principal
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Figure 5: Average measurements of different algorithms on five databases.
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component analysis (PCA) and k-means clustering algo-
rithm to automatically select constituent stocks for the
portfolio from the benchmark index and uses long short
term memory (LSTM) network to determine the investment
weight for each constituent stock in the portfolio. We
conducted extensive experiments on five real-world datasets
of international stock market. ,e superiority of Intelli-
Portfolio was illustrated with four performance metrics in
comparison with five state-of-the-art EIT algorithms.

It is of our future interest to make IntelliPortfolio more
reactive by learning previous patterns of stock market and
supporting automatic adjustments according to future
market prediction. We will also explore the possibility of
proposing practical reinforcement learning-based algo-
rithms to make more intelligent and adaptive portfolio
decisions.
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