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In order to study the investment portfolio problem, this paper propose a class of stochastic programming model with rough
feasible region, where randomness and roughness coexist. Based on the covering rough set, the concept of the discrete degree
covering is defined to divide the rough feasible region. Furthermore, the discrete degree covering stochastic rough programming
model (DDC-SRP) is constructed depending on a synthesis effect function that considers discrete degree and the expectation and
variance for random objective function. Properties of the DDC-SRP model are discussed. In addition, the convexity of the DDC-
SRP model is obtained in some certain conditions. Considering the random rough simulation, a genetic algorithm is introduced.
Finally, a numerical example is given to show the validity of the DDC-SRP model.

1. Introduction

Investment portfolio problem is very important in resource
allocation with uncertainty. For dealing with such decision-
making problems with uncertainty, many scholars have
introduced some models including random or fuzzy vari-
ables to formulate the uncertainty. Mean-variance portfolio
selection has been a central issue in finance since Marko-
witz’s pioneering work [1] on a single-period investment
model. Fu et al. [2] derived explicit closed-form solutions,
for the efficient frontier, optimal investment strategy and for
the dynamic mean-variance portfolio selection problem
under the constraint of a higher borrowing rate. Yu et al. [3]
considered the effects of some frequently used utility
functions in portfolio selection by comparing the optimal
investment outcomes corresponding to these utility func-
tions. Zhang et al. [4] proposed a new portfolio selection
model with the maximum utility based on the interval-
valued possibilistic mean and possibilistic variance, which is
a two-parameter quadratic programming problem. Zhang
[5] discussed the portfolio selection problem for bounded
assets based on upper and lower possibilistic means and
variances. .e mean-standard deviation model for portfolio

selection can be transformed to a linear programming under
possibility distributions, so this methodology can be used to
solve large-scale portfolio selection problems. Guo et al. [6]
considered a fuzzy multiperiod portfolio selection problem
with V-shaped transaction cost. Within the framework of
credibility theory, a mean-variance model is formulated with
the objective of maximizing the terminal return under the
total risk constraint over the whole investment. Giner [7]
proposed a new and simple variance decomposition based
on splitting the domain space, and through the law of total
variance and the first and secondmoments of each truncated
distribution, the requested decomposition formulas are
deduced. In [8], the improved artificial bee colony (ABC)
algorithm with an external population is applied to the
optimization of the blockchain investment portfolio.

.ese above studies considered the investment portfolio
problem with randomness and fuzziness. However in real
life, when making portfolio selection, we choose one stock as
the key investment object (core stock) and others as noncore
stocks to form a portfolio. Since each combination is a
partition of an alternative stock set, the alternative stock set
can be regarded as a rough set. .e traditional classification
by regression analysis can only deal with randomness to a
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certain extent, but cannot deal with the roughness caused by
portfolio classification of decision-makers’ subjective con-
sciousness. So here we apply rough set theory to deal with
portfolio. When we select a stock as an investment objective,
we must consider many related factors, such as the national
policy, the enterprise benefit, the prospects for the devel-
opment of the enterprise, and so on. Because the investment
risk is bigger when investors select only one stock, they often
select a stock portfolio, which means that they will select a
class of stocks. In order to disperse risk in investment, in-
vestors tend to choose the obvious difference enterprises or
the enterprises whose futures are not related and use their
stocks as an investment portfolio. For example, we choose a
stock that is more affected by the market and several stocks
that are less affected by the market to form a portfolio. So if
one cost of stock falls, it will not affect the other stocks. Here,
a core stock and other stocks associated with it are used to
form a portfolio. Taking each stock as the core stock can
form a portfolio. .ese portfolios just cover the set com-
posed of all optional stocks, that is, all portfolios are
equivalent to the division of this optional stock set.
Roughness is the uncertainty caused by the division of sets,
so rough set theory is used to analyze stock investment
problems. When selected a stock as the investment core, the
investment portfolio with the core has roughness due to the
difference result of classification. .erefore, the feasible
region of the considered decision problem is rough set. In
this article, a class of stochastic programming model with
rough feasible region is put forward in investment portfolio.

X is the set of investment stocks that can be selected. In
accordance with the alternatives, expected return attribute
that is numerical attribute, stocks can be classified. Stocks
can also be classified in accordance with the different en-
terprise futures that is categorical attribute. On the invest-
ment object classification, we must consider both the
numerical attribute and the categorical attribute. .e stocks
that are in the same class will be with similar relation N.
f(x) is the comprehensive return value with the core in-
vestment object x in each portfolio. (x)N is a set in which
these elements have similar relation with x. .ese are two
investment objects in the investment portfolio. Investors’
goal is to choose the best investment portfolio in order to get
the maximum expected profit, and this similar relation has
the roughness based on covering.

Because this roughness based on covering, rough set, and
covering rough set theory must be introduced. Rough set
theory [9], a tool for data analyzing, was first proposed by
Pawlak in 1982. As a new mathematical theory to model
incomplete knowledge, it can deal with problems with in-
exact data or imprecise information for complicated systems
effectively. Now many researchers are studying on rough set
with randomness. Zhu [10] studied a type of generalized
rough sets based on covering and the relationship between
this type of covering-based rough sets and the generalized
rough sets based on binary relation. In [11], several un-
certainty measures of neighborhood granules are proposed,
which are neighborhood accuracy, information quantity,

neighborhood entropy and information granularity in the
neighborhood systems. Zhou et al. [12] defined a new
neighborhood rough set relation with adapted neighbors
named the gap relation and propose a new online streaming
feature selection method based on this relation, named OFS-
A3M. With the “maximal-dependency, maximal-relevance
and maximal-significance” evaluation criteria, OFS-A3M
can select features with high correlation, high dependency,
and low redundancy. Many researchers have used proba-
bilistic and fuzzy set methods to study rough sets and try to
formulate axiomatic systems for classical rough sets from
different viewpoints [13–18].

Based on rough set for the knowledge partition, rough
programming is an equivalent classification method to
determine the approximate domain of a given problem.
Youness [19] proposed the concept of a rough programming
and defined the surely optimal solution and possibly optimal
solution. By equivalent classification method of rough set,
the global rough optimal solution and local rough optimal
solution are defined, in order to solve the problem of rough
programming. Liu [20] introduced a concept of rough
variable and further gave the concept of random rough
variable, rough expected value model, and rough chance-
constrained model. .ey provide a useful basis to solve the
uncertainty of randomness and roughness. Xu et al. [21, 22]
put forward a class of multiobjective linear programming
models with random rough coefficients and gave some
characters and solution methods. In [23], the concept of
‘‘rough interval’’ is introduced in the modeling framework to
represent dual-uncertain parameters. Osman et al. [24]
proposed that rough programming will be divided into three
types in according to the roughness of the feasible domain
and the objective function..ey discussed the characteristics
of feasible domain, optimal value, and optimal solution of
the rough programming. Tao et al. [25] proposed a class of
rough multiple objective programming and used it to solid
transportation problem. Many researchers have studied
rough programming from different viewpoints [26, 27].

.e above literature puts forward some basic concepts
for rough programming, but the practical application is
narrow, and most of them should be discussed theoretically.
.is study studies the roughness of talent in the process of
investment decision making, constructs an effect based
rough programming model, and discusses its solution
process.

Based on the above analysis, this paper made some
aspects of the work: (1) by the investment portfolio problem,
a class of rough programming model with discrete degree
covering is proposed; (2) based on the random information
and discrete degree covering roughness information com-
pound quantitative, a class of rough programming model
based on the synthesis effect and discrete degree covering is
established, which is named discrete degree covering sto-
chastic rough (DDC-SRP) model; (3) the convexity of the
DDC-SRPmodel is analyzed; and (4) the DDC-SRPmodel is
used into investment portfolio problem and the features of
the solution are analyzed.
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2. Preliminaries

In this section, we will introduce covering rough set model
based on neighborhood, and the concepts of covering and
neighbor can be showed in [10, 28–34]. Here,U is a universe.

Definition 1. Given arbitrary xi ∈ U and B⊆C, the neigh-
borhood δB(xi) xi in feature space B is defined as

δB xi(  � xj|xj ∈ U, ΔB xi, xj ≤ δ , (1)

where ΔB is a distance function. For ∀x1, x2, x3 ∈ U, it
usually satisfies: (1) ΔB(x1, x2)≥ 0, ΔB(x1, x2) � 0 if and
only if x1 � x2; (2) ΔB(x1, x2) � ΔB(x2, x1); (3)
ΔB(x1, x3)≤ΔB(x1, x2) + ΔB(x2, x3).

Definition 2. Let B1⊆A and B2⊆A be numerical attributes
and categorical attributes, respectively. .e neighborhood
granule of sample x induced by B1, B2 and B1 ∪B2 is defined
as (1) δB1

(x) � xi|ΔB1
(x, xi)≤ δ, xi ∈ U ; (2) δB2

(x) �

xi|ΔB2
(x, xi) � 0, xi ∈ U ; (3) δB1 ∪B2

(x) � xi|ΔB1
(x, xi)≤

δΛΔB2
(x, xi) � 0, xi ∈ U}, where Λ means ‘‘and’’ operator.

Definition 3. Given a set of objects U and a neighborhood
relation N over U, we call 〈U, N〉 a neighborhood ap-
proximation space. For any X⊆U, two subsets of objects,
called N-lower approximation and N-upper approximation
of X in 〈U, N〉, are defined as

N(X) � xi|δB xi( ⊆X, xi ∈ U ,

N(X) � xi|δB xi( ∩X≠ϕ, xi ∈ U .
(2)

Obviously, we can see that the elements of N(X) are in X
and the elements of U − N(X) are not in X. But the elements
of N(X) − N(X) are neither in X nor in U − X. So in ap-
proximation space 〈U, N〉, X can be described by
(N(X), N(X)). We shall employ the following denotations:
posN(X) � N(X) is N-positive region of X; negN(X) � U −

N(X) is N-negative region ofX; bnN(X) � N(X) − N(X) is
N-borderline region of X; and αN � | N(X)|/|N(X)| is
N-approximation precision of X. Here, X≠ ϕ, |A| denotes
the number of the elements in A. In order to describe clearly,
we note that x∈NX if and only if x ∈ N(X); x∈NX if and
only if x ∈ N(X).

3. Discrete Degree Covering Stochastic Rough
(DDC-SRP) Model

3.1. Stochastic Rough Programming Model Based on Covering
ApproximationRelation. In optimization problems, the core
is to make a decision that can make objective function
optimal in a given feasible region. .e model is as follows:

maxf(x),

s. t. x ∈M,
 (3)

Here, M is a set on U; f(x) is a numerical or non-
numerical function on U. .at is said M is the feasible
region; f(x) is the objective function.

In according to the difference of feasible region and
objective function, model (1) can be divided into crisp
programming and uncertain programming. In this paper, we
will discuss a class of uncertain programming whose ob-
jective function contains random variables and feasible
region is a rough set based on similar relation. .is model is
called rough programming model based on similar relation.

.ere are too many decision problems with the above
characteristics such as equipment renewal, resource man-
agement, complex system optimization, and so on. In dif-
ferent problems, the effect of (x)N is different, but the
decision processes involve the elements that have relation N

with x in M. .at is the N-upper approximation of X in
〈U, N〉. .erefore, the model of rough programming model
based on similar relation is as follows:

maxf(x, ξ),

s. t. x∈NM.
 (4)

Here, X is a set on U; f(x, ξ) is a numerical or non-
numerical random function on U. .e effect on x can be
described by the expectation and variance of f(x, ξ), which
is called direct effect; N is a similar relation on U. x∈NM

means (x)N ⊂M. If we only consider the expectation of
random variable, we can get the expectation value model:

maxE(f(x, ξ)),

s. t. x∈NM.
 (5)

.e effect on x can be also described by (x)N which is
called indirect effect. .erefore, when we make a decision by
rough programming, direct effect and indirect effect must be
considered together. Indirect effect can be represented by a
functionG: U/N⟶ [0,∞)..en direct effect and indirect
effect can be considered as a function
S(u, v, w): [0,∞) × [0,∞) × [0,∞)⟶ [0,∞), which
named synthesis effect function. Synthesis effect function
S(u, v, w) should satisfy the following conditions.

Condition 1. For any given v, w ∈ [0,∞), S(u, v, w) is
monotone nondecreasing in each u.

Condition 2. For any given u, w ∈ [0,∞), S(u, v, w) is
monotone nondecreasing in each v.

Condition 3. For any given u, v ∈ [0,∞), S(u, v, w) is
monotone nondecreasing in each w.

Condition 4. S(u, 0, 0) is monotone increasing in each u.
Let u � E(f(x, ξ)), v � D(f(x, ξ)), w � G((x)N),

model (2) can be converted into the following model (4):

max S(E(f(x, ξ))), D(f(x, ξ)), G (x)N( ,

s. t. (x)N ⊂M.
 (6)

Model (4) is named rough synthesis effect model. .e
following two kinds of functions are synthesis effect func-
tion. S1(u, v, w) � u(1 + kva)−1(1 + lwb), , 0≤ k, l≤ 1, 0≤ a,

b<∞, S2(u, v, w) � ue− av(1 + bw), 0≤ a, b<∞.
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We see that rough programming can be seen as com-
posite of a stochastic programming and a similar relation on
U. With different synthesis effect operators, the rough
programming model can be converted into different crisp
programming models.

3.2. Description of DDC-SRP Model. In Section 3.1, in
according to several typical decision-making problems,
general form of the rough programming model is given and
rough synthesis effect model is proposed. In different
problems, (x)N represents different means. So how to build
the indirect effect metric mode is a key part in solving rough
programming problem. In this section, we use dispersion as
indirect effect and propose the DDC-SRP model.

Definition 4. If d(xj) means the value of attribute xj, then

CD (x)N(  � 
yi, yj∈(x)N

d yi(  − d yj 


 (7)

Means discrete degree of (x)N.
Using CD(x) as indirect effect of (x)N, model (4) can be

converted into the following model (5), which named the
DDC-SRP model:

max S E f (x)N, η( ( ( , D f (x)N, η( ( , CD (x)N( ,

s. t. (x)N ⊂M.
 (8)

Here, η is a random vector.
Specially, if S(u, v, w) �

S(u, v) w≥ α,

0w< α.
 , model

(5) can be converted into model (6)

max S E f(x)N, η( ( , D f (x)N, η( ( ,

s. t. (x)N ⊂M, andCD (x)N( ≥ β.
 (9)

Here, β ∈ [0, +∞) means the lowest level of discrete
degree of (x)N.

Let S2(u, v, w) � ue−av(1 + bw), 0≤ a, b<∞, model (5)
can be converted into model (7)

maxE f (x)N, η( ( e
−a D f (x)N,η( )( ) 1 + bCD (x)N( ( ,

s. t. (x)N ⊂M.

⎧⎨

⎩

(10)

As above analysis, we can see that using indirect effect
CD(x) and synthesis effect function S(u, v, w) a rough
programming model can be converted into a crisp pro-
gramming model. CD(x) that reflects the objective function
f((x)N, η) can be seen as a supplement of solution x and
S(u, v, w) can be seen as a correction of solution x. For
example, S2(u, v, w) � ue− av(1 + bw), 0≤ a, b<∞, ue− av is
the index that can describe the characteristics of random
variable. Here U � E(f((x)N, η)), D(f((x)N, η)). If vari-
ance D(f((x)N, η)) is smaller the effect that f((x)N, η) is
represented by E(f((x)N, η)) is better. Parameters a reflect

the effect degree from D(f((x)N, η)) to E(f((x)N, η)). If a

is bigger, the effect degree from D(f((x)N, η)) to
E(f((x)N, η)) is bigger. Specially, a � 0 means that
D(f((x)N, η)) is not considered.

(1 + bw) is the index that can describe the characteristics
of discrete degree of (x)N. Here w � CD((x)N). If discrete
degree CD((x)N) is bigger, the solution is better. Parameters
b reflect the effect degree from CD((x)N) to the solution. If k

or a is bigger, the effect degree from CD((x)N) to the so-
lution is bigger. Specially, b � 0 means that CD((x)N) is not
considered.

Using above analysis, we can get the following steps of
building the DDC-SRP model.

Step 1: With similar relation N, we can get
CD: U/N⟶ [0,∞), which is an indirect effect of the
solution.
Step 2: Using synthesis effect function S(u, v, w), we can
synthesize expectation and variance of random variable
and discrete degree. .en we can build the DDC-SRP
model.

3.3. Features of the DDC-SRP Model

Theorem 1. If we select a class of special synthesis effect
functions, the DDC-SRP model (9) can be converted into the
expectation model (7) of rough programming.

Proof. We use a class of synthesis effect functions
S2(u, v, w) � ue−av(1 + bw), 0≤ a, b<∞. If we let a � b � 0,
the DDC-SRP model (9) can be converted into the expec-
tation model (7) of rough programming. □

Definition 5. A real function f(x)(x ∈ Rn) is pseudo-
concave, if f(λx + (1 − λ)y)≥min f(x), f(y)  for all
x, y ∈ Rn and λ ∈ [0, 1]; A is a set of convex sets, F is a
function on A, F is pseudo-concave if
F(λA1 + (1 − λ)A2)≥min F(A1), F(A2)  for all A1, A2 ∈ A

and λ ∈ [0, 1].

Theorem 2. If random variable function g(x, ξ) is joint
convex with respect to (x, ξ), and probability measure Pr is
pseudo-concave, then for any given confidence level α,
0≤ α≤ 1, chance constrained set X � x|Pr g(x, ξ)≤ 0 ≥ α 

is a convex set.

Proof. Let x1, x2 ∈ X, then Pr g(x, ξ)≤ 0 ≥ α and
Pr g(x2, ξ)≤ 0 ≥ α. So

Pr g λx1 +(1 − λ)x2, ξ( ≤ 0 ≥Pr λg x1, ξ(  +(1 − λ)g x2, ξ( ≤ 0 

(11)

Because probability measure Pr is pseudo-concave, then

Pr λg x1, ξ(  +(1 − λ)g x2, ξ( ≤ 0 (η)≥min Pr g x1, ξ( ≤ 0 , Pr g x2, ξ( ≤ 0  ≥ α (12)
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.erefore, Pr g(λx1 + (1 − λ)x2, ξ)≤ 0 ≥ α. So
λx1 + (1 − λ)x2 ∈ X.

It shows that chance constrained set
X � x|Pr g(x, ξ)≤ 0 ≥ α  is a convex set. □

Definition 6. Let X ⊂ Rn be a convex set, ξ be a given
random variable on probability space (Ω, F, Pr), and f(x, ξ)

be a random variable function on X.

(1) If D(f(λx1 + (1 − λ)x2), ξ) ≤ λ D(f(x1, ξ) + (1 −

λ)Df(x2, ξ)) for any given x1, x2 ∈ X and λ ∈ [0, 1],
then f(x, ξ) is stochastic convex with respect to x on
X;

(2) If D(f(λx1 + (1 − λ)x2), ξ) ≥ λ D(f(x1, ξ)) + (1 −

λ)D(f(x2, ξ)) for any given x1, x2 ∈ X and
λ ∈ [0, 1], then f(x, ξ) is stochastic concave with
respect to x on X.

Definition 7. Let X ⊂ Rn be a convex set. If
CD((λx1 + (1 − λ)x2)N)≤ λCD((x1)N + (1 − λ)CD(x2)N)

for any given x1, x2 ∈ X and λ ∈ [0, 1], then CD((x)N) is
convex with respect to x on X

Theorem 3. Let X ⊂ Rn be a convex set, ξ be a given random
variable on probability space (Ω, F, Pr). If

(1) S(u, v, w) is joint convex with respect to (u, v, w) on
R3,

(2) for any given ξ, f(x, ξ) is convex with respect to x on
X,

(3) f(x, ξ) is stochastic concave with respect to x on X,
and

(4) CD((x)N) is convex with respect to x.

.en the DDC-SRP model (9) is a convex programming.

Proof. From Condition 2, we can see that for any given ξ,
f(λx1 + (1 − λ)x2, ξ)≤ λf(x1, ξ) + (1 − λ)f(x2, ξ).

So

E f λx1 +(1 − λ)x2, ξ( ( ≤ λE f x1, ξ( (  +(1 − λ)E f x2, ξ( ( .

(13)

It shows thatE(f(x, ξ)) is convex with respect to x onX.
Because S(u, v, w) is monotone nondecreasing in each u,

we can get

S E f λx1 +(1 − λ)x2, ξ( ( , v, w( ≤ S λE f x1, ξ( (  +(1 − λ)E f x2, ξ( ( , v, w( . (14)

From Condition 3, we know that

D f λx1 +(1 − λ)x2, ξ( ( ≥ λ D f x1, ξ( (  +(1 − λ)D f x2, ξ( ( . (15)

So

S u, D f λx1 +(1 − λ)x2, ξ( ( , w( ≤ S u, λ D f x1, ξ( (  +(1 − λ)D f x2, ξ( ( , w( . (16)

S(u, v, w) is monotone nondecreasing in each w, so

S u, v, w λx1 +(1 − λ)x2( ( ≤ S u, v, λw x1(  +(1 − λ)w x2( ( . (17)

From Condition 1, we can see that S(u, v, w) is joint
convex with respect to (w, u) on D ⊂ R3. So

S E f λx1 +(1 − λ)x2, ξ( ( , D f λx1 +(1 − λ)x2, ξ( ( , CD λx1 +(1 − λ)x2( N( ( 

≤ S λE f x1, ξ( (  +(1 − λ)E f x2, ξ( ( , D f λx1 +(1 − λ)x2, ξ( ( , CD λx1 +(1 − λ)x2( N( ( 

≤ S λE f x1, ξ( (  +(1 − λ)E f x2, ξ( ( λ D f x1, ξ( (  +(1 − λ)D f x2, ξ( ( , CD λx1 +(1 − λ)x2( N( ( 

≤ S λE f x1, ξ( (  +(1 − λ)E f x2, ξ( ( , λ D f x1, ξ( (  +(1 − λ)D f x2, ξ( ( , λCD x1( N(  +(1 − λ), CD x2( N( ( 

≤ S λE f x1, ξ( (  D f x1, ξ( ( , CD x1( N(  +(1 − λ)S E f x2, ξ( ( , D f x2, ξ( ( , CD x2( N( ( ( .

(18)
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.erefore, the objective function of model (5) is a convex
function. So model (5) is a convex programming.

If the DDC-SRPmodel is a convex programming, we can
use 0.618 method, Newton method, restricted function
method, etc. to solve it. But when we deal with some complex
problems, the DDC-SRP model is a nonconvex program-
ming, and the above methods cannot be used. Genetic al-
gorithm is an effective method to solve such programming
problems. In part 4, we will give the solution procedure by
genetic algorithm, and an example about investment port-
folio problem will be given in part 4. □

4. Solution Procedure

In what follows, we will give the solution procedure as chart
1 to solve stochastic rough programming problem. Here we
will establish the DDC-SRP model by synthesis strategy of
objective and discrete degree of (x)N.

Step 1 Input the initial programming model. Based on
the investment portfolio problems, a class of stochastic
programming model with rough feasible region is
established.
Step 2 Select the proper a discrete degree CD(x) and a
synthesizing effect function S(u, v, w). .e discrete
degree that we select must follow the Definition 4 and
the synthesizing effect function that we select must
meet Conditions 1–4 in Section 3. We can also select a
class of synthesizing effect functions such as
S2(u, v, w) � ue− av(1 + bw), 0≤ a, b<∞. With differ-
ent coefficients k, l, a, b, we can get synthesizing effect
functions.
Step 3 Convert the rough programming model to the
DDC-SRP model. .rough proper synthesizing effect
functions, we can convert the stochastic programming
model with rough feasible region to the DDC-SRP
model. .e DDC-SRP model is a programming model
without uncertainty.
Step 4 Solve the DDC-SRPmodel by genetic algorithm.
In following, we introduce the genetic algorithm based
on real coding and random rough simulation.

Step 4.1 Input the parameters population size Npop-
size, crossover probability Pc, mutation probability
Pm.
Step 4.2 Initialize Npop-size chromosomes and check
feasibility of chromosomes.
Step 4.3 Update the chromosomes by crossover and
mutation operations and check the feasibility of
offspring.

Step 4.4 Select the chromosomes by spinning the
roulette wheel.
Step 4.5 Make the crossover operation and the mu-
tation operation.
Step 4.6 Repeat the Step 2 to the Step 5, until com-
pletes the cycle index.
Step 4.7 Get the best chromosome as the optimal
solution and obtain the optimum value.

Step 5 Output the solution.

A flowchart for the solution procedure is provided, as
shown in Figure 1.

5. Number Example

A investor want to choose a portfolio among 20 given stocks.
.e total fund is 100, 000 dollars. .e performance and
relevance of the 20 stocks in the following Table 1. ξj that is
the profit of jth stock (j) is a random variable. Here, ξj, j �

1, 7, 9, 16 obey normal distribution whose expectation is 18
and variance is 4. ξj, j � 5, 8, 14, 20 obey normal distribu-
tion whose expectation is 12 and variance is 4.
ξj, j � 2, 3, 4, 6, 10, 11, 12, 13, 15, 17, 18, 19 obey normal
distribution whose expectation is 4 and variance is 2.

Remark 1. .e data in Table 1 come from the data of China’s
stock market in the past 10 years, which are obtained
through the database of China stock network. Here, in the
past 10 years, it is “good” if the stock market value fluc-
tuation increases, and it is “poor” if the stock market value
fluctuation decreases. N2 represents the relevance of the
relationship between the rise and fall of the stock and the rise
of the market, which also comes from the data of China’s
stock market in the past 10 years. .e worse the relevance,
the greater the N2 value of the two stocks. Here, N2 is
calculated according to the change relevance statistics of the
rise and fall of the two stocks.

U � (1), (2), . . . , (20){ } is a set of all stocks that can be
chosen. From Table 1, we can see that performance (N1) is a
categorical attribute and relevance (N2) is a numerical at-
tribute. Using categorical attribute N1, U can be divided into
two parts. .en we can get the following rough program-
ming model.

max z � f (x)N, η( ,

s. t. (x)N ∈ U.
 (19)

Here, N � N1 ∪N2. (x)N is a covering under N. η is a
random vector represent the profit of stock in (x)N.

U/N1 � (1), (5), (7), (8), (9), (14), (16), (20){ }, (2), (3), (4), (6), (10), (11), (12), (13), (15), (17), (18), (19){ }{ }. (20)

Each core investment object xj, j � 1, 5, 7, 8, 9, 14, 16, 20
must come from the class of “good” that is
(1), (5), (7), (8), (9), (14), (16), (20){ }. .e discrete degree

of the portfolio (xj)N must be as big as possible in order to
disperse risk. Here let the relevance distances between every
secondary investment object of (xj)N and core investment
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object are bigger than 2 (d1 � 2). .en we can get the fol-
lowing coverings.

δ((1)) � (10), (11), (14), (15), (16){ },

δ((5)) � ϕ,

δ((7)) � (8), (9), (10), (11), (12), (14), (15), (16), (19), (20){ },

δ((8)) � (2), (3), (4), (6), (7), (17){ },

δ((9)) � (6), (7){ },

δ((14)) � (1), (2), (3), (4), (6), (7), (17){ },

δ((16)) � (1), (2), (3), (4), (6), (7), (17){ },

δ((20)) � (4), (6), (7){ }.

(21)

Furthermore, in the same investment portfolio, the
relevance between every two secondary investment object
can be closer than the relevance between every secondary
investment object and core investment object. In a same
δ(xj), the relevance distances between every two secondary
investment object can be smaller than the relevance dis-
tances between every secondary investment object of (xj)N

and core investment object. So the relevance distances

Start the procedure.

Input the initial programming model for investment
portfolio problems.

Determine the proper
discrete degree

Determine the synthesizing
effect function

Definition 3.1 Definition 3.1 (1-4)

The stochastic
programming model.

The DDC-SPR
model.

Convert

Proper synthesizing effect
functions

Input : parameters population size Npop-size, crossover Probability Pc,
mutation probability Pm.

Check feasibility of
chromosomes.

Check the feasibility
of offspring

Spinning the roulette
wheel

The mutation
operation

The crossover
operation

Select the
chromosomes

UPdate the
chromosomes

Initialize Npop-size
chromosomes.

Repeat

until

Complete
the cycle-

index

Output the solution.

Figure 1: Solution procedure.

Table 1: Performance and relevance.

Stock code Performance (N1) Relevance (N2)

(1) Good 2
(2) Bad 1.6
(3) Bad 1.2
(4) Bad 1
(5) Good 4
(6) Bad 0.6
(7) Good 0.2
(8) Good 6
(9) Good 5
(10) Bad 6.2
(11) Bad 7.8
(12) Bad 4.4
(13) Bad 3.8
(14) Good 6.6
(15) Bad 7
(16) Good 7.4
(17) Bad 1.8
(18) Bad 3.6
(19) Bad 5
(20) Good 5.2
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between every two secondary investment object are bigger
than 1 (d2 � 1). .en we can get the following coverings.

δ((1)) � δ((5)) � δ((8)) � δ((9)) � δ((14)) � δ((16)) � δ((20)) � ϕ

δ1((7)) � (9), (11){ },

δ2((7)) � (11), (12){ },

δ3((7)) � (12), (14){ },

δ4((7)) � (12), (15){ },

δ5((7)) � (9), (16){ },

δ6((7)) � (12), (16){ },

δ7((7)) � (16), (19){ },

δ8((7)) � (16), (20){ }.

(22)

Next we will get the optimal portfolio from the
δj((7)), j � 1, 2, . . . , 8.

Using synthesizing effect function
S2(u, v, w) � ue− av(1 + bw), 0≤ a, b<∞, model (8) can be
converted into the DDC-SRP model with discrete condition:

maxE f (x)N, η( ( e
− a D f (x)N,η( )( ) 1 + bCD (x)N( ( ,

s. t. (x)N ⊂M,

x − xj



> d1, ∀xj ∈ (x)N/x,

xi − xj



>d2, ∀xi, xj ∈ (x)N/x.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Here f((x)N, η) � xj∈(x)N
wjf(xj, ξj) wj is the weight

of the stock (j).
Using genetic algorithm (its parameters setting are bi-

nary code mode; mutation probability is 0.001; crossover
probability is 1; population size is 80; evolutionary gener-
ations is 1000), we can get Table 2.

Using genetic algorithm (its parameters setting are bi-
nary code mode; mutation probability is 0.01; crossover
probability is 0.8; population size is 80; evolutionary gen-
erations is 1000), we can get Table 3.

Using genetic algorithm (its parameters setting are bi-
nary code mode; mutation probability is 0.1; crossover
probability is 0.6; population size is 80; evolutionary gen-
erations is 1000), we can get Table 4.

By Tables 2–4, we can see that every portfolio contains
three stocks (one core investment object and two secondary
investment objects). Because the weights of core investment
objects are 2 and weights of secondary investment objects are
1, the amount of investment of core investment object is
50,000 dollars, and amount of investment of each two
secondary investment object is 25,000 dollar.

Obviously, in S2(u, v, w) � ue− av(1 + bw), 0≤ a, b<∞,
a and b are the parameters describing the uncertainty
consciousness. When the weights of core investment objects

are 2 and weights of secondary investment objects are 1,
Table 2 shows the every solutions in different decision-
making consciousness. Using expectation value model, the
portfolio is δ5((7)) � (9), (16){ }. It means that stock (7) is
core investment object, and stocks (9) and (16) are secondary
investment objects. In the DDC-SRP model, when a is
smaller, the investor will pay more attention to the expec-
tation of income in each stock. So the result is same to the
expectation value model. When a is bigger, the investor will
pay more attention to the income risk in each stock that can
be represented by variance. When b are bigger, the investors
will pay more attention to the risk of investment portfolio
that can be represented by discrete degree.

With different mutation probability and crossover
probability, the solution is different. When the mutation
probability is smaller and the crossover probability is bigger,
the kinds of solutions are smaller.

As above analysis, if we let d1 � 2, 1<d2 < 1.2, we can
get the following coverings.

δ((1)) � δ((5)) � δ((8)) � δ((9)) � δ((14))

� δ((16)) � δ((20)) � ϕ,

δ1((7)) � (9), (11){ },

δ2((7)) � (11), (12){ },

δ4((7)) � (12), (15){ },

δ5((7)) � (9), (16){ },

δ6((7)) � (12), (16){ },

δ7((7)) � (16), (19){ }.

(24)

.ese coverings does not contain δ3((7)) � (12), (14){ }

and δ8((7)) � (16), (20){ }. .rough calculating the results
for the DDC-SRP model (13) with discrete condition d1 �

2, 1< d2 < 1.2 is same as the DDC-SRP model with discrete
degree d1 � 2, d2 � 1.
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When we select the DDC-SRP model with discrete
degree d1 � 2, 1.2≤ d2 < 1.4, using genetic algorithm, we can
get the Tables 5–7.

In Tables 5–7, we can see that using the expectation value
model, the portfolio is δ1((7)) � (9), (11){ }. In the DDC-
SRP model, with different parameters a and b, the optimal
solutions are δ1((7)) � (9), (11){ } or δ2((7)) � (11), (12){ },

which contain different decision-making consciousness. In
the DDC-SRPmodel, when a is smaller, the investor will pay
more attention to the expectation of income in each stock. So
the result is same to the expectation value model. Other
situations show the investors will pay more attention to the
income risk and the risk of investment portfolio, which is the

same as Table 2. With different mutation probability and
crossover probability, the solution is different. When the
mutation probability is smaller and the crossover probability
is bigger, the kinds of solutions are smaller.

When we select the DDC-SRP model with discrete
degree d1 � 2, 1.4≤d2 < 1.7, the feasible region is only one
covering δ2((7)) � (11), (12){ },. .erefore, the optimal so-
lutions both in the expectation value model and the DDC-
SRP model is δ2((7)) � (11), (12){ }, with different mutation
probability and crossover probability. When we select the
DDC-SRP model with discrete degree d1 � 2, d2 ≥ 1.7, the
feasible region is ϕ with different mutation probability and
crossover probability.

Table 2: .e results for the DDC-SRP model (d1 � 2, d2 � 1, Pm� 0.001, Pc� 1).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(k� 0,

l� 0) δ5((7)) � (9), (16){ } 36 12 14.4

DDC-SRP model

a� 0.1, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 0.1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 10 δ2((7)) � (11), (12){ } 22 10 15.2
a� 1, b� 0.1 δ2((7)) � (11), (12){ } 22 10 15.2
a� 1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 0.1 δ2((7)) � (11), (12){ } 22 10 15.2
a� 10, b� 1 δ2((7)) � (11), (12){ } 22 10 15.2
a� 10, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4

Table 3: .e results for DDC-SRP model (d1 � 2, d2 � 1, Pm� 0.01, Pc� 0.8).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(k� 0, l� 0) δ5((7)) � (9), (16){ } 36 12 14.4

DDC-SRP model

a� 0.1, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 0.1, b� 1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 0.1, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4
a� 1, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4

Table 4: .e results for DDC-SRP model (d1 � 2, d2 � 1, Pm� 0.1, Pc� 0.6).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(k� 0, l� 0) δ5((7)) � (9), (16){ } 36 12 14.4

DDC-SRP model

a� 0.1, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 0.1, b� 1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 0.1, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4
a� 1, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 1, b� 1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 1, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 0.1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 1 δ5((7)) � (9), (16){ } 36 12 14.4
a� 10, b� 10 δ5((7)) � (9), (16){ } 36 12 14.4
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Using the DDC-SRP model, investors can comprehensively
consider expectation of income, income risk, and risk of in-
vestment portfolio. .e above give optimal solutions of the
DDC-SRPmodel with synthesizing effect function S2(u, v, w) �

ue− av(1 + bw), 0≤ a, b<∞ and discrete degree
d1 � 2, d2 ≥ 1, which is the division way of feasible region.
When we use different synthesizing effect functions and dif-
ferent division way of feasible region, we can get more results.

6. Conclusion

In this article, a class of the stochastic programming model
with rough feasible region is proposed to study the in-
vestment portfolio problem. .e DDC-SRP model is

developed that contains the expectation value model and
improves the stochastic programming method. We analyze
the convexity of the proposed model. With real-coded and
random rough simulation genetic algorithm, we verify the
variable of the solutions. .en the advantages and disad-
vantages of different solutions in different decision-making
consciousnesses are shown..is method is more concise and
effective than traditional programming solution models in
investment portfolio problem [35].

Data Availability

.e data used to support the findings of this study are in-
cluded within the article.

Table 5: .e results for the DDC-SRP model (d1 � 2, 1.2≤d2 < 1.4, Pm� 0.001, Pc� 1).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(a� 0,

b� 0) δ1((7)) � (9), (11){ } 29 11 15.2

DDC-SRP model

a� 0.1, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 10 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 1, b� 0.1 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 0.1 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 10, b� 1 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 10, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2

Table 6: .e results for DDC-SRP model (d1 � 2, 1.2≤d2 < 1.4, Pm� 0.01, Pc� 0.8).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(a� 0,

b� 0) δ1((7)) � (9), (11){ } 29 11 15.2

DDC-SRP model

a� 0.1, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 10 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 1, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 0.1 δ2((7)) � (11), (12){ }, 22 10 15.2
a� 10, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2

Table 7: .e results for the DDC-SRP model (d1 � 2, 1.2≤d2 < 1.4, Pm� 0.1, Pc� 0.6).

Solution model Optimal solution Expectation of objective Variation of objective Discrete degree
Expectation value model(a� 0,

b� 0) δ1((7)) � (9), (11){ } 29 11 15.2

DDC-SRP model

a� 0.1, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 0.1, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 1, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 0.1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 1 δ1((7)) � (9), (11){ } 29 11 15.2
a� 10, b� 10 δ1((7)) � (9), (11){ } 29 11 15.2
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