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In view of the fact that di�erent factor Copula models are only applicable to di�erent practical problems in collateralized debt
obligations (CDO) market and that there is no semianalytical solution under nonhomogeneous assumptions to CDO pricing model,
we designed a general numerical algorithm which was based on the framework of single factor Copula model and randomized quasi-
Monte Carlo (RQMC) simulationmethod.We took two single factor Copulamodels as examples to conduct empirical study, in which
the simulation results of RQMC andMonte Carlo (MC) simulation method were compared and analyzed based on variance changes.
�e result showed that the algorithm in this paper was not only applicable to general single factor Copulamodel but also very stable. So,
it was a general and e�cient numerical method to solve the problem of CDO pricing under nonhomogeneous assumptions.

1. Introduction

As an important part of the credit derivatives market, the
pricing of collateralized debt obligations (CDO) is the focus
of �nance and academic circle. In the pricing process, there
are three key points: the default distribution of individual
assets, the joint default distribution of portfolios, and the
spread of each tranche of CDO by nonarbitrage pricing.

�ere are mainly reduced model and structured model
for establishing default distribution of individual reference
entity. In fact, reducedmodel is widely used, which describes
the statistical characteristics of default events by introducing
default intensity parameters.

As we all know, factor Copula methods [1, 2] are the
mainstream ones to estimate the joint distribution of asset
portfolio. We must mention that Gaussian factor Copula
model is the standard model and is widely used. However,
the �nancial market data have obvious fat-tailed character,
so many scholars introduced some more fat-tailed distri-
bution [3, 4] to research. Frey et al. [3] show that single factor
t-Copula model is more in line with the characteristics of the

�nancial market and that it can carry out risk management
and pricing more accurately. Hull and White [4] show that
double t-Copula model can achieve better match with
market. On the other hand, di�erent single factor Copula
methods are often applicable to di�erent practical problems.
Up to now, no general algorithm based on the single factor
Copula framework has been reported.

Nonarbitrage pricing methods of tranche spread are
classi�ed into homogeneous and nonhomogeneous ones.
�ere are semianalytical solutions under assumption of
homogeneity [5]. However, the diversity of the market re-
quires extending the model to nonhomogeneous assump-
tions. In this case, due to the absence of semianalytical
solution, using appropriate numerical methods to simulate it
becomes very meaningful. Monte Carlo (MC) [6, 7] method
based on pseudorandom number is used most commonly.
Quasi-Monte Carlo (QMC) method is the expansion of MC,
which is based on low deviation sequences whose distri-
bution is more uniform in the sample space. Some scholars
[8, 9] have already applied QMC method to di�erent �-
nancial �elds and found that QMC method was often
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superior to MC method in dealing with high-dimensional
problems. Randomized quasi-Monte Carlo (RQMC) [10, 11]
method is a further improvement of QMC by using ran-
domized low-discrepancy, which has become a more ad-
vantageous numerical method. RQMC has been used for
option pricing financial problem and other problems [9, 11].
Relevant literatures show that RQMC usually has higher
convergence order than MC and QMC. To our knowledge,
there is no published literature studying the application of
RQMC in CDO pricing under the assumption of
nonhomogeneity.

In this paper, we design a general numerical algorithm
based on RQMC, single factor Copula framework, and
nonhomogeneous assumptions, and we take two single
factor Copula models as examples for empirical study to
expect to provide a new way to solve such problems.

*e remainder of this paper is organized as follows. In
the following section, some of the basics used in this article
will be introduced. In Section 3, under the framework of
general single factor Copula method, the algorithm steps are
given based on RQMC. Empirical study is carried out in
Section 4. In the last section, the conclusion of this paper and
the prospect will be presented.

2. Basics

In this section, we will introduce some of the basics used in
this article. Firstly, we recall nonarbitrage pricing model.
Secondly, we present single factor Copula model in general
(t-Copula model and double t-Copula model in particular)
and methods for generating randomized Sobol sequences.

2.1. Nonarbitrage Pricing Model. Assume that there are n
reference entities in the assets pool of CDO and the total
nominal value of N. Without loss of generality, we may
suppose that N� 1 and denote the nominal value of the i-th
reference entity by Ni (i� 1, . . ., n), where 1 � N � 

n
i�1 Ni.

Let li be the loss when the i-th reference entity with the recovery
rate Ri is default, then li � Ni(1 − Ri), and the accumulative
default loss of asset pool at time t can be expressed as

L(t) � 
n
i�1 li1 Ti ≤ t{ }, where 1 Ti ≤ t{ } �

1, if Ti ≤ t,

0, if Ti ≤ t.
 .

Let the term of CDO be T year, the payment time nodes
be τ1, τ2, . . . , τJ � T, Δτj � τj − τj−1 (τ0 � 0), and rf be the
risk-free interest rate. Assume that the CDO is divided
into M bunches and the m-th tranche is denoted as
[am−1, am], where m � 1, 2, . . . , M. According to the order
of cash flow distribution of CDO structure, we know that
the loss suffered by the m-th tranche at t time is given by
Lm(t) � max L(t) − Nam−1, 0  − max L(t) − Nam, 0  �

max L(t)−{ am−1, 0} − max L(t) − am, 0 , and its residual
value is

Em(t) � Nam − Nam−1 − Lm(t)

� am − am−1 − Lm(t).
(1)

For the m-th tranche, let the spread be sm and smAm be
the discounted value of normal payment for promoting.

smBm represents the accrual payment when default occurs
and Cm stands for the discounted value of compensation.
*en, in continuous case, the discounted expectation of
premium leg (PL) and default leg (DL) after discount can be
expressed as follows:

E PL am−1, am  

�E 
T

0
smEm(t)e

− rftdt ≈ sm Am +Bm( ,
(2)

E DL am−1, am   � E 
T

0
e

− rftdLm (t) ≈ Cm. (3)

According to the principle of nonarbitrage pricing, we
have

E PL am−1, am (  � E DL am−1, am ( . (4)

We can derive from equations (2)–(4) that

sm �
Cm

Am + Bm

, m � 1, 2, . . . , M. (5)

2.2. Single Factor Copula Model. It is a reasonable as-
sumption that all companies will eventually default in
single factor Copula model, and the correlation of default
can be reflected by the correlation of default time, which
can be implied by return rate of assets. Assume that the
yield rate of the i-th asset Xi(i � 1, 2, . . . , n) is determined
jointly by a common factor Y and a special factor
Zi(i � 1, 2, . . . , n), namely,

Xi �
��
ρi

√
Y +

�����
1 − ρi


Zi, (6)

where ρi is the correlation coefficient between Xi and Y. Zi

andY are all independent to each other with 0mean and unit
variance. Let GY, GZi

, and GXi
be the distribution function of

Y, Zi, and Xi, respectively.
According to the reduced model, we see that the default

probability of the i-th asset before time ti is

Qi ti(  � 1 − e
− λiti , (7)

where λi is the default intensity of the i-th asset.
*e corresponding relationship between the default time

Ti and the yield rate Xi can be expressed as follows:

P Xi ≤xi  � P Ti ≤ ti . (8)

Namely,

GXi
xi(  � Qi ti( . (9)

Combining the results of (7)–(9), and considering the
default correlation among all assets, the corresponding
default time ti can be obtained:

ti � Q
−1
i GXi

xi(  

� −
ln 1 − GXi

xi(  

λi

.

(10)
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Substituting ti above into equations (2) and (3), re-
spectively, we can estimate the cumulative default loss and
the residual principal of asset pool. Finally, the spread of
each tranche of CDO can be obtained by (5).

*ere are different single factor Copula models with
different distribution of Y and Zi in (6). Next, two frequently
used single factor Copula models are introduced: single
factor t-Copula model and double t-Copula model.

2.2.1. Single Factor t-Copula Model. In (6), we take

Y � U,

Zi �

������
nWi

− 2
nWi



Wi, i � 1, 2, . . . , n, .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

*en,

Xi �
��
ρi

√
U +

�����
1 − ρi


������
nWi

− 2
nWi



Wi, (12)

where U and Wi are all independent of each other, and
U ∼ N(0, 1), Wi ∼ t(nWi

), ρi is the correlation coefficient of
Xi and U, and Xi has 0 mean unit variance evidently. Notice
that (12) which satisfies the above conditions is single factor
t-Copula model.

2.2.2. Double t-Copula Model. In (6), we take

Y �

������
nU − 2

nU



U,

Zi �

������
nWi

− 2
nWi



Wi.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

*en,

Xi �
��
ρi

√
������
nU − 2

nU



U +
�����
1 − ρi


������
nWi

− 2
nWi



Wi. (14)

where U ∼ t(nU) and Wi ∼ t(nWi
), respectively. *ey are all

independent of each other, ρi is the correlation coefficient of
Xi and U, and Xi has 0 mean unit variance obviously.
Equation (14) which satisfies the above conditions is double
t-Copula model.

2.3. Randomized Sobol Sequences. Figure 1 shows pseudo-
random number point sequences (Figure 1(a)) used by MC
simulation, Sobol sequences (Figure 1(b)) used by QMC
simulation, and randomized Sobol sequences (Figure 1(c))
used by RQMC simulation in high-dimensional case (125
dimension, 126 dimension), respectively, where the number
of points are all 1200. It can be seen from Figure 1 that
randomized Sobol sequences not only maintain good uni-
formity but also improve the circulation problem generated
by Sobol sequences in high-dimensional case. In this paper,

RQMC method based on randomized Sobol sequences will
be used to simulate return rate on assets.

In this paper, we generate n+ 1 dimensional randomized
Sobol sequence by using the following command in
MATLAB:

P � sobolset(n + 1);

P � scramble P, ′MatousekAffineOwen′( .
(15)

3. Algorithm

Let the nominal value and recovery rate of each asset be
equal, i.e., Ni � (1/n), Ri � R, and assume equal payment
intervals, i.e., Δτj � τj − τj−1 � Δτ. *e following steps of
RQMC simulation algorithm for CDO pricing are given
based on (6).

Step 1. Obtain distribution function GXi
.

According to the specific single factor Copula model
form, the probability density of Y and Zi is derived from the
probability density of U and Wi, respectively (the meanings
of U and Wi can be understood in conjunction with (12) and
(14)). *en, the probability density of Xi can be followed by
the convolution formula. Finally, we obtain the distribution
function GXi

. Here, we use GU and GWi
to denote the dis-

tribution functions of U and Wi, respectively.

Step 2. Generate randomized Sobol sequences.
Generate (n+ 1)-dimensional randomized Sobol se-

quences (ε0, ε1, . . . , εn).

Step 3. Simulate a path of yields Xi(i � 1, . . . , n).
For (ε0, ε1, . . . , εn) generated in step 2, we can get

(G−1
U (ε0), G−1

W1
(ε1), . . . , G−1

Wn
(εn)), which is a set of values of

(U, W1, . . . , Wn), denoted by (u, w1, . . . , wn). *en, no-
ticing the specific single factor Copula model form and the
relationship between Y and U, Zi(i � 1, . . . , n) and
Wi(i � 1, . . . , n), and a set of values (Y, Z1, . . . , Zn) cor-
responding (u, w1, . . . , wn) can be obtained, which might as
well be denoted by (y, z1, . . . , zn). Finally, plugging
(y, z1, . . . , zn) into (6), we have the corresponding values of
Xi(i � 1, . . . , n), denoted by xi(i � 1, . . . , n).

Step 4. Generate default time ti(i � 1, . . . , n).
Substituting xi(i � 1, . . . , n) obtained in Step 3 into (10),

we can get the default time ti(i � 1, . . . , n).

Step 5. Find out actual default time tk.
Let tk be the k-th actual default time with

tk|k � 1, 2, . . . , K , where tk ∈ ti|ti ≤T, i � 1, 2, . . . , n , K is
the total amount of actual default assets. Here, we agree that
tk ≤tk+1, k � 1, 2, . . . , K − 1. *e default matrix is as follows:

L �

t1 t2 t3

h1 h2 h3

H1 H2 H3

· · ·

· · ·

· · ·

tK

hK

HK

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)
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where hk is the default nominal value corresponding to the
k-th actual default, and Hk is the cumulative default nominal
value by time tk.

Step 6. Allocate the default loss Lm, (m � 1, 2, . . . , M).

Let bm be the position corresponding to the maximum
loss that them-th tranche can bear in the default matrix, that
is, Hbm

(1 − R) � am, where am is the separation point (the
maximum loss that should be taken by the m-th tranche).
*en, the default information allocated to the m-th tranche
can be given in the following default matrix:
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Figure 1: Scatter plots of different sequences.
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Figure 2: Variation of simulation variances of CDO pricing of each tranche with simulation times for single factor t-Copula model.
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Lm �

tbm−1+1 tbm−1+2 · · · tbm

hbm−1+1 hbm−1+2 · · · h
bm

Hbm−1+1 Hbm−1+2 · · · H
bm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

Step 7. Calculate Am, Bm, Cm, (m � 1, . . . , M).
For them-th tranche (m � 1, . . . , M), the initial nominal

value is E
(m)
0 � am − am−1, and remaining nominal values at

τj(j � 1, . . . , J) are

E
(m)
j � E

(m)
j−1 − 

k∈Ω
(1 − R)hk, j � 1, . . . , J, (18)

where Ω � k|τj−1 ≤tk ≤ τj, bm−1 + 1≤ k≤ bm . As
consequence

Am � 

J

j�1
Δτ × E

(m)
j × e

− rfτj ,

Bm � 
bm−1+1≤ k≤ bm

tk − t∗(  × hk ×(1 − R) × e
− rf


tk ,

Cm � 
bm−1+1≤ k≤ bm

hk ×(1 − R) × e
− rf


tk ,

(19)

where t∗ is the last coupon payment time nearest to tk.

Step 8. Obtain sm(m � 1, . . . , M).
Repeating step 2–step 7 for enough times, we calculate

the average values of Am, Bm, Cm, denoted as Am, Bm, Cm,

respectively. *us, sm(m � 1, . . . , M) can be obtained by
substituting Am, Bm, Cm into (5).

4. Empirical Study

Based on the general factor Copula model (6), we take single
factor t-Copula model and double t-Copula model as ex-
amples to apply the algorithm designed in Section 3 to CDO
pricing under nonhomogeneous assumptions.

4.1. Parameter Value. For further applications, as literature
[4], we set the values of each parameter as n � 125,
rf � 0.035, R � 0.4, Δτ � 0.25, T � 5, λ � 0.0083, ρ � 0.15,

and CDO tranches are [0, 3%], [3%, 6%], [6%, 9%], [9%,
12%], [12%, 22%], and [22%, 100%], respectively (Note: in
practical application, only corresponding value ρi is
substituted into (6); other steps in algorithm in Section 3 are
exactly the same). In (12), we assume Wi ∼ t(4). In (14), we
assume U ∼ t(4) Wi ∼ t(4).

4.2. Analysis of Results. In order to compare the stability
properties between RQMC simulation and MC simulation,
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Figure 3: Variation of simulation variances of CDO pricing of each tranche with simulation times for double t-Copula model.
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we investigate variance changes under different simulation
times for each tranche of the two simulationmethods, taking
40 times for each simulation time, respectively. We change
the simulation times from 5000 to 50000 (the step size is
5000) and then calculate their variances under different
simulation times for CDO pricing of each tranche with
RQMC simulation and MC simulation, respectively. *e
results of the two single factor Copula models are presented
in Figures 2 and 3, respectively.

As a whole, we can see from Figures 2 and 3 that the
variances of the two simulation methods in the six different
tranches all gradually decrease with the increase of simu-
lation times, and the gap of the two curves also reduces little
by little in each subgraph. *is indicates that the results of
the two simulation methods both become stable with the
increase of simulation times. Moreover, the variance
changes of CDO pricing of each tranche of RQMC are all
smoother than those of MC relatively. *is shows that
RQMC method simulation results are more stable than MC
even in the simulation times being not too big.

From the local point of view, in each subgraph, when the
simulation times are relatively smaller, the variance fluc-
tuations of MC are relatively larger. In particular, when the
simulation times are the same, the variances of RQMC are all
smaller than those of MC. When the simulation times are
larger, such as 10000 times, the simulation variances of MC
method are still higher than those of RQMC method. *is
fully shows that the simulation results of RQMCmethod are
more stable than MC regardless of the simulation times.

In a word, RQMC simulation method is more efficient
and stable, and it can obtain relatively stable results with less
simulation times, thus saving program running cost and
improving computational efficiency.

5. Conclusion and Prospect

In this paper, considering CDO pricing problem under
nonhomogeneous assumptions, we designed a general al-
gorithm applicable to general single factor Copula model
based on RQMC. We further took two single factor Copula
models as examples to compare and analyze variances of
RQMC and MC simulation results, and observed their per-
formances in each tranche. It is showed that the algorithm
designed in this paper is consistent with the expected results.
Whether from a local point of view or from the overall view,
the performances of RQMC in CDO pricing of each tranche
are significantly better than MC. *is means that the algo-
rithm designed in this paper is a general and feasible nu-
merical algorithm, which can provide a practical way to the
problem of CDO pricing under the general single factor
Copula framework and nonhomogeneity assumptions.

We will consider the further optimization of the algo-
rithm and try to apply the algorithm to other CDO pricing
problems in further work.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by the NSFC, grants 11801529.

References

[1] C. Y.-H. Chen and S. Nasekin, “Quantifying systemic risk with
factor copulas,” ;e European Journal of Finance, vol. 26,
no. 18, pp. 1926–1947, 2020.

[2] M. Nevrla, “Systemic risk in European financial and energy
sectors: dynamic factor copula approach,” Economic Systems,
vol. 44, no. 4, Article ID 100820, 2020.

[3] R. Frey, A. McNeil, and M. Nyfeler, “Copulas and credit
models,” Risk, vol. 25, no. 1, pp. 90–93, 2012.

[4] J. Hull and A. White, “Valuation of a CDO and an n-th to
default CDs without Monte Carlo simulation,” Journal of
Derivatives, vol. 12, no. 3, pp. 8–23, 2004.

[5] J. C. Hull, Options, “Futures and Other Derivatives, Pearson
Education India, Delhi, India, 10th Edition, 2018.

[6] S. R. Saratha, G. S. S. Krishnan, M. Bagyalakshmi, Lim, and
P. Chee, “Solving Black–Scholes equations using fractional
generalized homotopy analysis method,” Computational and
Applied Mathematics, vol. 12, no. 3, p. 262, 2020.

[7] Q. Ramzan, M. Amin, M. Amin, and I. Muhammad, “*e
extended generalized inverted kumaraswamy weibulldis-
tribution: properties and applications,” AIMS Mathematics,
vol. 6, no. 9, pp. 9955–9980, 2021.

[8] Z. J. He and X. Q. Wang, “Convergence analysis of quasi-
Monte Carlo sampling for quantile and expected shortfall,”
Mathematics of Computation, vol. 90, no. 327, pp. 303–319,
2021.

[9] C. H. Han and Y. Z. Lai, “Generalized control variate methods
for pricing Asian options,” Journal of Computational Finance,
vol. 14, no. 2, pp. 87–118, 2010.

[10] E. Hintz, M. Hofert, and C. Lemieux, “Grouped normal
variance mixtures,” Risks, vol. 8, no. 4, pp. 103–128, 2020.

[11] J. M. Xiang and X. Q. Wang, “Primal-dual quasi-Monte Carlo
simulation with dimension reduction for pricing American
options,” Quantitative Finance, vol. 20, no. 10, pp. 1701–1720,
2020.

6 Mathematical Problems in Engineering


