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In this paper, we solve the fractional di�erential equations (FDEs) with boundary value conditions in Sobolev spaceHn[0, 1].  e
strategy is constructing multiscale orthonormal basis forHn[0, 1] to get the approximation for the problems.  e convergence of
the method is proved, and it is tested on some numerical experiments; the tests show that our method is more e�cient and
accurate.  e notion of numerical stability with respect to the condition number is introduced proving that the proposed method
is numerically stable in this sense.

1. Introduction

FDEs have been a subject of interest not only among
mathematicians but also among physicists and engineers. In
fact, we can �nd numerous applications in economic system
[1], �uid mechanics [2], biology [3], signal processing, dy-
namics of earthquakes, optics, electromagnetic waves,
chaotic dynamics, polymer science, proteins, statistical
physics, thermodynamics, neural networks, and so on [4]. A
completely di�erent and very novel application �eld is the
area of mathematical psychology where fractional-order
systems may be used to model the behaviour of human
beings [5].

FDEs are always with weakly singular kernel and more
complicated than integer ones. Actually, in many cases, it is
di�cult to obtain the analytical solution.  erefore, the
numerical methods are essential for approximation solution
of many FDEs. Many approximations have sprung up re-
cently, such as the numerical scheme by coupling of radial
kernels and localized Laplace transform [6], the radial basis
function (RBF)-based numerical scheme which uses the
Coimbra variable time fractional derivative of order
0< α(t, x)< 1 [7], the time-space numerical technique based
on time-space radial kernels [8], the local meshless method
based on Laplace transform [9], �nite di�erence methods
[10], �nite element methods [11–13], spectral methods [14],
shooting method [15], approximation formula [16], pseudo-

spectral method [17], variational iteration method [18],
Adomian decomposition method (ADM) [19, 20], trape-
zoidal methods [21], reproducing kernel method [22–26],
and so on.  e development, however, for e�cient nu-
merical methods to solve linear and nonlinear FDEs is still
an important issue.

In this paper, we are concerned with the approximation
of FDEs as follows:

Dαu(x) + a1(x)u′(x) + a0(x)u(x) � f(x), x ∈ (0, 1), α> 0,
(1)

u(0) − α0u′(0) � c1,

u(1) + α1u′(1) � c2.
(2)

Here,

Dαu(x) �
1

Γ(m − α)
∫
x

0
(x − t)m− α− 1u(m)(t)dt, (3)

where m: � �α�, ai(x)(i � 0, 1), f(x) ∈ L2[0, 1].  e exis-
tence and uniqueness of the solution u(x) of problem (1) are
established in Ref. [11].

 e following parts are structured as follows. In Section
2, we consider the solution of (1) in Sobolev space, introduce
a suitable de�nition of ε-approximate solution, and analyze
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the stability based on some assumptions. In Section 3, a set of
orthonormal basis in H2 has been obtained which is used for
constructing the ε-approximate solution un(x) which con-
verges to the exact solution u(x) uniformly. In Section 4, the
accuracy and convergence rate computed by the method we
proposed show that our method is much more better, and
the numerical simulations further verify our theoretical
analysis. In the last section, we draw the conclusions.

2. Theoretical Analysis of the Approximate
Solution for (1)

In order to present our algorithm, we consider solving
operator equation (4) in Sobolev space as follows. Let
L: X⟶Y be linear and bounded, X be Sobolev space,
Y � L2, u ∈ X, f ∈Y, andBi(i � 1, 2) be a bounded linear
functional on X.

Lu� f,

Biu� ci.
 (4)

In the following analysis, we will use the operator norms
‖L‖, ‖Bi‖ [22]. Let ρ1, ρ2, . . . , ρk, . . .  be a set of ortho-
normal basis for X. Combining the least square theory and
the idea of residuals in the Sobolev space, we proposed the
concept of ε-approximate solution for (4) as follows.

Definition 1. For ∀ε> 0, if
‖Lu − f‖2Y + 

2
i�1 (Biu − ci)

2 < ε2, u is called ε-approxi-
mate solution of (4).

Theorem 1. For ∀ε> 0,∃N(ε), when n>N(ε),

un � 
n

k�1
c
∗
kρk, (5)

is the ε-approximate solution for (4), where c∗k satisfy



n

k�1
c
∗
kLρk − f

���������

���������

2

Y

+ 
2

i�1


n

k�1
c
∗
kBiρk − ci

⎛⎝ ⎞⎠

2

� min
ck



n

k�1
ckLρk − f

���������

���������

2

Y

+ 
2

i�1


n

k�1
ckBiρk − ci

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (6)

Proof. Since u ∈ X is the solution of (4), ρ1, ρ2, . . . , ρk, . . . 

is a set of orthonormal basis for X, so u � 
∞
k�1 dkρk satisfy

equation (4). For ∀ε> 0,∃N(ε), when n>N(ε),

v � 
n
k�1 dkρk satisfy ‖v − u‖X < ε/

���������������

‖L‖2 + 
2
i�1 ‖Bi‖

2


.

In fact,

‖Lv − f‖
2
Y + 

2

i�1
Biv − ci( 

2
� ‖Lv − Lu‖

2
Y + 

2

i�1
Biv − Biu( 

2

≤ ‖L‖
2
‖v − u‖

2
X + 

2

i�1
Bi

����
����
2
‖L‖

2
‖v − u‖

2
X

� ‖L‖
2

+ 
2

i�1
Bi

����
����
2⎛⎝ ⎞⎠‖v − u‖

2
X < ε

2
.

(7)

So, equation (6) ≤‖ 
n
k�1 dkLρk − f‖

2
Y + 

2
i�1 (

n
k�1 dk

Biρk − ci)
2 < ε2.

From equation (6), we learn that c∗k are the represen-
tations of ck which make J reach the minimum, where

J c1, c2, . . . , cn(  � 
n

k�1
ckLρk − f

���������

���������

2

Y

+ 
2

i�1


n

k�1
ckBiρk − ci

⎛⎝ ⎞⎠

2

. (8)

Applying zJ(c1, c2, . . . , cn)/zcj � 0 to get the minimum
values, we obtain
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n

k�1
ck〈Lρk,Lρj〉Y + 

2

i�1


n

k�1
ckBiρkBiρj �〈Lρj, f〉Y + 

2

i�1
Biρjci. (j � 1, 2, . . . , n). (9)

□

Theorem 2. 6e solution of equation (9) is unique whenL is
reversible.

Proof. We just prove that the solution of the homogeneous
linear equations of (9) is unique. Multiply cj on both sides of
the equation:



n

k�1
ck〈Lρk,Lρj〉Y + 

2

i�1


n

k�1
ckBiρkBiρj � 0. (10)

Adding all equations together, we get

〈
n

k�1
ckLρk, 

n

j�1
cjLρj〉Y + 

2

i�1

n

k�1
ckBiρk 

n

j�1
cjBiρj

⎛⎝ ⎞⎠ � 0, (11)

which implies that



n

k�1
ckLρk

���������

���������

2

Y

� 0. (12)

As L is reversible and ρk 
n
k�1 is a set of orthonormal

basis, ck � 0 (k � 1, 2, . . . , n).
*eorem 1 and *eorem 2 show that the ε-approximate

solution (5) exists and is unique as n>N(ε) is determined.
Corollary 1 will prove that the algorithm for solving the
ε-approximate solution (5) is stable with respect to changing
n. Also, in Section 3, we will prove that ε-approximate
solution (5) converges to the exact solution u uniformly.

According to (9), it can be rewritten by

Ac � b, (13)

where

b � 〈Lρk, f〉Y + 
2

i�1
Biρjci

⎛⎝ ⎞⎠

n×1

, c � c1, c2, . . . , cn( 
T
.

A � 〈Lρk,Lρj〉Y + 
2

i�1
BiρkBiρj

⎛⎝ ⎞⎠

n×n

.

(14)

□

Lemma 1. Assume x � (x1, x2, . . . , xn)T, ‖x‖ � 1, Ax � λx;
then,

λ≤ ‖L‖
2

+ 
2

i�1
Bi

����
����
2
. (15)

Proof. Using A in formula (13) and assumption Ax � λx,
then

λxk � 
n

j�1
〈Lρk, Lρj〉Y + 

2

i�1
BiρkBiρj

⎛⎝ ⎞⎠xj

� 
n

j�1
〈Lρk, xjLρj〉Y + 

2

i�1
BiρkxjBiρj

⎛⎝ ⎞⎠

�〈Lρk, 
n

j�1
xjLρj〉Y + 

2

i�1

Biρk 

n

j�1
xjBiρj (16)

Multiply xk(k � 1, 2, . . . , n) on both sides of equation
(16) and add all equations together, and one gets
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λ 

n

k�1
x
2
k �〈

n

k�1
xkLρk, 

n

j�1
xjLρj〉Y + 

2

i�1


n

k�1
xkBiρk 

n

j�1
xjBiρj

� 
n

k�1
xkLρk

���������

���������

2

Y

+ 
2

i�1
Bi 

n

k�1
xkρk

⎛⎝ ⎞⎠

2

≤ ‖L‖
2



n

k�1
x
2
k + 

2

i�1
Bi

����
����
2



n

k�1
x
2
k. (17)

As ‖x‖ � 1, that is, 
n
k�1 x2

k � 1, λ � λ
n
k�1 x2

k

≤ ‖L‖2 + 
2
i�1 ‖Bi‖

2. □

Lemma 2. If ‖u‖X � 1, then ‖Lu‖Y ≥ 1/‖L
− 1‖.

Proof. Let Lu � g, according to the condition ‖u‖X � 1,
then 1 � ‖u‖x � ‖L− 1g‖x≤ ‖L− 1‖x‖g‖Y, that is,
‖Lu‖Y � ‖g‖Y ≥ 1/‖L

− 1‖. □

Corollary 1. 6e method for getting the ε-approximate so-
lution (5) is stable.

Proof. In (5), c∗k needs to be determined which is the element
of the matrix c in (13). Combined with Lemma 1 and Lemma
2, it yields

λ≥ 
n

k�1
xkLρk

���������

���������

2

Y

� L 
n

k�1
xkρk

���������

���������

2

Y

≥
1

L
− 1����

����
2. (18)

So, the condition number cond(A) 2 � |λ1/λn| ≤ (‖L‖2+


2
i�1 ‖Bi‖

2)/1/‖L− 1‖2 � (‖L‖2 + 
2
i�1 ‖Bi‖

2)‖L− 1‖2.
It means that our algorithm is stable.
Note that cond(A)2 denotes the condition number of

matrix A and λ1 and λn represent the maximum eigenvalue
and the minimum eigenvalue of A, respectively. □

3. Constructing Orthonormal Basis for Sobolev
Space Hn[0, 1]

We first present some notations that will be used in the
following.

H
n
[0, 1] �

u(x)|u(x), u′(x), . . . , u
(n− 1)

(x) is absolutely

continuous, u
(n)

(x) ∈ L
2
[0, 1]

⎧⎨

⎩

⎫⎬

⎭.

(19)

*e inner product is defined as follows:

〈u, v〉n � 
n− 1

k�0
u

(k)
v

(k)
 (0) + 

1

0
u

(n)
v

(n)
dx , ‖u‖

2
n � 〈u, u〉n.

(20)

By Ref. [22], Hn is the reproducing kernel space, so
u(x) � 〈u, Rx〉n, u′(x) � 〈u, Rx

′〉n, and Rx is the repro-
ducing kernel of Hn.

Specifically, for model (1) with condition (2), when the
range of α is given, we will choose the appropriate space
Hn[0, 1]. Now we consider α ∈ (1, 2), so we choose space
H2[0, 1]. According to the analysis in Section 2, we give the
following notation:

Au�
△ 1
Γ(2 − α)


x

0
(x − t)

1− α
u″(t)dt + a1(x)u′(x) + a0(x)u(x).

C1u�
△

u(0) − α0u′(0),C2u�
△

u(1) + α1u′(1),

(21)

So, problem (1) with condition (2) can be rewritten as
follows:

Au� f,

Ciu � ci.(i � 1, 2).
 (22)

In the following parts, we always assume that when
f ∈ L2[0, 1], the solution of (22) exists and is unique.

Now we try to give a set of multiscale orthonormal basis
for H2. Considering the analysis in Section 2, we shall prove
the boundedness of A and the uniform convergence of
ε-approximate solution un(x).

By the mother wavelet,

φ10(x) �

x, x ∈ 0,
1
2

 ,

1 − x, x ∈
1
2
, 1 ,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

We construct the following scale functions in
H1

0[0, 1] � u ∈ H1[0, 1]|u(0) � u(1) � 0 :
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φik(x) �
1
�
2

√ 

i+1

2i
x −

k

2i− 1 , x ∈
k

2i− 1,
k + 1/2
2i− 1 ,

2i k + 1
2i− 1 − x , x ∈

k + 1/2
2i− 1 ,

k + 1
2i− 1 ,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1, 2, · · · ; 0≤ k≤ 2i− 1
− 1  . (24)

Theorem 3. φ10,φ20, φ21, . . . ,

φik, . . .} is a set of multiscale orthonormal basis for H1
0.

Proof. We only have to prove φ10,φ20,φ21, . . . ,φik, . . .  to
be complete. For u ∈ H1

0, let 〈u,φik〉1 � 0. *at is,

1/2
0 u′dx − 

1
1/2 u′dx � 2u(1/2) − u(0) − u(1) � 2u(1/2) �

0, so u(1/2) � 0. Similarly, we can get
u(xik) � u(k/2i− 1) � 0. Since u(x) is continuous, u ≡ 0.

Let J0u(x)�
△


x

0 u(t)dt, J20u(x)�
△


x

0 J0u(t)dt. □

Theorem 4. ρj(x) 
∞
j�1 � 1, x, x2/2, J0φ10(x), J0φ20(x), J0

φ21(x), . . . , J0φik (x), . . .} is a set of orthonormal basis for
H2[0, 1].

Proof. It follows from *eorem 3 that ρj(x) 
∞
j�1 are

orthonormal.
For u ∈ H2, if 〈u, 1〉2 � 〈u, x〉2 � 〈u, x2/2〉2 � 0, then

u(0) � u′(0) � u′(1) � 0; if 〈u, J0φik〉2 � 0, then
〈u, J0φik〉2 � 

1
0 u′′φik
′dx � 0. In light of u ∈ H2, u ∈ H1;

combining with the above results, u′ ∈ H1
0. *en,

〈u′,φik〉1 � 
1
0 u′′φik
′dx � 0. Applying *eorem 3, u′ � 0, so

u ≡ 0, and ρj(x) 
∞
j�1 is a set of complete system. □

Theorem 5. 6e linear operator A is bounded.

Proof

‖Au‖L2 �
1
Γ(2 − α)


x

0
(x − t)

1− α
u′′(t)dt + a1(x)u′(x) + a0(x)u(x)

�������

�������
L2

. (25)

Now we mainly focus on proving the boundedness of
‖1/Γ(2 − α) 

x

0 (x − t)1− αu′′(t)dt‖L2 . Based on the €Holder
inequality, we obtain

1
Γ(2 − α)


x

0
(x − t)

1− α
u″(t)dt

�������

�������

2

L2

�
1

Γ2(2 − α)

1

0


x

0
(x − t)

1− α
u″(t)dt 

2
dx

≤
1

Γ2(2 − α)

1

0


x

0
(x − t)

1− αdt 
x

0
(x − t)

1− α
u′′

2
(t)dt dx

≤M1 
1

0
dx 

x

0
(x − t)

1− α
u′′

2
(t)dt � M1 

1

0
u′′

2
(t)dt 

1

t
(x − t)

1− αdx

� M2 
1

0
(1 − t)

2− α
u′′

2
(t)dt≤M2 

1

0
u′′

2
(t)dt≤M2‖u‖

2
2.

(26)

Table 1: Our method.

n en rn con d(A)2

18 3.98E − 2 1349.75
36 8.48E − 3 2.233 1379.08
72 1.54E − 3 2.465 1385.59
144 1.41E − 4 2.700 1387.90
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According to (25), |u′(x)| � |< u, Rx
′ > 2|≤ ‖u‖2‖Rx

′‖2, so
u′

2
(x)≤ ‖Rx

′‖22‖u‖22. It implies that ‖a1(x)u′(x)‖L2 ≤M3‖u‖2.
Similarly, ‖a0(x)u(x)‖L2 ≤M4‖u‖2. Applying Cauchy–Sch-
warz inequality, one gets

‖Au‖L2 ≤
���
M2


+ M3 + M4( ‖u‖2, (27)

where Mi(i � 1, 2, 3, 4) is a constant, and the theorem holds
true. □

Theorem 6. Let u be the exact solution of (22); then,
ε-approximate solution un converges to u uniformly.

Proof. Note that |un(x) − u(x)| � |〈un − u, Rx〉2|

≤ ‖un − u‖2‖Rx‖2, and for ∀ε> 0, ‖un − u‖2 � ‖A− 1A(u n −

u)‖2≤ ‖A− 1‖‖A(un − u)

‖L2 � ‖A− 1‖‖Aun − f‖L2 <
De f2.1

ε⟶ 0, and it means un

converges to u uniformly on [0, 1].
By Corollary 1, the algorithm we get for ε-approximate

solution in H2 is stable.
Similarly, we can also construct orthonormal basis for

Hn to get the ε-approximate solution for (22) with higher-
order fractional derivative. All the above theories hold true.
For example, for H3, the orthonormal basis would be

1, x,
x
2

2
,
x
3

6
, J

2
0φ10(x), J

2
0φ20(x), J

2
0φ21(x), . . . , J

2
0φik(x), . . . . (28)

*at is, our method could be widely used. □

4. Numerical Simulations

*is section shows the error estimates, convergence rates,
and condition numbers of the algorithm we proposed above.
*e results are obtained by Mathematica 10.4; compared
with Ref. [15] and Ref. [16], our method is more accurate and
converges faster.

Example 1. Consider the example in Ref. [15] with α � 1.9.

− D
α
u(x) − (2x + 6)u(x) � f(x), x ∈ (0, 1),

u(0) −
1

α − 1
u′(0) � c0, u(1) + u′(1) � c1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

where the exact solution u(x) � xα + x2α− 1 + 1
+3x − 7x2 + 4x3 + x4, f(x)� − 1.82736+14.7159x0.1 − 4.88079x

0.9 − 22.9339x1.1 − 10.9209x2.1 − 2(3+x)(1+3x+ x1.9 − 7x2 +x2.8

+4x3 +x4). For this problem, we used the orthonormal basis
proposed in *eorem 4 for H2 to construct the ε-approx-
imate solution un(x). *e error estimates and convergence
rates are all discussed in Ref. [15] and our paper. But we add
the condition number cond(A)2 to illustrate the stability
discussed in Corollary 1.

Table 1 shows the results of our algorithm, where n is the
number of orthonormal basis, and also the number of
points.*e computing methods of en and rn in this paper are
the same as eN and rN in Ref. [15]. Table 2 shows the results
of Ref. [15], where eN�

△ max
0≤i≤N

|un(xi) − u(xi)|,

(xi � ih, 0≤ i≤N, h � 1/N), rN�
△ log2(eN/e2N).

*e error is much smaller in Table 1 with smaller n

than the results in Table 2. Obviously, Ref. [15] is first-
order convergent, but the convergence rate of our
method is more than second-order accuracy. Besides, we

Table 4: Results of en and rn.
n en rn

32 7.56E − 4
64 1.30E − 4 2.54
128 2.28E − 5 2.51
256 4.08E − 6 2.48
512 7.54E − 7 2.44

0.2

0.2

–0.2

0.4

0.4

–0.4

0.6 0.8 1.0

Figure 1: f(x) for Example 3.

Table 2: Ref. [15].
N eN rN

64 6.64E − 2
128 3.35E − 2 0.994
256 1.68E − 2 0.998
512 8.43E − 2 1.000

Table 3: Comparison of en.
n Our method Ref. [16]
10 8.15E − 3 8.73E − 2
15 1.00E − 3 5.13E − 2
25 1.29E − 4 2.54E − 2
50 7.82E − 5 9.49E − 3
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give the reference value of stability, that is, the condition
number cond(A)2.

Example 2. Consider example 2 in Ref. [16] with α � 2.5.

D
α
u(x) + u(x) �

6!

Γ(4.5)
x
3.5

+ x
6
, x ∈ (0, 1), u(0) � 0, u′(0) � 0, u″(0) � 0, (30)

with the solution u(x) � x6. Ref. [16] used an approximation
formula, and the error reached 10− 3. Here, α � 2.5, so we use
the orthonormal basis of H3 to construct the ε-approximate
solution un(x), and the result is shown in Table 3 compared
with Ref. [16], where en �

������������������


n
i�1 (un(xi) − u(xi))

2


,

(xi � ih, i � 1, . . . , n, h � 1/n).
Table 3 shows that our approximate solution converges

to the exact solution quickly with not very large n, and the
error of the present scheme is smaller.

In the above examples, f(x) is continuous. In order to
illustrate the feasible range of the algorithm, we give the
following example where f(x) is not continuous, as shown
in Figure 1.

Example 3. Consider the following example with α � 0.5.

D
α
u(x) − a0(x)u(x) � f(x), x ∈ [0, 1], u(0) � 0, (31)

where

f(x) �

8x
3/2

3
��
π

√ , x ∈ [0, 0.5],

8x
3/2

3
��
π

√ − 1, x ∈ (0.5, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a0(x) �

0, x ∈ [0, 0.5],

1
x
2, x ∈ (0.5, 1].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

*eexact solution is u(x) � x2. Here, α � 0.5, sowe use the
orthonormal basis ofH1

0 to construct the ε-approximate solution
un(x). Error en and convergence rate rn are shown in Table 4.

5. Conclusion

In this paper, we focused on analyzing and obtaining the
ε-approximate solution for FDEs in Sobolev space Hn[0, 1].
*e sets of orthonormal basis for H1

0, H2, H3 were con-
structed and applied in the three numerical examples. It is
obvious that our method is stable, converges faster, and has
higher accuracy. In fact, in a similar way, we can also
construct the orthonormal basis for Hn(n> 3), that is, we
can solve higher-order FDEs.
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