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�e fth type of Chebyshev polynomials was used in tandem with the spectral tau method to achieve a semianalytical solution for
the partial di�erential equation of the hyperbolic rst order. For this purpose, the problem was diminished to the solution of a set
of algebraic equations in unspecied expansion coe�cients. �e convergence and error analysis of the proposed expansion were
studied in-depth. Numerical trials have conrmed the applicability and the accuracy.

1. Introduction

�e rst-order partial di�erential equations (PDEs) mod-
elled various real-life and physical problems. Hyperbolic
PDEs characterize the time-dependent physical systems and
may be worn to model many phenomena including wave
and advection transportation of the material. Advection
equations form a special category of conservative hyperbolic
rst-order PDEs which deliver a given property at a xed
rate through a method. In advection equations, the space
and time derivatives of the conserved quantity u(x, t) are
proportional to each other, and the interested readers are
referred to [1–4], for further implementations on hyperbolic
PDE.

Spectral methods play a very important role in numerical
analysis, especially in the eld of numerical solution of
ordinary, partial, and di�erential equations. �e key ad-
vantage of spectral methods is that di�erential problems can
be quickly transformed into solutions of linear or nonlinear
algebraic equations. For more information on spectral
methods, please see [5–13].

Chebyshev polynomials are very important in many
mathematical divisions, especially in numerical analysis.
�e key idea of Chebyshev polynomials is that they form
the foundation for the extension of the di�erential and
integral equation solution. Four well-known Chebyshev
polynomial groups are used in the literature. �e author in
[14] presented the extended Sturm–Liouville di�erential
problem in the fascinating PhD thesis of Masjed-Jamei,
and he introduced a basic category of orthogonal-sym-
metric polynomials. �at class has four criteria. Some
basic properties are also included, such as a seminal
di�erential equation of order two and a generic rela-
tionship containing a three-term recursive relation. For
more essential formulae about these polynomials, the
reader is referred to the work of [14]. �e advantage of this
class is that two new types of Chebyshev polynomials, fth
and sixth, are inherited. Such polynomials were used only
once in literature by seminal work in the numerical so-
lution of fractional di�erential equations, and Abd-
Elhameed and Youssri [15–20] rst used the fth-type
Chebyshev polynomials to handle ODEs and PDEs.
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1.1. Mathematical Preliminaries. (is section presents the
properties of the basic class of symmetric orthogonal
polynomials (BCSOP) that formed in [14]. (e key concept
to develop this class of polynomial is focused on the use of an

extended Sturm–Liouville differential problem. More pre-
cisely, in [14], the author assumed that y � ϕi(z) is a se-
quence of symmetric functions that satisfies the following
differential equation of second order:

A1(z)ϕi
″(z) + A2(z)ϕi

′(z) + μiA3(z) + A4(z) +
1 − (− 1)

i

2
A5(z) ϕi(z) � 0, (1)

whereAi(z), 1≤ i≤ 5 are independent functions, and μi  are
constants. In [14], it has been shown that Ai(z), i � 1, 3, 4, 5
is even, and A2(z) is odd. You may obtain the desired
symmetric category of orthogonal polynomials if
Ai(z), 1≤ i≤ 5, and μi  are chosen as follows:

A1(z) � z
2

rz
2

+ s ,

A2(z) � z mz
2

+ n ,

A3(z) � z
2
,

A4(z) � 0,

A5(z) � − n, μi � − i((i − 1)r + m),

(2)

where the m, n, r, s parameters are real numbers.
By using the above relations, we have the following

differential equation:

z
2

s + rz
2

 ϕi
″(z) + z n + mz

2
 ϕi

′(z) − i((i − 1)r + m)z
2

+ 1 +(− 1)
i+1

 
n

2
 ϕi(z) � 0. (3)

(e solution of (3) is the generalized polynomials
Gm,n,r,s

i (z) which have the explicit form:

G
m,n,r,s
i (z) � 

⌊
i

2
⌋

k�0

⌊
i

2
⌋

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⌊
i

2
⌋− k− 1

j�0

1
Γi,j,m,n,r,s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
z
2

i

2
− k 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where

Γi,j,m,n,r,s �
2j +(− 1)

i+1
+ 2 s + n

(− 1)
i+1

+ 2j + 2⌊i/2⌋ r + m
. (5)

Moreover, the author introduced orthogonal symmetric
polynomials in [14], denoted by G

m,n,r,s

i (z) defined as

G
m,n,r,s

i (z) � 

⌊
i

2
⌋− 1

j�0
Γi,j,m,n,r,s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
G

m,n,r,s
i (z). (6)

(e polynomials G
m,n,r,s

i (z) satisfy the following recur-
rence relation:

G
m,n,r,s

i+1 (t) � zG
m,n,r,s

i (z) + Ai,m,n,r,sG
m,n,r,s

i− 1 (z), i≥ 0, (7)

with the initials:

G
m,n,r,s

0 (z) � 1, G
m,n,r,s

1 (z) � z. (8)

And

Ai,m,n,r,s � rsi
2

+ (m − 2r)s − (− 1)
i
rn i

+
1
2
(m − 2r)n 1 − (− 1)

i
 (2ri + m − r)(2ri + m − 3r).

(9)

Many properties of G
m,n,r,s

i (t) may be found in [14].
(ere are many specific categories of important or-

thogonal polynomials of Gi,j,m,n,r,s(z). (e four different
types of Chebyshev polynomials could be formed through
the expressions:

Ti(z) � G
− 1,0,− 1,1
i (z),

Ui(z) � G
− 3,0,− 1,1
i (z),

Vi(z) � 2i
G

− 3,2,− 1,1
2i

�����
1 + z

2



 ,

Wi(z) � 2i
G

− 3,2,− 1,1
2i

�����
1 − z

2



 ,

(10)

and Ti(z), Ui(z), Vi(z), Wi(z) are the first, second, third,
and fourth kinds of Chebyshev polynomials. All these
polynomials can be obtained as specific special cases of
G

m,n,r,s

i (z). (e two types of orthogonal polynomials in [14],
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especially, Chebyshev’s fifth- and sixth-kind polynomials,
may also be defined, respectively, as

Xi(z) � G
− 3,2,− 1,1
i (z),

Yi(z) � G
− 5,2,− 1,1
i (z).

(11)

We focus our study on the Chebyshev fifth kind and their
shifted polynomials. (e property of orthogonality of Xi(z)

is


1

− 1

z
2
Xj(z)Xi(z)

�����
1 − z

2
 dz �

(− 1)
i


i

L�1
AL,− 3,2,− 1,1

⎛⎝ ⎞⎠
π
2

, if i � j,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where Ai,m,n,r,s is defined in (9).
Alternatively, the orthogonality formula above is written

as


1

− 1

z
2
Xi(z)Xj(z)

�����
1 − z

2
 dz �

hi, if i � j,

0, if i≠ j.

⎧⎪⎨

⎪⎩
(13)

And

hi �

π
22i+1, i even,

π(i + 2)

i22i+1 , i odd.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

It is more reasonable to normalize fifth-type Chebyshev
polynomials. For this specific purpose, we set

Xi(z) �
1
��
hi

 Xi(z). (15)

Accordingly, Xi(z) are orthonormal on I � [− 1, 1]:


1

− 1

z
2

�����
1 − z

2
 Xi(z)Xj(z)dz �

1, if i � j,

0, if i≠ j.
 (16)

1.2. Fifth Type of ShiftedOrthonormal Chebyshev Polynomials
(5SOCP). (e 5SOCP Ci(z) can be defined on I∗ � [0, 1] by

Ci(z) �
1
��
h

√

i

Xi(2z − 1). (17)

Also, hi is defined in (14).
From (16), it is easy to note that Ci(z), i≥ 0 are ortho-

normal on I∗. Directly, we have


1

0
w
∗
(z)Ci(z)Cj(z)dx �

1, if i � j,

0, otherwise.
 (18)

And w∗(z) � (1 − 2z)2/
�����
z − z2

√
. (e following results

are needed in the sequel.

Theorem 1. %e polynomials Ci(z) in (9) are connected with
T∗i (z) by the following formula:

Ci(z) � 
i

j�0
gi,jT
∗
j (z), (19)

where

gi,j � 2
��
2
π



(− 1)

i − j

2

δj, i, j even,

j

i
, i, j odd,

0 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

And

δj �

1
2
, if j � 0,

1, if j> 0.

⎧⎪⎪⎨

⎪⎪⎩
(21)

Proof. See [15] □

Theorem 2. %e polynomials Ci(z) in (9) are connected with
T∗i (z) by two formulae as follows:

C2i(z) � 2
��
2
π





i

r�0
(− 1)

i+rδrT
∗
2r(z), (22)

where δr is defined in (12).

And

C2i+1(z) �
2

�
2

√

��������������
π(2i + 3)(2i + 1)

 

i

r�0
(− 1)

i+r
(2r + 1)T

∗
2r+1(z).

(23)

(e next corollary shows the above-intended purpose.

Corollary 1. Chebyshev polynomials of the fifth type have the
following trigonometric representations:

X2i(cos ϕ) �

��
2
π


cos(1 + 2i)

cos ϕ
. (24)

And

X2i+1(cos ϕ) �

������������
2

π 4i
2

+ 8i + 3 


(3 + 2i)cos((2 + 2i)ϕ)cos ϕ − cos((3 + 2i)ϕ)

cos2ϕ
. (25)
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Proof. See [15] □

(e following connection theorem is needed in the se-
quel. (e following two theorems are important.

Theorem 3. %e analytical form Ci(z) is specifically given as

Ci(z) � 
i

r�0
ϱr,iz

r
, (26)

where

ϱr,i � 2
2r+

3
2

��
ϕ


(2r)!

2 

i

2

j�⌊
r + 1
2
⌋

(− 1)

i

2
+ j − r

jδj(2j + r − 1)!(2j − r)!, i even,

1
������
i(i + 2)

 

i − 1
2

j�⌊
r

2
⌋

(− 1)

i + 1
2

+ j − r
(2j + 1)

2
(2j + r)!(2j − r + 1)!, i odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Theorem 4. %e reflection relation (17) of the analytical
relation may be stated as

z
m

� 
m

ℓ�0
qm,ℓCℓ(z), (28)

where

qm,ℓ �
��
π

√
2

− 2m−
1
2(2m)!

2 m
2

+ m +(1 + ℓ)2 

(m − ℓ)!(ℓ + m + 2)!
, ℓ even,

����
ℓ

2 + ℓ



(m − (2 + ℓ))!(m + 2 + ℓ)! +

�����
2ℓ + 1

√

(m + ℓ)!(m − ℓ)!
, ℓ odd.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

Proof. See [15] □

(e derivative formula is also needed.

Corollary 2. %ese two identities hold for all nonnegative
integer q:

D
q
Ci(z)|t�1 � αi,q,

D
q
Ci(z)|t�0 � (− 1)

i+qαi,q,
(30)

where

αi,q � 
i

j�0
αi,j,q. (31)

And

αi,j,q � 2
�
2

√
(− 1)

i− j2Γ(q + j)(− q + j + 1)qΓ(j)Γ q +
1
2

 

δj, if i, j even,

j

i

����
i

2 + i



, i, j odd,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)
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where (j)q is the pochhammer symbol.

Proof. See [15] □

Theorem 5. (See [20]). Let j≥ 1, the following relation holds

DCj(ξ) � 

j− 1

k�0
Mk,jCk(ξ). (33)

And Mk,j are given by

Mk,j � 22− j+k

(j + 1)(k + 1)

k + 2
, j even k odd,

j
2

+ 2j + 2k + 2
j

, j odd
j − k + 1

2
even,

j
2

+ 2j − 2k − 2
j

, j odd
j − k − 1

2
even,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

zu

zt
� 

N

j�1


N

i�0


j− 1

k�0
aijMKijCk(x)Cj(t),

zu

zX
� 

N

j�0


N

i�1


I− 1

k�0
aijMKjiCi(x)CK(t).

(35)

Theorem 6. (See [20]). For every j≥ 2, the following relation
holds

D
2
Cj(ξ) � 

j− 2

k�0

(j+k)even

Mk,jCk(ξ),
(36)

where

Mk,j �
��
π

√
22− j

j!(k + 1)! 2⌊
j − 3
2
⌋ + 3 (j + k)

j − k

2
− 1 !

1
2

(− j + k + 7) +⌊
j − 3
2
⌋ Γ

1
2

(− j + k + 2) +⌊
j

2
⌋ 

× 4F3

−
j

2
−

k

2
, −

j

2
+

k

2
+ 1, ⌈

3 − j

2
⌉ −

1
2
, − ⌊

j + 1
2
⌋ −

1
2

− j, ⌈
3 − j

2
⌉ −

3
2
,
1
2

− ⌊
j + 1
2
⌋

|1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(37)

2. Implementation of the Method

(e aim of this section is to obtain two numerical algorithms
for the solution of the first-order hyperbolic differential
equation and the second-order convection-diffusion
equation.

2.1. First-OrderHyperbolic Equation. Consider the following
first-order hyperbolic partial differential equation

Dtv � ξ1Dxv + ξ2v + S, x ∈ [0, 1], t ∈ [0, 1], (38)

subject to the initial condition

v(x, 0) � k0(x), x ∈ [0, 1]. (39)

And the boundary condition

v(0, t) � k1(t), t ∈ [0, 1], (40)
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where ξ1, ξ2 are two constants. We expand the exact solution
v, the derivatives Dtv and Dxv by the fifth-type Chebyshev
expansion as

v(x, t) ≈ vN(x, t) � 
N

i,j�0
aijCi(x)Cj(t),

zvN(x, t)

zt
� 

N

i,j�0
aijCi(x)

zCj(t)

zt
,

zvN(x, t)

zx
� 

N

i,j�0
aij

zCi(x)

zx
Cj(t),

RN(x, t) � DtvN − ξ1DxvN − ξ2vN − S.

(41)

We apply the typical tau method and make use of the
boundary conditions to get a system of (N + 1) × (N + 1)

algebraic equations in the required double-shifted fifth-
kind Chebyshev coefficients aij, i, j � 0, 1, . . . , N that can
be solved using any standard iteration technique, such as
the iteration method of Newton. It is therefore possible
to evaluate the semianalytic solution vN(x, t).

2.2. Second-Order Convection-Diffusion Equation.
Consider the following second-order convection-diffusion
equation:

zu

zt
+ β

zu

zx
� α

z
2
u

zx
2, (x, t) ∈ (0, 1) ×(0, 1), (42)

subject to the initial condition

u(x, 0) � f(x), x ∈ (0, 1). (43)

And the boundary conditions

u((0, )) � g0(t), u(1, t) � g1(t), t ∈ (0, 1),

zu

zt
+ β

zu

zx
� α

z
2
u

zx
2, (x, t) ∈ (0, 1) ×(0, 1),

(44)

subject to the initial condition

u(x, 0) � f(x), x ∈ (0, 1). (45)

And the boundary conditions

u(0, t) � g0(t), u(1, t) � g1(t), t ∈ (0, 1), (46)

where α, β are two constants. We expand the exact solution
in terms of the shifted fifth-kind Chebyshev polynomials and
derivatives of u based on the above-mentioned derivatives
theorems as

u(x, t)≃uN(x, t) � 

N

i�0


N

j�0
aijCi(x)Cj

′(t),

z
2
u

zx
2 � 

N

j�0


N

i�2


i− 2

k�0
ai,jMk,jCk(x)Cj(t),

R(x, t) � 
N

J�0


N

i�0


j− 1

K�0
aijMk,jCi(x)CK(t)

+ 
N

J�0


N

i�0


i− 1

K�0
βijMk,jCk(x)Cj(t)

− 
N

J�0


N

i�2


i− 1

K�0
αaijMk,jCk(x)Cj(t).



N

j�0


N

i�0
ai,jCi(x)Cj(0) � f(x),



N

j�0


N

i�0
ai,jCi(0)Cj(t) � g0(t),



N

j�0


N

i�0
ai,jCi(1)Cj(t) � g1(t).

(47)

Applying the inner product and using the orthogonality
relation, we get



N

j�0


N

i�0


j− 1

k�0
aijMk,jδi,mδk,nhihk + 

N

j�0


N

i�1


i− 1

k�0
βaijMk,iδi,mδj,nhihj

− 

N

j�0


N

i�2


i− 1

k�0
αai,jMk,iδk,mδj,nhkhj � 0,



N

j�0


N

i�0
ai,jδimhiCj(0) � fm,



N

j�0


N

i�0
ai,jδjnhjCi(0) � g

(0)
n ,



N

j�0


N

i�0
ai,jCi(1)δjnhj � g

(1)
n .

(48)

6 Mathematical Problems in Engineering



(e obtained system of algebraic equations is solved by
the use of Gaussian elimination to get the unknown ex-
pansion coefficients and, hence, the numerical solution.

3. Discussion of Convergence and
Error Analysis

(e following lemma is needed.

Lemma 1. %e fifth-kind Chebyshev polynomials Cℓ(t)

satisfy the following inequality:

Cℓ(t)


<(2 + ℓ)
��
2
π



,∀t ∈ (0, t). (49)

Theorem 7. If f(t) ∈ L2
w∗I
∗ (the set of all square Lebesgue

integrable functions), |f(3)(t)|⩽L, and if its expansion is

f(t) � 
∞

ℓ�0
aℓCℓ(t). (50)

The series in (50) uniformly converges to f(t). Also, we
have

aℓ


<
���
2π

√
L

2ℓ3
, forallℓ > 3. (51)

Theorem 8. Let u(t) satisfies the conditions of %eorem 7,
uN+1(t), uN(t) are two approximate solutions of u(t), and we
define eN(t) � uN+1(t) − uN(t), and then, we get the fol-
lowing estimation of the error:

eN(t)
����

����2,w∗
� O

1
N

3 , (52)

where ‖eN(t)‖2,w∗ means the L2 − norm of eN(t).

Theorem 9. Let f(t) ascertain conditions of Lemma 1, let
eN(t) � 

∞
ℓ�N+1 aℓCℓ(t) be the truncation error, and then,

eN(t) satisfy the following estimate

eN(t)


<
3L

N
. (53)

Theorem 10. Assume that v(x, t) is separable C3 function
with bounded third-order derivatives, and then, the coeffi-
cients in (31) satisfy:

ai,j



<
Ω

i
3
j
3,∀i, j> 3, (54)

where Ω is a generic positive constant.

Proof. (e proof is a direct consequence of (eorem 6. □

Theorem 11. If v(x, t) satisfies the conditions of %eorem 10
and vN(x, t) is the approximation of v(x, t), we then get the
following estimation of the error:

v − vN

����
����2,w∗

� O N
− 3

 , (55)

where ‖.‖2,w∗ denotes the L2-norm.

Proof. (e proof is a direct consequence of (eorem 6. □

Using the orthogonality of Ci(x)Cj(t) and with the aid
of (eorem 9 and applying Parseval’s identity, we get the
desired result.

4. Numerical Results

We offer some numerical tests in this section to illustrate the
precision, efficacy, and the wide applicability of the proposed
system. We compare our method with Laguerre-Gauss-
Radau scheme [21] which shows that our method is very

Table 1: Comparison between the errors of Example 1 when N �

16 and t � 0.1.

x Bhrawy et al. Current method
0.1 2.84.10− 7 2.11.10− 17

0.2 8.79.10− 6 1.56.10− 17

0.3 1.20.10− 5 1.59.10− 17

0.4 1.12.10− 5 7.32.10− 18

0.5 7.95.10− 6 3.37.10− 18

0.6 3.29.10− 6 3.34.10− 19

0.7 1.78.10− 6 1.47.10− 18

0.8 6.53.10− 6 3.86.10− 18

0.9 1.04.10− 5 1.79.10− 15

1 1.32.10− 5 1.27.10− 13

Table 2: (e different errors of Example 1 at N � 16 and t � 0.5.

x Bhrawy et al. Current method
0.1 8.95.10− 6 5.00.10− 18

0.2 4.10.10− 6 4.64.10− 19

0.3 1.39.10− 5 2.22.10− 18

0.4 2.07.10− 5 1.16.10− 19

0.5 2.47.10− 5 2.69.10− 15

0.6 2.62.10− 6 1.90.10− 13

0.7 2.55.10− 5 3.52.10− 13

0.8 2.31.10− 5 3.53.10− 11

0.9 1.93.10− 5 2.43.10− 10

1 1.45.10− 5 1.29.10− 9

Table 3: (e different errors for Example 1 at N � 16 and t � 1.

x Bhrawy et al. Current method
0.1 4.87.10− 5 3.14.10− 13

0.2 4.89.10− 5 5.81.10− 12

0.3 4.17.10− 5 5.83.10− 11

0.4 3.03.10− 5 4.02.10− 10

0.5 1.75.10− 5 2.13.10− 9

0.6 4.74.10− 6 9.27.10− 9

0.7 6.68.10− 6 3.46.10− 8

0.8 1.61.10− 5 1.14.10− 7

0.9 2.32.10− 5 3.39.10− 7

1 2.79.10− 5 9.26.10− 7

Mathematical Problems in Engineering 7



efficient. (erefore, we affirm that the proposed technique is
more suitable for solving problems of this type.(e following
tables depict the absolute errors.

E(x, t) � yN,M(x, t) − y(x, t)


, (56)

where yN,M(x, t) is the numerical, and , y(x, t) is the exact
solution at the node (x, t). (e point-wise errors are eval-
uated by

E � max
(x,t)∈[0,1]×[0,1]

E(x, t). (57)

Example 1 (see[21]). Let us start with the following hy-
perbolic PDE:

Dty � Dxy + y + S, x ∈ [0, 1], t ∈ [0, 1], (58)

with the initials

y(0, t) � e
−

�
2

√
t
, y(x, 0) � e

− x
, x ∈ [0, 1], t ∈ [0, 1], (59)

where

S(x, t) � −
�
2

√
e

−
�
2

√
t− x

. (60)

(e smooth solution is given by

y � e
− (

�
2

√
t+x)

. (61)

In Tables 1–3, we compare between our method for the
case N � 16, t � 0.1, 0.5, 1. (ese are obtained by the gen-
eralized collocation method Laguerre–Gauss–Radau [21]. In

1.0
0.8
0.6
0.4
0.2

0.0

0.5

1.0 0.0

0.5

1.0

Figure 1: (e solution y(x, t) for N � 16 in Example 1.

0
0.0

0.5

1.0 0.0

0.5

1.0
8.×10-7

6.×10-7

4.×10-7

2.×10-7

Figure 2: (e error in Example 1.

Table 4: (e maximum absolute error for Example 1.

M 6 8 10 12 14 16
MAE 1.73.10− 5 1.35.10− 7 6.67.10− 10 3.76.10− 11 5.14.10− 9 0.00.10− 0
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Figure 1, we depict the exact solution of Example 1, and for
N � 16, in Figure 2, we depict the maximum absolute error
when N � 16 (Table 4).

Example 2 (see [21]).And, then the following hyperbolic
PDE:

zy(x, t)

zt
�

zy(x, t)

zx
+ y(x, t)

− sin(t)e
− t− x

− cos(t)e
− t− x

 , x ∈ [0, 1], t ∈ [0, 1],

(62)

with the initials,

0.3

0.2
0.1

0.0
0.0

0.5

1.0 0.0

0.5

1.0

Figure 3: (e solution y(x, t) for N � 16 in Example 2.

0
0.0

0.5

1.0 0.0

0.5

1.0
4.×10-10

2.×10-10

Figure 4: (e error in Example 2.

Table 5: Absolute errors for Example 2 when N � 16.

(x, t)
θ1 � ϑ1 � − 1

2, θ1 � ϑ1 � 0, θ1 � ϑ1 � 1
2, Current methodθ2 � ϑ2 � − 1

2, θ2 � ϑ2 � 0, θ2 � ϑ2 � 1
2,

(0.1, 0.1) 9.61 × 10− 7 4.22 × 10− 7 1.95 × 10− 7 1.98 × 10− 19

(0.2, 0.2) 6.37 × 10− 7 5.92 × 10− 7 7.08 × 10− 7 2.35 × 10− 19

(0.3, 0.3) 9.63 × 10− 7 6.47 × 10− 7 1.67 × 10− 7 1.17 × 10− 19

(0.4, 0.4) 1.44 × 10− 6 8.90 × 10− 7 7.52 × 10− 7 6.03 × 10− 20

(0.5, 0.5) 2.04 × 10− 6 9.36 × 10− 7 2.47 × 10− 7 7.97 × 10− 17

(0.6, 0.6) 1.28 × 10− 8 4.81 × 10− 8 1.35 × 10− 7 6.08 × 10− 14

(0.7, 0.7) 2.23 × 10− 6 1.23 × 10− 6 8.48 × 10− 7 2.73 × 10− 12

(0.8, 0.8) 7.97 × 10− 7 4.56 × 10− 7 1.16 × 10− 7 3.94 × 10− 11

(0.9, 0.9) 3.33 × 10− 6 1.55 × 10− 6 6.54 × 10− 7 2.51 × 10− 10
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y(0, t) � sin(t)e
− t

, t ∈ [0, 1], y(x, 0) � 0, x ∈ [0, 1]. (63)

(e exact smooth solution is

y(x, t) � e
− t− x sin(t). (64)

Table 5 presents the results developed by our method
when N � 16and the method in [21]; in Figure 3, we il-
lustrate the solution y(x, t), while in Figure 4, we depict the
error when N � 16.

Example 3 (see [22]).In this example, we consider

f(x) � exp −
(x + 0.5)

2

0.00125
 ,

g0(0, t) �
0.025

��������������
0.000625 + 0.02t

√ exp −
(0.5 − t)

2

(0.00125 + 0.04t)
 ,

g1(1, t) �
0.025

��������������
0.000625 + 0.02t

√ exp −
(1.5 − t)

2

(0.00125 + 0.04t)
 ,

α � 0.01, β � 1.0,

(65)

with the exact smooth solution

u(x, t) �
0.025

��������������
0.000625 + 0.02t

√ exp −
(x + 0.5 − t)

2

(0.00125 + 0.04t)
 .

(66)

In Table 6, we list the maximum pointwise error for
different values of N � 16. In Figure 5, we depict the
maximum absolute error when N � 16.

5. Conclusions

A precise numerical technique for solving the hyperbolic
partial differential equations is being constructed and ap-
plied in the present work. (e fifth-type approach of
Chebyshev spectral tau was used to simplify the solution of
hyperbolic partial differential equations to a set of algebraic
equations, which can be more conveniently solved. (e
numerical findings showed our method to be extremely
effective and reliable.
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