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Topology is a bene�cial structure to study the approximation operators in the rough set theory. In this work, we �rst introduce six
new types of neighborhoods with respect to �nite binary relations. We study their main properties and show under what
conditions they are equivalent. ­en we applied these types of neighborhoods to initiate some topological spaces that are utilized
to de�ne new types of rough set models. We compare these models and prove that the best accuracy measures are obtained in the
cases of i and 〈i〉. Also, we illustrate that our approaches are better than those de�ned under one arbitrary relation. To improve
rough sets’ accuracy, we de�ne some topological spaces using the idea of ideals. With the help of examples, we demonstrate that
our methods are better than somemethods studied in some published literature. Finally, we give a real-life application showing the
merits of the approaches followed in this manuscript.

1. Introduction and Preliminaries

Information science is an area that is mostly interested in
analysis, combination, sorting, storage, retrieval, and pro-
tection of information. On occasion, knowledge in infor-
mation science is constructed in an imperfect or vague
manner and has a level of granularity.

As one of the treatment methods of these issues of the
knowledge system, rough set theory (brie�y, RS theory),
created by Pawlak [1], has been developed. ­e main purpose
of RS methods is upgrading the approximation issues, which
were established to reduce the boundaries and raise the degree
of accuracy. RS theory has involved several topological no-
tions; approximation operators have many characterizations
of interior and closure operators that are topological oper-
ators derived from equivalence relations de�ned on the
universe. ­us, the study of RS by using the concept of to-
pology is helpful to analyze many issues in reality (see [2, 3]).

However, equivalence relations in the classical RS theory
have some restrictions in generating neighborhood bases. To

overcome these restrictions, the authors interested in un-
certainty have studied the classical RS theory with respect to
di�erent types of relations [4], covering rough sets [5], and
constructed di�erent topological structures [6, 7]. Kondo [8]
showed that a re�exive relation produces a topology. ­e
authors of [9, 10] investigated the features of rough sets
under di�erent kinds of binary relations. Salama [11] ex-
plored some topological properties of rough sets and showed
that rough sets and topological rough sets constitute a
consistency base for data mining. Al-shami [12] improved
the accuracy values of subsets using the concept of some-
where dense sets.

As yet, concerted studies of the rough set theory and
topology are demanded. ­e idea of neighborhood systems
is extracted from the geometrical concept of “near,” and it is
inherent in the theory of topological spaces. By considerable
researches in the discussion of RS, neighborhood systems
have been applied. Yao [13] examined the RS using
neighborhood systems for explicating granules. Abd El-
Monsef et al. [14] employed the notion of “j-neighborhood
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space” (j-NS) to generalize the classical RS theory by uti-
lizing various general topologies deduced from binary re-
lations. Mareay [15] defined the concepts of core
neighborhoods and applied them to initiate topological
approximations. Al-shami et al. [16] initiated different rough
set models using Nj-neighborhoods.

Also, as a generalization of RS methods, Abu-Donia [17]
exploited rκ-neighborhoods to characterize new kinds of
approximations of any set with respect to a finite family of
binary relations ζκ: κ � 1, 2, . . . , n􏼈 􏼉. +en he [18] improved
these approximations using 〈r〉κ-neighborhoods. Recently,
Al-shami et al. [19] have defined a new system of neigh-
borhoods called Ej-neighborhoods and applied it to es-
tablish new rough and topological approximations. +ey
compared them and showed that the accuracy measure
obtained from rough approximations is better than their
counterparts obtained from topological approximations.
Also, Al-shami [20] has established a new family of
neighborhood systems called Cj-neighborhoods. He applied
to protect medical staff from new coronavirus (COVID-19).
Recently, Al-shami and Ciucci [21] have defined a new class
of neighborhood systems namely “subset neighborhood.”
+ey have explored their main properties and investigated
their applications to handle some diseases.

+e interaction between rough set theory and topology
began by Skowron [22] and Wiweger [23]. Ideal structure,
which was initiated by Kuratowski [24], is defined as a
nonempty collectionI of subsets of a universe that is closed
under finite union and subsets. +e concept of an ideal
topological space consists of topology and ideal defined on
the same universe, and they are independent of each other.
Using ideal topological spaces as a new technique to generate
new rough approximations was introduced by [25]. After
that, some studies were conducted on ideal rough approx-
imations; see, for example, [26, 27]. Recently, Hosny et al.
[28] have applied Ej-neighborhoods and ideals to initiate
new types of rough set models.

By using ideals notion and topologies generated by
j-neighborhoods with respect to the finite family of binary
relations on a universe, our suggested approach will deal
with the gap between topologies concepts and their appli-
cations in various fields of real life. We successfully applied
our approaches to reduce the boundary region and increase
the accuracy value, which is the essential target of RS theory.

In the rest of this section, we recall some concepts that
help understand this manuscript well.

Definition 1 (see [20]) A binary relation ζ on a nonempty set
[ is said to be as follows:

(i) Reflexive if yζy for each y ∈ [

(ii) Symmetric if zζy⇔yζz

(iii) Antisymmetric if z � y whenever zζy and yζz

(iv) Transitive if xζz whenever xζy and yζz

(v) Preorder (or quasiorder) if it is reflexive and
transitive

(vi) Equivalence (resp. partial order) if it is symmetric
(resp. antisymmetric), reflexive and transitive

(vii) Diagonal if ζ � (y, y): y ∈ [􏼈 􏼉

(viii) Comparable if zζy or yζz for each y, z ∈ [

Definition 2 (see [20]). Let ζ be a binary relation on a
nonempty finite set (universe) [ and j ∈ r, l, 〈r〉, 〈l〉,{

i, u, 〈i〉, 〈u〉}. +e j-neighborhoods of z ∈ [ (symbolized by
jN(z) are defined as follows:

(i) rNζ(z) � y ∈ [: zζy􏼈 􏼉

(ii) lNζ(z) � y ∈ [: yζz􏼈 􏼉

(iii) 〈r〉Nζ(z)�

∩z∈rNζ(y)rNζ(y), thereexistsrNζ(y)containingz,

∅, Otherwise.􏼨

(iv) 〈l〉Nζ(z)�

∩z∈lNζ(y)lNζ(y), thereexistslNζ(y)containingz,

∅, Otherwise.􏼨

(v) iNζ(z) � rNζ(z)∩ lNζ(z)

(vi) uNζ(z) � rNζ(z)⋃ lNζ(z)

(vii) 〈i〉Nζ(z) � 〈r〉Nζ(z)∩ 〈l〉Nζ(z)

(viii) 〈u〉Nζ(z) � 〈r〉Nζ(z)⋃〈l〉Nζ(z)

Definition 3. A class ⊤ of subsets of [ is closed under finite
intersection, and the arbitrary union is called a topology. We
call an ordered pair ([,⊤) a topological space.

Definition 4. For a set S in ([,⊤), the interior of S (denoted
by int⊤(S)) is the union of all open subsets that are contained
in S; the closure of S (denoted by cl⊤(S)) is the intersection of
all closed subsets containing S.

2. j-NeighborhoodsBasedonaFiniteNumberof
Binary Relations and the Topologies
Inferred from Them

In this part, we introduce and explore the j-neighborhood
space (jNκS) that depends on a finite number of arbitrary
binary relations. +en we apply them to generate eight
diverse topologies and investigate the relationships between
them with help of examples. Also, we exploit these topol-
ogies to initiate lower and upper (rough) approximations.
Comparisons between the accuracy of these types are
attained, as well as comparisons that show our methods
better in terms of accuracy measure than those given in [14]
are presented.

Henceforth, for all the following results, we will deal with
all the values of j, j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }, unless
otherwise noted.

Definition 5. Let ζκ: κ � 1, 2, . . . , n􏼈 􏼉 be a finite family of
binary relations on [. +e j-neighborhoods of z ∈ [ with
respect to ζκ (briefly, jNκ(z)) are defined as follows:

(1) rκ-neighborhood: rNκ(z) � y ∈ [: zζκy􏼈 for each
κ}. Equivalently, rNκ(z) � ∩ n

κ�1rNζκ(z).
(2) lκ-neighborhood: lNκ(z) � y ∈ [: yζκz for each κ􏼈 􏼉.

Equivalently, lNκ(z) � ∩ n
κ�1lNζκ(z).
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(3) iκ-neighborhood: iNκ(z) � rNκ(z)∩ lNκ(z).
(4) uκ-neighborhood: uNκ(z) � rNκ(z)∪ lNκ(z).
(5) 〈r〉κ-neighborhood: 〈r〉Nκ(z) � ∩ z∈rNκ(y)rNκ􏽮

(y), there exists rNκ (y)containing z,∅,Otherwise.
(6) 〈l〉κ-neighborhood: 〈l〉Nκ(z) � ∩ z∈lNκ(y)lNκ(y),􏽮

there exists lNκ (y)containing z,∅,Otherwise.
(7) 〈i〉κ-neighborhood: 〈i〉Nκ(z) � 〈r〉Nκ(z)∩ 〈l〉

Nκ(z).
(8) 〈u〉κ-neighborhood: 〈u〉Nκ(z) � 〈r〉Nκ(z)∪ 〈l〉

Nκ(z).

Remark 1. +e concepts of rκ-neighborhood and
〈r〉κ-neighborhood were introduced and studied in [17, 18],
respectively.

Definition 6. Let ζκ: κ � 1, 2, 3, . . . , n􏼈 􏼉 be a finite family of
binary relations on a universe [ and ψj: [⟶ P([) be a
mapping that assigns for each z in [ its jNκ(z) in P([).
+en ([, ζκ,ψj) is called a j-neighborhood space (briefly, ),
κ ∈ 1, 2, 3, . . . , n{ }.

Now, we investigate the main properties of jNκS under
some types of binary relations.

Proposition 1. Let ([, ζκ,ψj) be a jNκS such that ζκ is
reflexive for each κ. ;en 〈j〉Nκ(z)⊆jNκ(z) for each z ∈ [.

Proof. If ζκ is reflexive for each κ, then 〈r〉Nκ(z) �

∩ z∈rNκ(y)rNκ(y)⊆rNκ(z) and 〈l〉Nκ(z) � ∩ z∈lNκ(y)lNκ
(y)⊆lNκ(z). Hence, 〈i〉Nκ(z)⊆iNκ(z) and 〈u〉Nκ(z)⊆u
Nκ(z). □

Proposition 2. Let be a jNκS such that ζκ is preorder for
each κ. ;en 〈j〉Nκ(z) � jNκ(z) for each z ∈ [.

Proof. It follows from the above proposition that 〈j〉Nκ(z)

⊆jNκ(z) for each z ∈ [. Conversely, let x ∉ 〈r〉Nκ(z).+en
there exists y ∈ [ such that z ∈ rNκ(y) and x ∉ rNκ(y).
Suppose that x ∈ rNκ(z). Since ζκ is transitive for each κ,
then x ∈ rNκ(y); this is a contradiction. +erefore, x ∉ rNκ
(z), and consequently, rNκ(z)⊆〈r〉Nκ(z). +us, 〈r〉Nκ(z)

� rNκ(z). Similarly, one can prove that 〈l〉Nκ(z) � lNκ(z).
Hence, 〈i〉Nκ(z) � iNκ(z) and 〈u〉Nκ(z) � uNκ(z). □

Proposition 3. Let ([, ζκ,ψj) be a jNκS such that ζκ is
reflexive and antisymmetric for each κ. ;en

(i) If y ∈ rNκ(z), then z ∉ rNκ(y) and y ∉ lNκ(z)

(ii) iNκ(y) � 〈i〉Nκ(y) � y􏼈 􏼉 for each y ∈ [

(iii) jNκ(y)≠ jNκ(z) for all y≠ z ∈ [ in the case of
j ∈ r, l, 〈r〉, 〈l〉{ }

Proof.

(i) Let y ∈ rNκ(z). +en zζκy for each κ. Since ζκ is
antisymmetric for each κ, then yζκz does not hold
for each κ. +erefore, z ∉ rNκ(y) and y ∉ lNκ(z).

(ii) Since ζκ is reflexive for each κ, then y ∈ iNκ(y).
Now, consider z ∈ iNκ(y). +en z ∈ rNκ(y) and
z ∈ lNκ(y). +erefore, yζκz and zζκy for each κ.
Since ζκ is antisymmetric for each κ, we obtain
y � z. +us, iNκ(y) � y􏼈 􏼉. Since is reflexive for
each κ, y ∈ 〈i〉Nκ(y) and 〈i〉Nκ(y) � iNκ(y), as
required.

(iii) For j � r. Let rNκ(y) � rNκ(z). By hypothesis, ζκ is
reflexive for each κ, we obtain y ∈ rNκ(y) and
z ∈ rNκ(z). By assumption, yζκz and zζκy. It
follows from the antisymmetric of ζκ for each κ that
y � z.

j � 〈r〉. Let 〈r〉Nκ(y) � 〈r〉Nκ(z). It follows from the
reflexivity of ζκ for each κ that y ∈ 〈r〉Nκ(y) and z ∈
〈r〉Nκ(z). By assumption, z ∈ 〈r〉Nκ(y) and y ∈ 〈r〉Nκ
(z). Consequently, z ∈ rNκ(y) and y ∈ rNκ(z). +us, yζκz
and zζκy. Since ζκ is antisymmetric for each κ, we obtain
y � z. □

Proposition 4. Let ([, ζκ,ψj) be a jNκS. ;en the following
results hold:

(i) ;e comparable of ζκ for each κ implies that
uNκ(y) � [ or uNκ(y) � [∖ y􏼈 􏼉 for all y ∈ [

(ii) ;e symmetric of ζκ for each κ implies that rNκ(y) �

lNκ(y) � iNκ(y) � uNκ(y) and
〈r〉Nκ(y) � 〈l〉Nκ(y) � 〈i〉Nκ(y) � 〈u〉Nκ(y)

Proof. Straightforward. □

Proposition 5. Let ([, ζκ,ψj) be a jNκS such that ζκ is
transitive and symmetric for all κ. If the intersection of
jNκ(y) and jNκ(z) is nonempty, then jNκ(y) and jNκ(z)

are equal for all j.

Proof. We prove the result for j � r. One can prove the
other cases in a similar way.

Since rNκ(y)∩ rNκ(z)≠∅, there is a ∈ [ such that
yζκa and zζκa. Since ζκ is symmetric for each κ, aζκz, and
since ζκ is transitive for each κ, yζκz. Now, let c ∈ rNκ(z).
+en zζκc. Since yζκz, c ∈ rNκ(y). Hence, rNκ(z)⊆ rNκ(y).
Following the similar argument, we find rNκ(y)⊆r
Nκ(z). □

Proposition 6. Consider ([, ζκ,ψj) as a jNκS, where ζκ is
reflexive and antisymmetric. ;en, for j ∈ i, 〈i〉{ }, a classG �

jNκ(y): y ∈ [􏼈 􏼉 represents a partition for [.

Proof. We suffice by proving case of j � i.
+e reflexivity of ζκ for each κ implies that [ �

∪ y∈[iNκ(y). Consider y≠ z. Suppose that iNκ(y)∩
iNκ(z)≠∅. +en there is a ∈ [ satisfying a ∈ iNκ(y) and
a ∈ iNκ(z). +is leads to aζκyζκa and aζκzζκa. Since ζκ is
antisymmetric for each κ, a � z and a � y. +is is a con-
tradiction with our assumption. Hence, iNκ(y)∩ iNκ(z) �

∅ for every y≠ z ∈ [. □
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Proposition 7. Let ([, ζκ,ψj) be a jNκS, where a relation ζκ
is a partial order for each κ. ;e next results hold for the
smallest element y ∈ [.

(i) rNκ(y) � 〈r〉Nκ(y) � uNκ(y) � 〈u〉Nκ(y) � [

(ii) lNκ(y) � 〈l〉Nκ(y) � iNκ(y) � 〈i〉Nκ(y) � y􏼈 􏼉

Proof.
(i) Let y be the smallest element. +en yζκz for each

z ∈ [. +is implies that rNκ(y) � [. Consequently,
uNκ(y) � [. To show that rNκ(y) � 〈r〉Nκ(y), let
y ∈ rNκ(z). By hypothesis, we find z � y. +at is,
rNκ(y) represents the only right neighborhood of y.
+us, 〈r〉Nκ(y) � rNκ(y). As a direct result, we
have uNκ(y) � 〈u〉Nκ(y) � [.

(ii) Similar to (i). □

Proposition 8. Let ([, ζκ,ψj) be a jNκS, where a relation ζκ
is partial order for each . ;e next results hold for the largest
element y ∈ [.

(i) lNκ(y) � 〈l〉Nκ(y) � uNκ(y) � 〈u〉Nκ(y) � [

(ii) rNκ(y) � 〈r〉Nκ(y) � iNκ(y) � 〈i〉Nκ(y) � y􏼈 􏼉

Proof. +e proofs (i) and (ii) are similar to that of Prop-
osition 7.

In the following result, we initiate a topology from
jNκ-neighborhoods. □

Theorem 1. Let ([, ζκ,ψj) be a j − NκS, κ ∈ 1, 2, 3, . . . , n{ }.
;en the collection [n] − ⊤j � S⊆[: ∀z ∈ S, jNκ(z)⊆S􏼈 􏼉 is a
topology on [.

Proof. Obviously, ∅ and [ belong to [n] − ⊤j. Let Sα ∈ [n]

− ⊤j for each α. Let z ∈ ∪ α∈ΛSα. +en there exists β ∈ Λ such
that z ∈ Sβ. +erefore, jNκ(z)⊆Sβ⊆∪ α∈ΛSα. +us, ∪ α∈ΛSα
belongs to [n] − ⊤j, as required. Now, let S1, S2 ∈ [. +en,
for each z ∈ S1 ∩ S2, we have jNκ(z)⊆S1 and jNκ(z)⊆S2.
Consequently, jNκ(z)⊆S1 ∩ S2. Hence, we obtain the desired
result.

Now, one may study the relations between the topologies
[n] − ⊤j, j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }, which generated
from ζκ: κ � 1, 2, 3, . . . , n􏼈 􏼉. □

Proposition 9. Let ([, ζκ,ψj) be a j − NκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en the next properties hold true:

(1) [n] − ⊤u⊆[n] − ⊤r ∩ [n] − ⊤l

(2) [n] − ⊤r ∪ [n] − ⊤l⊆[n] − ⊤i

(3) [n] − ⊤〈u〉⊆[n] − ⊤〈r〉 ∩ [n] − ⊤〈l〉

(4) [n] − ⊤〈r〉 ∪ [n] − ⊤〈l〉⊆[n] − ⊤〈i〉

Proof. To prove 1, let S ∈ [n] − ⊤u. +en uNκ(z)⊆S, ∀z ∈ S.
+erefore, rN(z)∪ lN(z)⊆S, . +us, rN(z)⊆S and lN(z)⊆S,
∀z ∈ S. Hence, S ∈ [n] − ⊤r ∩ [n] − ⊤l, as required. To prove
2, let S ∈ [n] − ⊤r ∩ [n] − ⊤l. +en rNκ(z)⊆S, ∀z ∈ S, or

lNκ(z)⊆S, ∀z ∈ S. Since iNκ(z)⊆rNκ(z)⊆S or iNκ(z)⊆
lNκ(z)⊆S, ∀z ∈ S. Hence, S ∈ [n] − ⊤i.One can prove the
other cases similarly. □

Example 1. On [ � δ1, δ2, δ3, δ4, δ5􏼈 􏼉, we have information
systems ζ1, ζ2 specified as follows:

ζ1 � ▲∪ (δ1, δ2), (δ1, δ4),􏼈 (δ2, δ1), (δ2, δ4), (δ2, δ5), (δ3,
δ1), (δ3, δ2), (δ3, δ4), (δ3, δ5), (δ4, δ2), (δ5, δ2), (δ5, δ3), (δ5,
δ4)},

ζ2 � ▲∪ (δ1, δ2),􏼈 (δ1, δ3), (δ1, δ4), (δ1, δ5), (δ2, δ1), (δ2,
δ4), (δ3, δ4), (δ3, δ5), (δ4, δ1), (δ4, δ2), (δ4, δ3), (δ4, δ5), (δ5,
δ3), (δ5, δ4)} such that ▲ is the identity relation on [.

+erefore, we obtain the following:
[2] − ⊤r � ∅,[, δ1,δ2,δ4􏼈 􏼉􏼈 􏼉, [2] − ⊤l � ∅,[, δ3,􏼈􏼈 δ5}},

[2] − ⊤i � ∅,[, δ3,δ5􏼈 􏼉, δ1,δ2,δ4􏼈 􏼉􏼈 􏼉, [2] − ⊤u � ∅,{ [}, [2] −

⊤〈r〉 � ∅,[, δ4􏼈 􏼉, δ2,δ4􏼈 􏼉􏼈 , δ4,δ5􏼈 􏼉, δ1,δ2,δ4􏼈 􏼉, δ2,δ4,δ5􏼈 􏼉,

δ3,δ4,δ5􏼈 􏼉, δ1,δ2,δ4,δ5􏼈 􏼉, δ2,􏼈 δ3,δ4,δ5}}[2]− ⊤〈l〉 � ∅,[,􏼈

δ1􏼈 􏼉, δ2􏼈 􏼉, δ3􏼈 􏼉, δ1,δ2􏼈 􏼉, δ1,δ3􏼈 􏼉, δ1,δ4􏼈 􏼉, δ2,δ3􏼈 􏼉, δ3,δ5􏼈 􏼉, δ1,􏼈

δ2,δ3}, δ1,δ2,δ4􏼈 􏼉, δ1,δ3,δ4􏼈 􏼉 , δ1,δ3,δ5􏼈 􏼉, δ2,δ3,δ5􏼈 􏼉, δ1,δ2,􏼈

δ3, δ4}, δ1,δ2,δ3,δ5􏼈 􏼉, δ1,δ3,δ4,δ5􏼈 􏼉}[2] − ⊤〈i〉 � P([). [2]−

⊤〈u〉 � ∅,[, δ1,δ2,δ4􏼈 􏼉􏼈 􏼉.

Remark 2. It can be seen from Example 1 that the eight
topologies [2]–⊤j are different from each other.

Example 2. On [ � δ1, δ2, δ3, δ4􏼈 􏼉, we have information
systems ζ1, ζ2 specified as follows:ζ1 � (δ1, δ1), (δ1, δ3),􏼈

(δ2, δ2), (δ2, δ4), (δ3, δ1), (δ3, δ3), (δ4, δ3)},ζ2 � (δ1,􏼈 δ1),
(δ1, δ2), (δ2, δ1), (δ2, δ2), (δ3, δ3), (δ3, δ4), (δ4, δ2)}. +en
[n] − ⊤l � P([), and[n] − ⊤〈l〉 � ∅, [, δ1􏼈 􏼉, δ2􏼈 􏼉, δ3􏼈 􏼉,􏼈

δ1, δ2􏼈 􏼉, δ1, δ3􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2, δ3􏼈 􏼉, δ1, δ2, δ3􏼈 􏼉, δ1, δ2, δ4􏼈 􏼉, δ1,􏼈

δ3, δ4}}.

Remark 3. [n] − ⊤〈j〉, [n] − ⊤j are not necessarily compa-
rable, for any j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }. Suppose j � l,
then

(1) Example 1 illustrates [n] − ⊤〈l〉⊈[n] − ⊤l

(2) Example 2 shows that [n] − ⊤l⊈[n] − ⊤〈l〉

Proposition 10. Let ([, ζκ,ψj) be a jNκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en the topologies [n] − ⊤r and [n] − ⊤l are dual.

Proof. To prove the duality between [n] − ⊤r, [n] − ⊤l, we
shall prove that S ∈ [n] − ⊤r if Sc ∈ [n] − ⊤l, that is,

rNκ(p)⊆S, ∀p ∈ S⇔lNκ(q)⊆Sc, ∀ q ∈ Sc.
Suppose rNκ(p)⊆S, ∀p ∈ S. If q ∈ Sc, then lNκ(q) �

y ∈ [|yζκq for eachκ􏼈 􏼉. Let lNκ(q)∩ S≠∅ for each
κ ∈ 1, 2, 3, . . . , n{ }. +en there exists x ∈ S and x ∈ lNκ(q),
that is, x ∈ S and xζκq, for each κ ∈ 1, 2, 3, . . . , n{ }. So
q ∈ rNκ(x). x ∈ S implies that rNκ(x)⊆S. Hence, q ∈ S. It is
a contradiction, so lNκ(q)⊆Sc. By the same manner, we can
prove the other side. □

Remark 4. In view of Example 1, the topologies [n] − ⊤〈r〉,
[n] − ⊤〈l〉 are not dual.
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Definition 7. Let ([, ζκ,ψj) be a jNκS, κ ∈ 1, 2, 3, . . . , n{ }. A
set S⊆[ is called a j open set if S ∈ [n] − ⊤j, and the
complement of a j open set is called a j closed set.+e family
[n] − Υj of all j closed sets of a jNκS is defined by
[n] − Υj � F⊆U: Fc ∈ [n] − ⊤j􏽮 􏽯, where Fc is the comple-
ment of F.

Definition 8. Let be a jNκS, κ ∈ 1, 2, 3, . . . , n{ }. If S⊆[, then
the j lower, j upper approximations, j boundary regions,
and j accuracy of S are defined, respectively, as follows:

(1) (n)Lj(S) � ∪ O ∈ [n] − ⊤j: O⊆S􏽮 􏽯 � (n)intj(S),
where (n)&ImaginaryI;ntj(S) represents the inte-
rior points of S with respect to [n] − ⊤j

(2) (n)Uj(S) � ∩ F ∈ [n] − ⊥j: S⊆F􏽮 􏽯 � (n)clj(S), where
(n)clj(S) represents the closure points of with respect
to [n] − ⊤j

(3) [n]Bj(S)�[n]Uj(S)− [n]Lj(S)

(4) j(S)=jLj (S)j jUj (S)j, where |(n)Uj(S)|≠ 0

Definition 9. Let ([, ζκ,ψj) be a jNκS, κ ∈ 1, 2, 3, . . . , n{ }. A
set S⊆[ is called j definable set if [n]Bj(S) � ∅. Otherwise,
is called j rough set.

In the following example, we make a comparison be-
tween the j approximations and j accuracy measure of any
subset of [ for each j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ } and . +e
following example shows that we obtain the best j ap-
proximations and j accuracy measure in the cases of j � i

and j � 〈i〉; see Tables 1 and 2.

Example 3. On [ � δ1, δ2, δ3, δ4􏼈 􏼉, we have information
systems ζ1, ζ2 specified as follows:

ζ1 � ▲∪ (δ1, δ2), (δ3, δ1), (δ3, δ4), (δ4, δ3)􏼈 􏼉, ζ2 � ▲∪
(δ1, δ2), (δ2, δ3), (δ2, δ4), (δ3, δ2), (δ3, δ4), (δ4, δ3)􏼈 􏼉 such
that ▲ is an identity relation on [, [2] − ⊤r � ∅,[,{ δ2􏼈 􏼉,

δ1,δ2􏼈 􏼉, δ3,δ4􏼈 􏼉, δ2,δ3,δ4􏼈 􏼉}, [2] − ⊤l � ∅,[, δ1􏼈 􏼉,􏼈 δ1,􏼈 δ2},
δ3,δ4􏼈 􏼉, δ1,δ3,δ4􏼈 􏼉}, [2] − ⊤i � ∅,[, δ1􏼈 􏼉,􏼈 δ2􏼈 􏼉, δ1,δ2􏼈 􏼉,

δ3,δ4􏼈 􏼉, δ1,δ3,δ4􏼈 􏼉, δ2,δ3,δ4􏼈 􏼉}, [2] − ⊤u � ∅,[, δ1,δ2􏼈 􏼉, δ3,􏼈􏼈

δ4}}, , [2] − ⊤〈l〉 � [2] − ⊤〈i〉 � ∅,[, δ1􏼈 􏼉, δ2􏼈 􏼉,􏼈 δ3􏼈 􏼉, δ1,δ2􏼈 􏼉,

δ1,δ3􏼈 􏼉, δ2,δ3􏼈 􏼉, δ3,δ4􏼈 􏼉, δ1,δ2,δ3􏼈 􏼉, δ1,δ3,δ4􏼈 􏼉, δ2,δ3,δ4􏼈 􏼉}.

Remark 5. In view of Table 2 and according to Example 3,
one may notice the following:

(1) For j ∈ r, l, i, u{ }, (n)θi(s) is the preferable j accuracy,
and the best method for building the approximations
of sets is specified by utilizing the topology [2]–⊤i

(2) +e accuracy measure of any set S, (n)θj(s), coincides
with the j accuracy measure due to [17] when ζκ,
κ ∈ 1, 2{ } is a reflexive relation and j � r

Remark 6. In view of Table 2 and according to Example 3,
one may notice the following:

(1) (n)L〈r〉(S) � (n)L〈u〉(S), (n)L〈l〉(S) � (n)L〈i〉(S)

(2) (n)U〈r〉(S) � (n)U〈u〉(S), (n)U〈l〉(S) � (n)U〈i〉(S)

(3) (n)θ〈r〉(S) � (n)θ〈u〉(S), (n)θ〈l〉(S) � (n)θ〈i〉(S)

(4) (n)θ〈i〉(S) is the preferable j accuracy, and the best
method for building the approximations of sets is
specified by utilizing the topology [2]–⊤〈i〉

(5) +e accuracy measure of any set S, (n)θj(S), coincides
with the j accuracy measure due to [18] when ζκ,
κ ∈ 1, 2{ } is a reflexive relation and j � 〈r〉.

Remark 7. According to Example 3, δ1, δ2􏼈 􏼉 and δ3, δ4􏼈 􏼉 are
j definable sets, and δ4􏼈 􏼉 is j rough set for all
j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

One of the obtained merits of using more than one
relations is the improvement of the accuracy measures of a
subset. To demonstrate this matter, we compare the j ac-
curacy measure obtained using two arbitrary binary rela-
tions and j accuracy measure obtained using one arbitrary
binary relation in the case of . In fact, this proves that our
approach is better than that given in [14]; see the next
example.

Example 4. On [ � δ1, δ2, δ3, δ4􏼈 􏼉, we have information
systems ζ1, ζ2 specified as follows:

ζ1 � (δ1, δ1), (δ1, δ2), (δ1,􏼈 δ3), (δ1, δ4), (δ2, δ3), (δ2, δ4),
(δ3, δ2), (δ3, δ4), (δ4, δ1), (δ4, δ2), (δ4, δ3), (δ4, δ4)}, ζ2 �

(δ1,􏼈 δ1), (δ1, δ4), (δ2, δ2), (δ3, δ1), (δ3, δ2), (δ3, δ4), (δ4,
δ1), (δ4, δ4)}. +erefore, ⊤ζ1〈i〉 � ∅, [, δ4􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2,􏼈􏼈

δ4}, δ3,􏼈 δ4}, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉}, ⊤ζ2〈i〉 � ∅,{

[, δ2􏼈 􏼉, δ3􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2, δ3􏼈 􏼉, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉}, [2]

− ⊤〈i〉 � ∅, [, δ2􏼈 􏼉, δ3􏼈 􏼉, δ4􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2,􏼈􏼈 δ3}, δ2, δ4􏼈 􏼉, δ3,􏼈

δ4}, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉}.
It can be seen from Table 3 that the rows with green color

show that (2)θ〈i〉
(S)> θζ1〈i〉(S) and (2)θ〈i〉

(S)> θζ2〈i〉(S).

3.Ij-Lower and Ij Upper Approximations

+is part aims to generalize the topologies generated by
jNκS, j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ } utilizing the idea of
ideals. After we show the relationships between the new
topologies, we apply them to define new rough approxi-
mations. We prove that our new techniques produce higher
accuracy measures than those given in [17, 18, 26]. Some
practical examples are provided.

Theorem 2. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then the collection [n] − ⊤Ij � S⊆[: ∀{

z ∈ S, jNκ(z) − S ∈ I} is a topology on [.

Proof. Suppose Sα ∈ [n] − ⊤Ij , α ∈ Δ∀j ∈ r, l, i, u, 〈r〉, 〈l〉,{

〈i〉, 〈u〉}. Let z ∈ ∪ α∈ΔSα, then there exists α0 ∈ Δ such that
z ∈ Sα0. Hence, jNκ(z) − Sα0 ∈ I. Since − (∪ α∈ΔSα)⊆ − Sα0,
then jNκ(z) − ∪ α∈ΔSα ∈ I, that is, ∪ α∈ΔSα ∈ [n] − ⊤Ij .

Suppose S1, S2 ∈ [n] − ⊤Ij , j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉,{

〈u〉}. Let z ∈ S1 ∩ S2, then jNκ(z) − S1 ∈ I and jNκ(z)−

Sα0 ∈ I. According to properties of I, [jNκ(z)−

S1]∪ [jNκ(z) − S2] ∈ I. Hence, jNκ(z) − (S1 ∩ S2) ∈ I. It
follows that S1 ∩ S2 ∈ [n] − ⊤Ij .

Easily, ∅, U ∈ [n] − ⊤Ij , j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.
Consequently, [n] − ⊤Ij is a topology on [. □
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Table 1: +e j approximations and j accuracy for each j ∈ r, l, i, u{ }.

S⊆[ (n)Lr(s) (n)Ll(s) (n)Li(s) (n)Lu(s) (n)Ur(s) (n)Ul(s) (n)Ui(s) (n)Uu(s) (n)θr(s) (n)θl(s) (n)θi(s) (n)θu(s)

δ1􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1􏼈 􏼉 δ1, δ2􏼈 􏼉 0 1/2 1 0
δ2􏼈 􏼉 δ2􏼈 􏼉 ∅ δ2􏼈 􏼉 ∅ δ1, δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1/2 0 1 0
δ3􏼈 􏼉 ∅ ∅ ∅ ∅ δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 0 0 0 0
δ4􏼈 􏼉 ∅ ∅ ∅ ∅ δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 0 0 0 0
δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1 1 1 1
δ1, δ3􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1􏼈 􏼉 ∅ δ1, δ3, δ4􏼈 􏼉 [ δ1, δ3, δ4􏼈 􏼉 [ 0 1/4 1/3 0
δ1, δ4􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1􏼈 􏼉 ∅ δ1, δ3, δ4􏼈 􏼉 [ δ1, δ3, δ4􏼈 􏼉 [ 0 1/4 1/3 0
δ2, δ3􏼈 􏼉 δ2􏼈 􏼉 ∅ δ2􏼈 􏼉 ∅ [ δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ 1/4 0 1/3 0
δ2, δ4􏼈 􏼉 δ2􏼈 􏼉 ∅ δ2􏼈 􏼉 ∅ [ δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ 1/4 0 1/3 0
δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1 1 1 1
δ1, δ2, δ3􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 [ [ [ [ 1/2 1/2 1/2 1/2
δ1, δ2, δ4􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 [ [ [ [ 1/2 1/2 1/2 1/2
δ1, δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 [ [ 2/3 3/4 1 1/2
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 [ δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ 3/4 2/3 1 1/2

[ [ [ [ [ [ [ [ [ 1 1 1 1

Table 2: +e j approximations and j accuracy for each j ∈ 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

S⊆[ (n)Lr(s) (n)Ll(s) (n)Li(s) (n)Lu(s) (n)Ur(s) (n)Ul(s) (n)Ui(s) (n)Uu(s) (n)θr(s) (n)θl(s) (n)θi(s) (n)θu(s)

δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 1 1 1 1
δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 1 1 1 1
δ3􏼈 􏼉 ∅ δ3􏼈 􏼉 δ3􏼈 􏼉 ∅ δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 0 1/2 1/2 0
δ4􏼈 􏼉 ∅ ∅ ∅ δ3, δ4􏼈 􏼉 δ4􏼈 􏼉 δ4􏼈 􏼉 0 0 0 0
δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1 1 1 1
δ1, δ3􏼈 􏼉 δ1􏼈 􏼉 δ1, δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 δ1􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1/3 2/3 2/3 1/3
δ1, δ4􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1/3 1/2 1/2 1/3
δ2, δ3􏼈 􏼉 δ2􏼈 􏼉 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 δ2􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1/3 2/3 2/3 1/3
δ2, δ4􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1/3 1/2 1/2 1/3
δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1 1 1 1
δ1, δ2, δ3􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 δ1, δ2􏼈 􏼉 [ [ [ [ 1/2 3/4 3/4 1/2
δ1, δ2, δ3􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 [ δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 [ 1/2 2/3 2/3 1/2
δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1 1 1 1
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1 1 1 1

[ [ [ [ [ [ [ [ [ 1 1 1 1

Table 3: Comparison between our approaches and those given in [1] in the case of j � 〈i〉.

S⊆[ (n)Lr(S) (n)Ll(s) (n)Li(S) (n)Lu(S) (n)Ur(S) (n)Ul(S) (n)Ui(S) (n)Uu(S) (n)θr(S)

δ1􏼈 􏼉 ∅ δ1􏼈 􏼉 0 ∅ δ1, δ4􏼈 􏼉 0 ∅ δ1􏼈 􏼉 0
δ2􏼈 􏼉 ∅ δ2􏼈 􏼉 0 δ2􏼈 􏼉 δ2􏼈 􏼉 1 δ2􏼈 􏼉 δ2􏼈 􏼉 1
δ3􏼈 􏼉 ∅ δ3􏼈 􏼉 0 δ3􏼈 􏼉 δ3􏼈 􏼉 1 δ3􏼈 􏼉 δ3􏼈 􏼉 1
δ4􏼈 􏼉 δ4􏼈 􏼉 [ 1/4 ∅ δ1, δ4􏼈 􏼉 0 δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1/2
δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 0 δ2􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1/3 δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1/2
δ1, δ3􏼈 􏼉 ∅ δ1, δ3􏼈 􏼉 0 δ3􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1/3 δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 1/2
δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 [ 1/2 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1
δ2, δ3􏼈 􏼉 ∅ δ2, δ3􏼈 􏼉 0 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1
δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 [ 1/2 δ2􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1/3 δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 2/3
δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 [ 1/2 δ2􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1/3 δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 2/3
δ1, δ2, δ3􏼈 􏼉 ∅ δ1, δ2, δ3􏼈 􏼉 0 [ 1/2 δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 2/3
δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 [ 3/4 δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1 δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1
δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 [ 3/4 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ δ2, δ3􏼈 􏼉 [ 1/2 δ2, δ3, δ4􏼈 􏼉 [ 3/4

[ [ [ 1 [ [ 1 [ [ 1
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Lemma 1. Let I,J be two ideals on a jNκS([, ζκ,ψj),
κ ∈ 1, 2, 3, . . . , n{ }. If I⊆J, then [n] − ⊤Ij ⊆[n] − ⊤Jj .

Proof. Straightforward. □

Proposition 11. Let ([, ζκ,I,ψj) be anIjNκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en the following statements hold:

(1) [n] − ⊤Iu ⊆[n] − ⊤Ir ∩ [n] − ⊤Il
(2) [n] − ⊤Ir ∪ [n] − ⊤Il ⊆[n] − ⊤Ii
(3) [n] − ⊤I〈u〉⊆[n] − ⊤I〈r〉 ∩ [n] − ⊤I〈l〉

(4) [n] − ⊤I〈r〉 ∪ [n] − ⊤I〈l〉⊆[n] − ⊤I〈i〉

Proof. We prove only (1), and the other cases can be proved
similarly.

Let S ∈ [n] − ⊤Iu . +en [uNκ(z) − S] ∈ I, ∀z ∈ S.
Hence, ([rN(z)∪ ∩ n

κ�1lN(z)] − S) ∈ I, ∀z ∈ S. So
[rN(z) − S] ∈ I and [lN(z) − S] ∈ I, ∀z ∈ S. Conse-
quently, S ∈ [n] − ⊤Ir ∩ [n] − ⊤Il . □

Example 5. In Example 3, suppose that I � ∅, δ4􏼈 􏼉􏼈 􏼉.
+en[2] − ⊤Ir � ∅, [, δ2􏼈 􏼉, δ3􏼈 􏼉, δ1,􏼈􏼈 δ2}, δ2, δ3􏼈 􏼉, δ3,􏼈 δ4},
δ1, δ2, δ3􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉},[2] − ⊤Il � ∅, [,{ δ1􏼈 􏼉, δ3􏼈 􏼉, δ1,􏼈

δ2}, δ1, δ3􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ2, δ3􏼈 􏼉, δ1,􏼈 δ3, δ4}},[2] − ⊤Ii � ∅,{

[, δ1􏼈 􏼉, δ2􏼈 􏼉, δ3􏼈 􏼉, δ1, δ2􏼈 􏼉, δ1, δ3􏼈 􏼉, δ2, δ3􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1,􏼈 δ2,
δ3}, δ1,􏼈 δ3, δ4} δ2, δ3, δ4􏼈 􏼉},[2] − ⊤Iu � ∅, [, δ3􏼈 􏼉, δ1,􏼈􏼈 δ2},
δ3, δ4􏼈 􏼉, δ1, δ2, δ3􏼈 􏼉}.

We note that the topologies [n] − ⊤Ir , [n] − ⊤Il are not
dual. Also, the four topologies [n] − ⊤Ij (j � r, l, i, u) are
different from each other.

Example 6. On [ � δ1, δ2, δ3, δ4􏼈 􏼉, suppose that I � ∅,{

δ2􏼈 􏼉, δ4􏼈 􏼉, δ2, δ4􏼈 􏼉} is an ideal and ζ1, ζ2 are two binary re-
lations on [ defined as follows:ζ1 � (δ1, δ1), (δ1,􏼈 δ2),
(δ1, δ3), (δ2, δ3), (δ2, δ4), (δ3, δ1), (δ3, δ3), (δ4, δ1), (δ4, δ3),
(δ4, δ4)},ζ2 � (δ1, δ1), (δ1, δ2), (δ1,􏼈 δ3), (δ1, δ4), (δ2, δ2),
(δ2, δ3), (δ2, δ4), (δ3, δ1), (δ3, δ3), (δ3, δ4), (δ4, δ1), (δ4,
δ3)}.Hence, [2]− ⊤I〈r〉 � ∅, [, δ3􏼈 􏼉, δ1, δ3􏼈 􏼉, δ2, δ3􏼈 􏼉,􏼈 δ3,􏼈

δ4}, δ1, δ2, δ3􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2,􏼈 δ3, δ4}},[2] − ⊤I〈l〉 � ∅, [,{

δ1􏼈 􏼉, δ2􏼈 􏼉, δ4􏼈 􏼉, δ1, δ2􏼈 􏼉, δ1, δ3􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2,􏼈 δ4}, δ1, δ2,􏼈

δ3}, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉},[2] − ⊤I〈i〉 � P([),[2] − ⊤I〈u〉 �

∅,{ [, δ1, δ3􏼈 􏼉, δ1,􏼈 δ2, δ3}, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉}.

Remark 8. In view of Example 1.5,

(1) [n] − ⊤I〈r〉 ≠ [n] − ⊤I〈i〉 and [n] − ⊤I〈l〉 ≠ [n] − ⊤I〈i〉

(2) [n] − ⊤I〈r〉 ≠ [n] − ⊤I〈u〉 and [n] − ⊤I〈l〉 ≠ [n] − ⊤I〈u〉

(3) [n] − ⊤I〈i〉 ≠ [n] − ⊤I〈u〉

Remark 9. [n] − ⊤I〈j〉 and [n] − ⊤Ij are not necessarily
comparable, for any j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }. Suppose
j � l, then

(1) Example 6 illustrates [n] − ⊤I〈l〉⊈[n] − ⊤Il
(2) In Example 2, if I � ∅, δ2􏼈 􏼉􏼈 􏼉, then [n] − ⊤Il ⊈[n]

− ⊤I〈l〉

Theorem 3. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then [n] − ⊤j⊆[n] − ⊤Ij .

Proof. Let S ∈ [n] − ⊤j. +en ∩ n
κ�1jNκ(z)⊆S, ∀z ∈ S. So

[∩ n
κ�1jNκ(z) − S] � ∅∈ I, ∀z ∈ S. Hence,

S ∈ [n] − ⊤Ij . □

Using the chemical applicationmentioned in article [29],
we make a comparison among the [n] − ⊤Ir and [n] − ⊤r

with respect to reflexive relations.

Example 7. Let [ � δ1, δ2, δ3, δ4, δ5􏼈 􏼉 be five amino acids
(AAs). +e (AAs) are characterized in terms of five attri-
butes:A1 �PIE, A2 � surface area, A3 �molecular refractiv-
ity, A4 � the side-chain polarity, and A5 �molecular volume.
See Table 2 of [29], which displays all quantitative attributes
of five AAs.+e five reflexive relations on [ defined as: ζκ �

(δμ,δ]) ∈[ × [|δμ(Aκ) − δ]􏽮 (Aκ)〈σκ/2,κ,μ,]� 1,2,3,4,5},
where σκ symbolizes the standard deviation of the quanti-
tative attributes Aκ, κ� 1,2,3,4,5. +e r-neighborhoods for
all elements of [ with respect to the relations ζκ,
κ� 1,2,3,4,5 are shown in Table 3 of [29].So one may notice
the following:rNκ(δ1) � δ1,δ4􏼈 􏼉, rNκ(δ2) � δ2,δ5􏼈 􏼉, rNκ(δ3)
� δ2,δ3,δ4,δ5􏼈 􏼉, rNκ(δ4) � δ4􏼈 􏼉, rNκ(δ5) � δ5􏼈 􏼉.Hence,
[5]–⊤r � [,∅, δ4􏼈 􏼉, δ5􏼈 􏼉, δ1,δ4􏼈 􏼉, δ2,􏼈􏼈 δ5}, δ4,δ5􏼈 􏼉, δ1,δ4,δ5􏼈 􏼉,

δ2,δ4,􏼈 δ5}, δ1,δ2,δ4,δ5􏼈 􏼉, δ2,δ3,δ4,δ5􏼈 􏼉}. If I� ∅, δ4􏼈 􏼉􏼈 􏼉,
then [5]–⊤Ir � [,∅, δ1􏼈 􏼉, δ4􏼈 􏼉, δ5􏼈 􏼉, δ1,δ4􏼈 􏼉,􏼈 δ1,δ5􏼈 􏼉, δ2,􏼈

δ5}, δ4,δ5􏼈 􏼉, δ1,δ2,􏼈 δ5}, δ1,δ4,δ5􏼈 􏼉, δ2,δ3,δ5􏼈 􏼉, δ2,δ4,δ5􏼈 􏼉, δ1,􏼈

δ2,δ3,δ5}, δ1,δ2,δ4,δ5􏼈 􏼉, δ2,δ3,δ4,δ5􏼈 􏼉}. Hence, [5]–⊤r⊆[5]

− ⊤Ir .

Remark 10. In Example 6, for any arbitrary binary relations
ζ1, ζ2, then [2]–⊤u � ∅, [{ }, and [2] − ⊤Iu � ∅, [, δ1, δ3􏼈 􏼉,􏼈

δ1,􏼈 δ2, δ3}, δ1, δ3, δ4􏼈 􏼉}. Hence, [2] − ⊤u⊆[2] − ⊤Iu .

Definition 10. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. A set S of [ is calledIj open set, if S ∈ [n] − ⊤Ij , and
its complement is called Ij closed set. +e family of all Ij

closed sets of a j neighborhood space is defined by
[n] − ΥIj � F⊆U: Fc ∈ [n] − ⊤Ij􏽮 􏽯

By using ideals, we present eight methods for approx-
imating rough sets via interior ((n)int

I
j (S)), closure ((n)clIj

[n](S)), of the topologies [n] − ⊤Ij , j ∈ r, l, i, u, 〈r〉, 〈l〉,{

〈i〉, 〈u〉}, which will be contributory in decision-making.

Definition 11. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then the Ij lower, Ij upper approxima-
tions, Ij boundary regions, and Ij accuracy of a set S are
defined, respectively, as follows:

(1) (n)L
I
j (S) � ∪ O ∈ [n] − ⊤Ij : O⊆S􏽮 􏽯 � (n)int

I
j (S)

(2) (n)UI
j (S) � ∩ F ∈ [n] − ΥIj : S⊆F􏽮 􏽯 � (n)clIj (S),

(3) [n]BI
j (S) � (n)UI

j (S) − (n)L
I
j (S)

(4) [n]θIj (S) � |(n)L
I
j (S)|/|(n)UI

j (S)|, where |(n)UI
j (S)|

≠ 0
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Example 8. In Example 4, suppose that I � ∅, δ1􏼈 􏼉, δ4􏼈 􏼉,􏼈

δ1, δ4􏼈 􏼉}. +en[2] − ⊤Ir � [,∅, δ1􏼈 􏼉, δ2􏼈 􏼉, δ4􏼈 􏼉,􏼈 δ1, δ2􏼈 􏼉,

δ1, δ4􏼈 􏼉, δ2, δ3􏼈 􏼉, δ2, δ4􏼈 􏼉, δ1, δ2, δ3􏼈 􏼉, δ1, δ2, δ4􏼈 􏼉, δ2, δ3,􏼈

δ4}},[2] − ⊤Il � [,∅, δ1􏼈 􏼉, δ3􏼈 􏼉, δ1,􏼈􏼈 δ3}, δ2, δ3􏼈 􏼉, δ3, δ4􏼈 􏼉,

δ1, δ2, δ3􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉},[2] − ⊤Iu � [,∅,{ δ2,􏼈

δ3}, δ1, δ2, δ3􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉},[2]− ⊤I〈u〉 � [,∅, δ2􏼈 􏼉, δ3􏼈 􏼉,􏼈

δ4􏼈 􏼉, δ1, δ3􏼈 􏼉, δ2, δ3􏼈 􏼉, δ2, δ4􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ2,􏼈 δ3}, δ1, δ3,􏼈

δ4}, δ2, δ3, δ4􏼈 􏼉},[2] − ⊤Ii � [2] − ⊤I〈r〉 � [2]− ⊤I〈l〉 � [2]−

⊤I〈i〉 � P([).

Remark 11. In view of Example 8 and Table 4, for any
arbitrary binary relations ζ1, ζ2, the Ij accuracy, j � r, 〈r〉

depending on Definition 11 is better than the j accuracy
measure due to [17, 18], j � r, 〈r〉, respectively, in Example
4 and Table 3.

Several fundamental properties of the (n)L
I
j , (n)UI

j

operators in the next proposition are listed. Properties (Li),
(Ui)j� 1, 2, . . ., 10, display that approximate operators ,
(n)UI

j are dual to each other. By using (n)int
I
j (S) and

(n)clIj (S) behaviors, the proof of the next proposition is
understandable.

Proposition 12. Let ([, ζκ,I,ψj) be an IjNκS,
κ ∈ 1, 2, 3, . . . , n{ }. If S, S

‘

⊆[, then the following properties
hold:

(1) [(L1)](n)L
I
j (S) � ((n)UI

j (Sc))c

(2) [(L2)](n)L
I
j ([) � [

(3) [(L3)] If S⊆S
‘

, then (n)L
I
j (S)⊆(n)L

I
j (S

‘

)

(4) [(L4)](n)L
I
j (S∩ S

‘

)⊆(n)L
I
j (S)∩ (n)L

I
j (S

‘

)

(5) [(L5)](n)L
I
j (S∪ S

‘

)⊇(n)L
I
j (S)∪ (n)L

I
j (S

‘

)

(6) [(L6)](n)L
I
j (∅) � ∅

(7) [(L7)](n)L
I
j (S)⊆S

(8) [(L8)](n)L
I
j (S) � (n)L

I
j ((n)L

I
j (S))

(9) [(U1)]
(n)UI

j (S) � ((n)L
I
j (Sc))c

(10) [(U2)]
(n)UI

j (∅) �∅
(11) [(U3)] If S⊆S

‘

, then (n)UI
j (S)⊆(n)UI

j (S
‘

)

(12) [(U4)]
(n)UI

j (S∪ S
‘

)⊇(n)UI
j (S)∪ (n)UI

j (S
‘

)

(13) [(U5)]
(n)UI

j (S∩ S
‘

)⊆(n)UI
j (S)∩ (n)UI

j (S
‘

)

(14) [(U6)]
(n)UI

j ([) � [

(15) [(U7)]S⊆[n]UI
j (S)

(16) [(U8)]
(n)UI

j (S) � (n)UI
j ((n)(UI

j (S)))

Remark 12. Example 6 shows that the converse of (L3)

does not hold; if S � δ1, δ2, δ4􏼈 􏼉 and S
‘

� δ1, δ2, δ3􏼈 􏼉, then
(n)L

I
〈r〉(S)⊆(n)L

I
〈r〉(S

‘

), but S⊈S
‘

.If S � δ1, δ2, δ3􏼈 􏼉 and
S
‘

� δ2, δ3, δ4􏼈 􏼉, then (n)L
I
〈u〉(S∩ S

‘

) � ∅≠ δ2, δ3􏼈 􏼉 � (n)L
I
〈u〉

(S)∩ (n)L
I
〈u〉(S

‘

). Consequently, the converse of (L4) is not
true.If S � δ1􏼈 􏼉 and S

‘

� δ3􏼈 􏼉, then (n)L
I
〈u〉(S∪ S

‘

) �

δ1, δ3􏼈 􏼉≠∅ � (n)L
I
〈u〉(S)∪ (n)L

I
〈u〉(S

‘

). Consequently, the
converse of (L5) is not true.If S � δ1􏼈 􏼉 and j � 〈u〉, then the
converse of (L7) is not true.

According to +eorem 3, the proof of the following
theorem is evident.

Theorem 4. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }; the
following statements hold:

(1) (n)Lu(S)⊆(n)L
I
u (S)

(2) (n)Lu(S)⊇(n)L
I
u (S)

Lemma 2. Let I,J be two ideals on a jNκS([, ζκ,ψj),
κ ∈ 1, 2, 3, . . . , n{ }. If I⊆J, then the following statements
hold:

(1) (n)L
I
j (S)⊇ (n)L

J
j (S)

(2) (n)U
I
j (S)⊇ (n)U

J
j (S)

(3) (n)θ
I
j (S)⊇ (n)θ

J
j (S)

Proof. Straightforward. □

Example 9 offers the comparison between Definition 9
and Definition 6, if each ζ i, κ ∈ 1, 2, 3, . . . , n{ } is a reflexive
relation on [.

Example 9. In Example 3, if I � ∅, δ1􏼈 􏼉, δ4􏼈 􏼉, δ1, δ4􏼈 􏼉􏼈 􏼉,
then[2] − ⊤Ir � [2] − ⊤Iu � ∅, [, δ2􏼈 􏼉,􏼈 δ3􏼈 􏼉, δ1, δ2􏼈 􏼉, δ2,􏼈

δ3}, δ3, δ4􏼈 􏼉, δ1, δ2,􏼈 δ3}, δ2, δ3, δ4􏼈 􏼉},[2] − ⊤Il � [2] − ⊤Ii
� ∅,{ [, δ1􏼈 􏼉, δ2􏼈 􏼉, δ3􏼈 􏼉, δ1, δ2􏼈 􏼉, δ1, δ3􏼈 􏼉, δ2,􏼈 δ3}, δ3, δ4􏼈 􏼉,

δ1, δ2, δ3􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2,􏼈 δ3, δ4}},[2] − ⊤I〈r〉 � [2] − ⊤I〈l〉 �

[2] − ⊤I〈i〉 � [2] − ⊤I〈u〉 � ∅, [, δ1􏼈 􏼉, δ2􏼈 􏼉, δ3􏼈 􏼉,􏼈 δ1, δ2􏼈 􏼉,

δ1, δ3􏼈 􏼉, δ2, δ3􏼈 􏼉, δ3,􏼈 δ4}, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉, δ1, δ2, δ3􏼈 􏼉}.

Remark 13. It is clear that from Example 3, [n] − ⊤j⊆[n] −

⊤Ij and ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

Remark 14. In Example 9 and Table 5:

(1) (n)L
I
r (S) � (n)L

I
r (S) and (n)L

I
l (S) � (n)L

I
i (S)

� (n)L
I
〈r〉(S) � (n)L

I
〈l〉(S) � (n)L

I
〈i〉(S) � (n)L

I
〈u〉(S)

(2) (n)U
I
u (S) � (n)U

I
u (S) and (n)U

I
l (S) � (n)U

I
i (S)

� (n)U
I
〈r〉(S) � (n)U

I
〈l〉(S) � (n)U

I
〈i〉(S) � (n)U

I
〈u〉(S)

(3) (n)θ
I
r (S) � (n)θ

I
u (S) and

+e following propositions are obvious, and the proof is
omitted.

Proposition 13. Let ([, ζκ,I,ψj) be anIjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }; the
following statements hold:

(1) (n)L
I

u
(S)⊆[n]L

I
r (S)⊆[n]L

I
i (S)

(2) (n)L
I

u
(S)⊆[n]L

I
l (S)⊆[n]L

I
i (S)

(3) (n)L
I

〈u〉
(S)⊆[n]L

I
〈r〉(S)⊆[n]L

I
〈i〉(S)

(4) (n)L
I

〈u〉
(S)⊆[n]L

I
〈l〉(S)⊆[n]L

I
〈i〉(S)
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Proposition 14. Let ([, ζκ,I,ψj) be anIjNκS, κ ∈ 1, 2, 3,{

. . . , n}. If S⊆[, then ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }; the
following statements hold:

(1) (n)U
I
i (S)⊆ (n)U

I
r (S)⊆(n)U

I
u (S)

(2) (n)U
I
i (S)⊆ (n)U

I
l (S)⊆(n)U

I
u (S)

(3) (n)U
I
〈i〉(S)⊆ (n)U

I
〈r〉(S)⊆(n)U

I
〈u〉(S)

(4) (n)U
I
〈r〉(S)⊆ (n)U

I
〈l〉(S)⊆(n)U

I
〈i〉(S)

Corollary 1. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ } and (n)θj(S)

≤ (n)θ
I
j (S).

Definition 12. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}, ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }. A subset of [ is
called as follows:

(1) Totally, Ij definable, if (n)L
I
j (S) � S � (n)UI

j (S)

(2) Internally, Ij definable, if (n)L
I
j (S) � S and (n)UI

j

(S)≠ S

(3) Externally, Ij definable, if (n)L
I
j (S)≠ S and (n)UI

j

(S) � S

(4) Ij rough set, if (n)L
I
j (S)≠ S and

Corollary 2. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }; the following
statements hold:

(1) Every j definable subset in [ is Ij definable
(2) Every Ij rough subset in [ is j rough

Remark 15. Example 9 shows that the converse of parts of
Corollary 2 is not necessarily true.

(1) If j � l, then δ2􏼈 􏼉 is Ij definable, but it is not j

definable (see Tables 2 and 5)
(2) If j � u, then δ2􏼈 􏼉 is rough, but it is notIj rough (see

Tables 2 and 5)

Remark 16. In view of Example 9 and Table 5, we have the
following:

Table 4: Ij approximations and Ij accuracy for j ∈ r, 〈r〉{ } depending on Definition 11.

S⊆[ (2)L
I
r (S) (2)U

I
r (S) (2)θ

I
r (S) (2)L

I
〈r〉(S) (2)U

I
〈r〉(S) (2)θ

I
〈r〉(S)

δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 1 δ1􏼈 􏼉 δ1􏼈 􏼉 1
δ2􏼈 􏼉 δ2􏼈 􏼉 δ2, δ3􏼈 􏼉 1/2 δ2􏼈 􏼉 δ2􏼈 􏼉 1
δ3􏼈 􏼉 ∅ δ3􏼈 􏼉 0 δ3􏼈 􏼉 δ3􏼈 􏼉 1
δ4􏼈 􏼉 δ4􏼈 􏼉 δ4􏼈 􏼉 1 δ4􏼈 􏼉 δ4􏼈 􏼉 1
δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 2/3 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1
δ1, δ3􏼈 􏼉 δ1􏼈 􏼉 δ1, δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 1
δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1
δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1
δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 b, δ3, δ4􏼈 􏼉 2/3 δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 1
δ3, δ4􏼈 􏼉 δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1/2 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1
δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 1 δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 1
δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 [ 3/4 δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1
δ1, δ3, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 2/3 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1

[ [ [ 1 [ [ 1

Table 5: +e Ij approximations and Ij accuracy for each j ∈ r, l{ } with respect to Example 9.

S⊆[ (n)Lr(S) (n)Ll(S) (n)Li(S) (n)Lu(S) (n)Ur(S) (n)Ul(S)

δ1􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1􏼈 􏼉 δ1􏼈 􏼉 0 1
δ2􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ2􏼈 􏼉 1/2 1
δ3􏼈 􏼉 δ3􏼈 􏼉 δ3􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1/2 1/2
δ4􏼈 􏼉 ∅ ∅ δ4􏼈 􏼉 δ4􏼈 􏼉 0 0
δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1 1
δ1, δ3􏼈 􏼉 δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1/3 2/3
δ1, δ4􏼈 􏼉 ∅ δ1􏼈 􏼉 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 0 1/2
δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 [ δ2, δ3, δ4􏼈 􏼉 1/2 2/3
δ2, δ4􏼈 􏼉 δ2􏼈 􏼉 δ2􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 1/3 1/2
δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1 1
δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 [ [ 3/4 3/4
δ1, δ2, δ4􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 2/3 2/3
δ1, δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 2/3 1
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ δ2, δ3, δ4􏼈 􏼉 3/4 1

[ [ [ [ [ 1 1
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(1) δ1, δ2􏼈 􏼉 is a totally Ir definable set
(2) δ2, δ4􏼈 􏼉 is an Ir rough set
(3) δ3􏼈 􏼉 is an internally Il definable set
(4) δ4􏼈 􏼉 is an externally Il definable set

Corollary 3. Let ([, ζκ,I,ψj) be an IjNκS, κ ∈ 1, 2, 3,{

. . . , n}. ;en ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }; the following
statements hold:

(1) (n)θ
I
j (S)≤ (n)θ

I
r (S)≤ (n)θ

I
j (S)

(2) (n)θ
I
u (S)≤ (n)θ

I
l (S)≤ (n)θ

I
i (S)

(3) (n)θ
I
〈u〉(S)≤ (n)θ

I
〈r〉(S)≤ (n)θ

I
〈i〉(S)

(4) (n)θ
I
〈u〉(S)≤ (n)θ

I
〈l〉(S)≤ (n)θ

I
〈i〉(S)

In Example 10, we show that the current method in
Definition 11 is more accurate in comparison to Hosny’s
method [26], for any j � 〈i〉{ }.

Example 10. Continued from Example 4. Table 6 shows the
comparison between the current method in Definition 11
and Hosny’s method [26], for any j � 〈i〉{ }.IfI � ∅, δ1􏼈 􏼉􏼈 􏼉,
then⊤Iζ1〈i〉

� ∅, [, δ4􏼈 􏼉, δ1,􏼈􏼈 δ4}, δ2, δ4􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ2,􏼈

δ4}, δ1,􏼈 δ3, δ4}, δ2, δ3, δ4􏼈 􏼉},⊤Iζ2〈i〉
� ∅, [,{ δ2􏼈 􏼉, δ3􏼈 􏼉, δ4􏼈 􏼉,

δ1, δ4􏼈 􏼉, δ2, δ3􏼈 􏼉, δ2, δ4􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2,􏼈

δ3, δ4}},[2] − ⊤I〈i〉 � P([).

4. Network Devices Application

Network devices or networking hardware (network interface
cards, hubs, switches, repeaters, bridges, routers, and
gateways) are physical devices that are required for com-
munication and interaction between hardware on a com-
puter network. +is section is devoted to introducing an
applied example (see [30]) of the new method on the net-
work topologies. +is application presents a comparison
between approaches with respect to [n] − ⊤j and [n] − ⊤Ij ,
j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

Example 11. Let [ � δ1, δ2, δ3, δ4􏼈 􏼉 be a set of four network
topologies and N � N1, N2, N3􏼈 􏼉 be the attributes of net-
work topologies (see Table 7), where δ1 is a bus topology, δ2
is a ring topology, δ3 is a star topology, and δ4 is a mesh
topology.N1 �+e method of transfer data� broadcast,{

multicast, unicast} � a1, b1, c1􏼈 􏼉, N2 �Cable type�

twistedpaircable, thincoaxialcable,􏼈 thickcoaxialcable,
fiberopticcable} � a2, b2, c2, d2􏼈 􏼉, andN3 �Bandwidth
capacity� 10{ Mbit/s, 10 − 100Mbit/s, 10Mbit/s − 40
Gbit/s} � a3, b3, c3􏼈 􏼉.Consider Table 7: let ζκ, κ ∈ 1, 2, 3{ } be
arbitrary binary relations as follows:

δmζκδn N(δm)⊆N(δn), δm, δn ∈ [, κ ∈ 1, 2, 3{ }.
+en we compute the approximations of attributes

N1, N2, and N3. ζ1 �▲∪ (δ1, δ2), (δ1,􏼈 δ3), (δ2, δ1), (δ2,
δ3), (δ4, δ3)}, ζ2 �▲∪ (δ1, δ3), (δ1,􏼈 δ4), (δ2, δ3), (δ2, δ4),
(δ3, δ4), (δ4, δ3)}, ζ3 �▲∪ (δ2, δ3), (δ2, δ4), (δ3, δ2), (δ3,􏼈

δ4), (δ4, δ2), (δ4, δ3)}. Now, uNκ(δ1) � δ1􏼈 􏼉, uNκ(δ2) �

δ2, δ3􏼈 􏼉, uNκ(δ3) � δ2, δ3, δ4􏼈 􏼉, uNκ(δ4) � δ3, δ4􏼈 􏼉.+ere-
fore, [3]–⊤u � ∅, [, δ1􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉􏼈 􏼉.IfI� ∅, δ2􏼈 􏼉􏼈 􏼉, then
[3]–⊤Iu � ∅, [, δ1􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉, δ2, δ3, δ4􏼈 􏼉􏼈 􏼉.IfJ �

∅, δ2􏼈 􏼉, δ3􏼈 􏼉, δ2, δ3􏼈 􏼉􏼈 􏼉, then [3]–⊤Ju � ∅, [, δ1􏼈 􏼉, δ2􏼈 􏼉,􏼈

δ4􏼈 􏼉, δ1, δ2􏼈 􏼉, δ1, δ4􏼈 􏼉, δ2, d􏼈 􏼉, δ3, δ4􏼈 􏼉, δ1, δ2, δ4􏼈 􏼉, δ1, δ3, δ4􏼈 􏼉,

δ2, δ3, δ4􏼈 􏼉}.
From Table 8, we notice the following:

(1) +e accuracy of the approximations induced from
[n] − ⊤Iu for any ideal I is more accurate than the
accuracy of approximations induced from
[n] − ⊤u

(2) If I⊆J, then the accuracy of the approximations
induced from [n] − ⊤Jj is more accurate than the
accuracy of the approximations induced from
[n] − ⊤Ij , ∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }

(3) Every j definable set with respect to [n] − ⊤j is j

definable with respect to [n] − ⊤Ij for any ideal I,
but the converse is not true

(4) +e approximations induced from for any ideal I
will help extract and discover the hidden information
in data that were collected from real-life applications,
which are very useful in decision-making

Table 6: Comparison between our approaches and those given in the case of j � 〈i〉.

S⊆[ Lζ1〈i〉(S) Uζ1〈i〉(S) θζ1〈i〉(S) Lζ2〈i〉(S) Uζ2〈i〉(S) θζ2〈i〉(S) (2)Lζ2〈i〉(S) (2)U〈i〉(S) (2)θ〈i〉(S)

δ1􏼈 􏼉 ∅ δ1􏼈 􏼉 0 ∅ δ1􏼈 􏼉 0 δ1􏼈 􏼉 δ1􏼈 􏼉 1
δ2􏼈 􏼉 ∅ δ2􏼈 􏼉 0 δ2􏼈 􏼉 δ2􏼈 􏼉 1 δ2􏼈 􏼉 δ2􏼈 􏼉 1
δ3􏼈 􏼉 ∅ δ3􏼈 􏼉 0 δ3􏼈 􏼉 δ3􏼈 􏼉 1 δ3􏼈 􏼉 δ3􏼈 􏼉 1
δ4􏼈 􏼉 δ4􏼈 􏼉 [ 1/4 δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1/2 δ4􏼈 􏼉 δ4􏼈 􏼉 1
δ1, δ2􏼈 􏼉 ∅ δ1, δ2􏼈 􏼉 0 δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1/2 δ1, δ2􏼈 􏼉 δ1, δ2􏼈 􏼉 1
δ1, δ3􏼈 􏼉 ∅ δ1, δ3􏼈 􏼉 0 δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 1/2 δ1, δ3􏼈 􏼉 δ1, δ3􏼈 􏼉 1
δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 [ 1/2 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1 δ1, δ4􏼈 􏼉 δ1, δ4􏼈 􏼉 1
δ2, δ3􏼈 􏼉 ∅ δ2, δ3􏼈 􏼉 0 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1 δ2, δ3􏼈 􏼉 δ2, δ3􏼈 􏼉 1
δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 [ 1/2 δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 2/3 δ2, δ4􏼈 􏼉 δ2, δ4􏼈 􏼉 1
δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 [ 1/2 δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 2/3 δ3, δ4􏼈 􏼉 δ3, δ4􏼈 􏼉 1
δ1, δ2, δ3􏼈 􏼉 ∅ δ1, δ2, δ3􏼈 􏼉 0 δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 2/3 δ1, δ2, δ3􏼈 􏼉 δ1, δ2, δ3􏼈 􏼉 1
δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 [ 3/4 δ1, δ2, δ4􏼈 􏼉 δ1, δ2, δ4􏼈 􏼉 1 δ1, δ2, δ4􏼈 􏼉 1
δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 [ 3/4 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1 δ1, δ3, δ4􏼈 􏼉 δ1, δ3, δ4􏼈 􏼉 1
δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 [ 3/4 δ2, δ3, δ4􏼈 􏼉 [ 3/4 δ2, δ3, δ4􏼈 􏼉 δ2, δ3, δ4􏼈 􏼉 1

[ [ [ 1 [ [ 1 [ [ 1
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5. Conclusion and Future Work

In this manuscript, we have presented novel types of rough
neighborhoods generated from a finite number of binary
relations. We have scrutinized their main features and
determined under what conditions some of these neigh-
borhoods are equivalent. +en we have established topo-
logical spaces from these types of neighborhoods that we
used to initiate novel rough set models. +e best approx-
imations and accuracy measures have been given in the
cases of i and 〈i〉 as the provided examples illustrated.
+ereafter, we have applied the notion of ideals to initiate
topological spaces finer than those induced from rough
neighborhoods given in Section 2. Some comparisons have
been given to show the importance of our approaches
compared with some methods in the literature such as
[14, 17, 18, 26]. Finally, we have displayed a practical
application showing the merits of the approaches followed
in this manuscript.

In upcoming works, we plan to benefit from the rough
neighborhoods given in [12, 20] and the ideals to improve
the approximations given herein and increase their accuracy
values.
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