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�e variation law of satellite clock bias (SCB) can be regarded as a grey system because the spaceborne atomic clock is very sensitive
and vulnerable to many factors. GM (1,1) model is the core and foundation of the grey system, which has been highly valued and
successfully applied in SCB prediction since its production. However, there are still some problems to be further studied such as the
lack of stability of its prediction e�ect in practical application. In view of this, an improved GM (1,1) model by optimizing the initial
condition has been proposed in this paper so as to increase the prediction performance. �e new initial condition is obtained by the
weighted combination of the latest and oldest components of the original clock bias sequence. And the weight values of these two
components are acquired from a method of minimizing the sum of squares of �tting errors. We adopt GPS rapid precision SCB data
provided by the International GNSS Service (IGS) for 15mins, 30mins, 1 h, 3 h, 6 h, 12 h, and 24h prediction experiments.�e results
show that the improved GM (1,1) model is e�ective and feasible, and its prediction accuracy and stability are signi�cantly better than
those of the traditional GM (1,1) model, ARIMA model, and QP model, even for the SCB signal with obvious ¡uctuation.

1. Introduction

In the global navigation satellite system (GNSS), the clock
bias prediction of the spaceborne atomic clock plays an
important role in maintaining the time synchronization of
the satellite navigation system, optimizing the clock bias
parameters of navigationmessage, meeting the requirements
of real-time dynamic precision single point positioning, and
providing the prior information required for satellite au-
tonomous navigation [1–3]. Consequently, scholars at home
and abroad have carried out a large number of researches on
SCB prediction and came up with a variety of prediction
models. �ere are many kinds of prediction models, in-
cluding linear model, quadratic polynomial (QP) [4, 5], grey
system model (GM) [6], auto-regressive integrated moving
average model (ARIMA) [7], Kalman �lter model [8],
support vector machine model (SVM) [9], machine learning
[10–13], model designed based on the basic principle of the
neural network [14], and combined model [15]. Grey model

acts as a signi�cant role in clock bias prediction because of its
simple expression and excellent prediction e�ect with less
modelling data [16, 17]. Univariate �rst-order di�erential
model GM (1,1) is an important part of the grey model,
which is widely used in SCB prediction. However, after
deeply analysing the modelling mechanism of the GM (1,1)
model, we found that it is di©cult to strictly approximate the
grey di�erential equation with the �tted di�erential equa-
tion, and the smoothness of the initial sequence involved in
the modelling will also a�ect the prediction accuracy of GM
(1,1) model. Aiming at these problems existing in the pre-
diction model of GM (1,1), many scholars have carried out
massive studies on the aspects of initial sequence pre-
processing, background value reconstruction, time response
function optimization, and initial condition optimization.

In terms of initial condition optimization, there are three
existing kinds of generation methods. In the �rst category, a
single component of the �rst-order accumulated generating
operation (1-AGO) sequence is used to solve the initial
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condition. For example, the initial condition of the tradi-
tional GM (1,1) model is generated by the oldest component
of the 1-AGO sequence. However, some scholars believe that
this approach violates the principle of “new information
first,” so Li et al. [18] established a kind of GM (1,1) model
with the latest component of the 1-AGO sequence as the
initial value, which overemphasizes the importance of the
latest information and completely ignores the influence of
the old information. In addition, Ji and Zhong [19] believe
that any component of the 1-AGO sequence can be used to
generate initial conditions, and which component to select
can be determined by minimizing the function of average
relative error. Li et al. [20] have the same idea as Ji, but they
use particle swarm optimization algorithm to obtain the
optimal initial condition to generate components. 1e
second way uses the linear combination of multiple com-
ponents of the 1-AGO sequence to produce the initial
condition. For instance, Wang et al. [21] proposed a new
method of initial condition generation by the latest and
oldest components of the 1-AGO sequence and gained the
weight coefficients of these two elements by minimizing the
sum of square errors. Considering that each component of
the 1-AGO sequence will affect the prediction results, Xiong
et al. [22], Chen and Li [23], and Ding [24] took the weight
combination of each component in the 1-AGO sequence to
create initial condition. 1e third method is to multiply or
add coefficients to specific components to get initial con-
ditions. For example, Zhao et al. [25] multiplied the oldest
component of 1-AGO by a constant and then solved the
constant by minimizing the objective function. And Xie [26]
added a constant disturbance component to the latest
component of the 1-AGO sequence to generate the initial
condition. Furthermore, Madhi and Mohamed [27] gained
the estimated value of the initial condition by minimizing
the sum of the square errors of the reduced value and the real
value.

1e above methods are to substitute one or more
components of the 1-AGO sequence into the time response
function of the whitening equation to solve the initial
conditions. Obviously, such ways emphasize the mining,
utilization, and weight distribution of information involved
in the calculation of initial conditions but ignore the in-
fluence of modelling parameters and expression forms on
the model itself, which will result in the instability and poor
prediction effect of the model. Accordingly, we propose in
this paper a new approach to generate the initial condition
by using the original sequence. 1is method focuses on the
construction of the prediction model and the influence of
parameters on the model. Firstly, the development coeffi-
cient and grey action quantity are estimated by 1-AGO and
least square method, then the time response function of the
whitened equation is restored by the first-order inverse
accumulated generating operation (1-IAGO) to obtain the
fitting model of the original sequence, and finally, the
weighted values of the latest and oldest components of the
original sequence are substituted into the fitting model to
solve the initial condition to get the GM (1,1) prediction
model. We use the GM (1,1) model constructed by this new
method to predict the rapid precision SCB published by IGS

and verify the effectiveness and superiority of the improved
GM (1,1) model in SCB prediction through the comparison
with QP model, ARIMA model, and traditional GM (1,1)
model.

2. GM (1,1) Prediction Model

GM (1,1) model is used extensively in time series prediction,
where the symbol GM (1,1) indicates “first-order grey model
in one variable” [27]. GM (1,1) model is a system of the
exponential function, which can utilize N known sequences
before a certain moment as input and output wanton
number of sequences behind that certain moment after a
series of processing such as 1-AGO,modelling, 1-IAGO, and
prediction. Its simple steps and detailed handling process are
shown in Figure 1.

1ere are several explanations for the above flow chart.

(1) 1e signal x(0)(k) is a nonnegative sequence of
length N, represented by X(0) � x(0)(1),

x(0)(2), ..., x(0)(N)}. x(1)(k) is the 1-AGO sequence
of x(0)(k), expressed by X(1) � x(1)(1),

x(1)(2), ..., x(1)(N)}, and x(1)(k) � 
k
i�1 x(0)(i)，

k � 1, 2, ..., N.
(2) z(1)(k) is called the background value of GM (1,1)

model, and its value is z(1)(k) � 
k

k−1 x(1)(t)dt

solved through grey differential equation and
whitened equation. 1at is, the background value of
the model is equal to the area surrounded by x(1)(t)

and by the interval [k − 1, k] of t-axis, where x(1)(t)

is the continuous signal corresponding to x(1)(k).
However, the expression of x(1)(t) is unknown, so
the trapezoidal area circled by x(1)(t), x(1)(k − 1)

and by the interval [k − 1, k] of t-axis is generally
used to approximate the representation of x(1)(t),
i.e., x(1)(t) ≈ z(1)(k) � 1/2[x(1)(k − 1) + x(1)(k)].

(3) 1e equation x(0)(k) + az(1)(k) � b is a grey dif-
ferential equation, and dx(1)/dt + ax(1) � b is the
whitened equation of the GM (1,1) model. 1e pa-
rameters of a and b are regarded as development
coefficient and grey action quantity, respectively,
where a represents the development trend of the
sequence (k) and the value of b reflects the change
relationship of (k) [16].

(4) If the parameter sequence is expressed as r � [a b]T,
the grey differential equation can be written in the
form of matrix as Y � B · r, and the estimated value
of r can be obtained through the least square method
(LSM) for r � (BTB)− 1BTY. 1e values of Y and B

are Y �

x
(0)

(2)

x
(0)

(3)

· · ·
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(0)

(N)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B �

−z
(1)

(2) 1
−z

(1)
(3) 1

· · ·

−z
(0)

(N) 1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5) 1e solution of the whitened equation is also named
time response function, and the undetermined co-
efficient of c is called the initial condition of the GM
(1,1) model. 1e value of c can be obtained by
substituting t � 1 into the time response function
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and making x(1)(1) � x(0)(1). After the time re-
sponse function is discretised and then 1-IAGO is
implemented, the GM (1,1) prediction model is fi-
nally given as follows:

x
(0)

(n) � 1 − e
a

  x
(0)

(1) −
b

a
 e

−a(n− 1)
., n> 1. (1)

In formula (1), when n≤N, the value of x(0)(n) is the
fitted value, while n>N, that of x(0)(n) is the predicted
value.

3. Improvement of GM (1,1) Prediction Model

In this paper, the GM (1,1) prediction model is improved by
adjusting the order of two steps, i.e., modelling grey model
and the solution of initial condition. Besides, the data used to
solve the initial conditions is the original sequence instead of
the 1-AGO sequence. After the signal of x(1)(t) is ap-
proximated and the parameters a and b are estimated, the
continuous signal of x(0)(t) corresponding to the raw se-
quence is procured with the time response function of the
whitened equation, then the value of the initial condition c is
obtained by one or more components of the raw sequence,
and finally, the grey prediction model is achieved by dis-
cretising x(0)(t). 1e improved part is shown in Figure 2.

Use the general solution of the first-order linear dif-
ferential equation to approximate the time response func-
tion, so the function of x(1)(t) can be exhibited as

x
(1)

(t) �
b

a
+ ce

−at
. (2)

Apply the first derivation of x(1)(t), the continuous form
expression of the original sequence is indicated as follows:

x
(0)

(t) � −ace
− at

. (3)

Substitute t � 1 and t � N into formula (3), respectively,
and multiply by the corresponding weight to gain the
following:

wx
(0)

(1) � −wace− a
. (4)

(1 − w)x
(0)

(N) � (1 − w) −ace
− aN

 . (5)

Add formulas (4) and (5) to get the initial condition as
follows:

c � −
wx

(0)
(1) +(1 − w)x

(0)
(N)

a we
−a

+(1 − w)e
−aN

 
. (6)

Replace c in (3) with the value in formula (6) to obtain
the following:

1-AGO

set up
background value

z(1)(k)

x(0)(k) + az(1)(k)=b

c = (x(0)(1) -b̂/â)eâ

build whitened
equation

dx(1)

dt build grey
differential equation

solve whitened
equation

obtain initial
condition C

discretize time
of equation

1-IAGO
x̂(1)(n) = b̂/â + (x(0)(1)-b̂/â) e-â (n-1)

x̂(0) (n) = (1-eâ) (x(0)(1)-b̂/â) e-â (n-1)

start

model building

estimate parameters
a,b

solve model

determine the
solution of C

end

â b̂

obtain
prediction model

solve parameters
a,b

start

end
 

x(0) (K)

x(1) (K)

x̂(1)(t) = b̂/â+ce-ât

+ ax(1) = b

Figure 1: Processing flow of GM (1,1) model.
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x
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Finally, the output of the GM (1,1) prediction system can
be achieved by discretising x(0)(t).

x
(0)

(n) �
wx

(0)
(1) +(1 − w)x

(0)
(N)

we
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−aN

e
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, n> 1. (8)

As with the traditional model, we can obtain the pre-
dicted value of the improved grey model when n>N

through formula (8). However, the weight w in the ex-
pression is an unknown parameter. Here, we employ the
criterion of minimizing the sum of squares of errors [21] to
get the value of w. Create a function as follows:
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2
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Substitute (8) into (9), which gives the following:
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Let dv(w)/dw � 0 and get

w �
e
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(11)

Obviously, there are parameter a and all the components
of the original sequence in the expression of c and x(0)(n) for
the improved GM (1,1) model. In this way, the prediction
value will not be affected by the grey action quantity for the
existent of b and will not be introduced by redundant noise

due to the 1-AGO operation. 1eoretically, this method can
reduce the prediction error and improve the prediction
accuracy.

1rough the above analysis, the general steps of the
improved GM (1,1) model for SCB signal prediction are
summarized as follows:

Step 1: make the value of the original sequence positive,
and then draw upon x(1)(k) � 

k
i�1 x(0)(i) and

z(1)(k) � 1/2[x(1)(k − 1) + x(1)(k)] to calculate the 1-
AGO sequence and the background values z(1)(k).
Step 2: work out the parameters of a and b by using
vector Y and matrix B.
Step 3: solve x(0)(t) and then calculate the initial
condition by weighting the latest and oldest compo-
nents of the raw sequence.
Step 4: calculate the value of w by employing the cri-
terion of minimizing the sum of squares of errors.
Step 5: assume x(0)(1) � x(0)(1) and x(0)(N)

� x(0)(N), then substitute the corresponding param-
eters and sequences into formula (8) to work out the
prediction value of the GM (1,1) model.

4. Experimental Results

For the sake of confirming the effectiveness and reliability of
the improved GM (1,1) prediction model, we take the SCB
data to forecast and compare the results with traditional GM
(1,1), QP, and ARIMA models. 1e root mean square error
(RMS) [28] of the predicted value and the true value are used
to evaluate the accuracy of the prediction model.1e smaller
the RMS value is, the higher the accuracy is. 1e calculation
formula of RMS is denoted as follows:

RMS �

�����������������


L
n�1 [x(n) − x(n)]

2

L



, (12)

where x(n) is the predicted value of the clock bias, x(n) is
the true value of the clock bias, and L is the total number of
epochs in the forecast duration.

In addition, the confidence interval (c1, c2) of the error
distribution of the forecast results is utilized to quantitatively
analyse the stability of the forecast model. If Width � c2 − c1
is used to represent the width of the confidence interval, the
smaller the value of Width is, the more stable the forecast
model is. 1e expressions of c1 and c2 are as follows:

c1 � μ − zα
2

σ
��
m

√

c1 � μ + zα
2

σ
��
m

√

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In formula (12), the specific meaning of the parameters
such as μ, σ, and so on can be seen in literature [29].

4.1. Experimental Data Source. 1e experimental data used
in this article are the rapid precision clock bias fromMarch 6

x̂(1)(t) = b̂/â+ ce-ât

x̂(0)(n) = –âce-ân

first-order
differential processing

discretize time
of equation

determine initial
condition

c

Figure 2: 1e improved part of the processing flow.
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to April 2, 2022, of the GPS navigation satellite downloaded
from the official website of IGS.1e sampling interval of this
SCB is 5 minutes. In the calculation example, all the satellites
of each type with better integrity clock bias data are selected
because the prediction results of SCB are closely related to
the type of satellite clock [30] and the characteristics of the
clock bias signal. During this period, there are 28 satellites
with complete clock bias data except PRN02, 11, 20, and 30,
whose types and satellite numbers are shown in Table 1.
Among them, the clock bias signals of some satellites show
an increasing trend and those of some others show a de-
creasing trend. Furthermore, the clock bias signals of most
satellites change monotonically, while those of PRN 05, 08,
and 21 fluctuate up and down greatly, especially for PRN 08
satellite. Figure 3 shows the clock bias variation diagram of
PRN 08 satellite and its partial magnification. It is worth
noting that all the clock bias data have been processed with
MAD (median absolute deviation) before prediction.

4.2. Clock Bias Prediction and Result Analysis. In the actual
process of the forecast, we use the clock bias data of the first
day (March 6, 2022) for modelling to predict 15mins
(minute), 30mins, 1 h (hour), 3 h, 6 h, 12 h, and 24 h in the
future, respectively. In order to further confirm the forecast
performance of the improved GM (1,1) model, the SCB data
from March 7 to April 2, 2022, are also dealt with like the
first day.1e prediction results are represented in Tables 2–5
and Figures 4 and 5. For convenience, the labels of “GM” and
“IGM” in tables and figures stand for the traditional and the
improved GM (1,1) model, respectively.

Tables 2 and 3 list the statistical results of the RMS and
RMS improvement percentage of the four models under
various forecast durations. 1e symbols “IGM-QP,” “IGM-
ARIMA,” and “IGM-GM” in the tables indicate that IGM is
compared with QP, ARIMA, and GM models, respectively.
All the data given in the two tables are the average value of 28
satellites on the first day (Table 2) or 27 days (Table 3). Due
to the limited space, Figure 3 only shows the RMS values of
each satellite predicted the next 1 h and 6 h through the SCB
data of the first day.

From Tables 2 and 3 and Figure 4, we can acquire the
following information.

4.2.1. Average Accuracy of the First Day. It can be seen from
the data given in Table 2 that the prediction accuracy of IGM
is the highest, followed by QP, ARIMA, and GM, no matter
what the forecast duration is. Compared with the traditional
GM (1,1), the accuracy improvement percentage of the
improved GM (1,1) model is more than 60% within 1 h
prediction time and that of the improved GM (1,1) model is
close to 30% even for 24 h forecast duration.

4.2.2. Average Accuracy of the 27 Days. 1e average pre-
diction accuracy of 27 days of QP, ARIMA, and GM models
is lower obviously than those of the first day, while that of
IGMmodel changes very little. Compared with QP, ARIMA,
and GM, the prediction accuracy of the IGM model is

increased by 30.74%, 44.27%, and 58.31% when the forecast
duration is 15m and that of the IGM model is raised by
15.05%, 17.79%, and 20.90% while the forecast duration is
24 h. 1e improvement percentages of other forecast du-
rations are between the minimum and maximum.

4.2.3. Influence of Forecast Duration on the Accuracy of
Prediction Model. In general, the average prediction accu-
racy of the four models decreases with the increase in
forecast duration, whether for the first day or for 27 days. As
shown in Tables 2 and 3, when the forecast duration raises
from 15mins to 24 h, the RMS value increases from 0.215 ns
(nanoseconds) to 2.456 ns, which indicates that the accuracy
is reduced by 10 times. When the forecast duration is less
than 1 h, the average RMS values of IGM and QP are about
0.2 ns and those of ARIMA and GM are slightly higher.
When the forecast duration is 24 h, the average RMS of IGM
and QP is approximately 1.5 ns and those of ARIMA and
GM are all within 2.5 ns.

4.2.4. Influence of Satellite Clock Type on Accuracy of Pre-
diction Model. Among the 28 satellites selected, there are
two types of atomic clocks: cesium and rubidium. Due to the
poor short-term stability of the cesium atomic clock, the
accuracy of the cesium atomic clock predicted by the four
models is worse than that of the most rubidium atomic
clock. When the forecast duration is longer, this phenom-
enon is more distinct. Compared with the other three or-
dinary models, the prediction performance of the improved
GM (1,1) model is least affected by the type of satellite clock.
For some rubidium atomic clocks such as PRN 3 (IIF Rb), 23
(IIR Rb), and 27 (IIF Rb), the prediction accuracy of GM and
IGM is low, while that of QP is very high, which shows that
the clock bias of the three satellites displays the tendency of
quadratic polynomial rather than that of the exponent.
Combined with the satellite types in Table 1 and the RMS
values corresponding to different types of satellites in Fig-
ure 3, we can conclude that the prediction performance of
IIR-M Rb is relatively better than that of the other four types
of satellite.

4.2.5. Affection of Fluctuation of Clock Bias Signal on Ac-
curacy of Prediction Model. Among the 28 satellites, the
clock bias signals of PRN 08 fluctuate in high frequency and
large amplitude, followed by PRN 05, 21, and those of other
satellites change smoothly. It can be seen from the results in
Figure 4 that the character of fluctuation of the signal has a
certain impact on the accuracy of the four models. 1e
greater the amplitude or frequency of fluctuation is, the

Table 1: Types and satellite numbers of 28GPS satellite clocks.

Satellite clock type PRN
Block IIR Rb 13, 16, 19, 21, 22, 28
Block IIR-M Rb 5, 7, 12, 15, 17, 29, 31
Block IIF Rb 1, 3, 6, 9, 10, 25, 26, 27, 32
Block IIF Cs 8, 24
Block III Rb 4, 14, 18, 23

Mathematical Problems in Engineering 5
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Figure 3: Clock bias signal of PRN 08 and its partial enlargement.

Table 2: 1e average RMS and RMS improvement percentage of 28 satellites (the first day).

Forecast duration
RMS (ns) RMS improvement (%)

QP ARIMA GM IGM IGM-QP IGM-ARIMA IGM-GM
15mins 0.239 0.308 0.550 0.215 9.96 30.13 60.88
30mins 0.255 0.349 0.579 0.223 12.54 36.05 61.46
1 h 0.263 0.398 0.614 0.235 10.60 40.79 61.65
3 h 0.448 0.662 0.809 0.411 8.08 37.82 49.12
6 h 0.649 0.989 0.978 0.596 8.07 39.68 39.03
12 h 0.909 1.422 1.187 0.816 10.28 42.61 31.25
24 h 1.644 2.456 2.210 1.589 3.38 35.32 28.14

Table 3: 1e average RMS and RMS improvement percentage of 28 satellites (27 days).

Forecast duration
RMS (ns) RMS improvement (%)

QP ARIMA GM IGM IGM-QP IGM-ARIMA IGM-GM
15mins 0.396 0.492 0.657 0.274 30.74 44.27 58.31
30mins 0.411 0.582 0.672 0.268 34.75 53.92 60.04
1 h 0.435 0.678 0.685 0.300 31.02 55.72 56.18
3 h 0.546 0.904 0.782 0.410 25.01 54.71 47.61
6 h 0.727 1.175 0.916 0.578 20.48 50.78 36.89
12 h 1.073 1.417 1.281 0.883 17.70 37.67 31.02
24 h 2.187 2.260 2.349 1.858 15.05 17.79 20.90

Table 4: Confidence interval and its width of the first day/ns.

Forecast duration
(c1, c2) Width

QP ARIMA GM IGM QP ARIMA GM IGM

15mins (−0.092, 0.164) (−0.052, 0.079) (−0.294, 0.214) (−0.069, 0.097) 0.256 0.131 0.508 0.166
30mins (−0.107, 0.180) (−0.091, 0.088) (−0.313, 0.224) (−0.069, 0.095) 0.287 0.179 0.537 0.163
1 h (−0.098, 0.196) (−0.146, 0.112) (−0.321, 0.248) (−0.062, 0.104) 0.294 0.258 0.569 0.166
3 h (−0.134, 0.331) (−0.453, 0.280) (−0.395, 0.366) (−0.104, 0.206) 0.466 0.733 0.760 0.309
6 h (−0.141, 0.543) (−0.857, 0.544) (−0.450, 0.547) (−0.157, 0.390) 0.684 1.402 0.998 0.547
12 h (−0.160, 0.711) (−1.732, 0.846) (−0.683, 0.786) (−0.338, 0.608) 0.871 2.578 1.469 0.946
24 h (−0.280, 1.060) (−3.518, 1.368) (−1.339, 1.353) (−0.846, 1.074) 1.340 4.887 2.692 1.920
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lower the accuracy is. In contrast, the improved GM (1,1)
model is the least insensitive to the fluctuation of the clock
bias signal. Take the satellite of PRN 08 as an example: the
RMS of the QP model, ARIMA, and traditional GM (1,1)
model are 4.88 ns, 4.13 ns, and 5.47, respectively, while that
of the improved GM (1,1) model is only 2.78 ns.

4.2.6. Accuracy of a Few Abnormal Satellites. When the
forecast duration is 6 h, the RMS values of PRN 03, 08, 23,
and 27 are much larger than those of other satellites, which is

shown in Figure 4, where the clock bias signal of PRN 08
fluctuates up and down, the prediction accuracy of these four
models is very low. For PRN03, 23, and 27 with smooth clock
bias signals, the RMS values of both the traditional and
improved grey model are much higher than that of the QP
model, which indicates that the clock bias signal of these
three satellites shows a quadratic polynomial change trend
rather than exponential.

1rough the above tables, figures, and qualitative and
quantitative analysis, it is indicated that the accuracy of the
improved GM (1,1) model is higher than that of

Table 5: 1e average confidence interval and its width of 25 days/ns.

Forecast duration
(c1, c2) Width

QP ARIMA GM IGM QP ARIMA GM IGM

15mins (−0.158, 0.774) (−0.033, 0.104) (−0.339, 0.504) (−0.198, 0.166) 0.542 0.137 0.844 0.363
30mins (−0.179, 0.390) (−0.055, 0.135) (−0.348, 0.516) (−0.189, 0.159) 0.569 0.189 0.864 0.348
1 h (−0.175, 0.390) (−0.098, 0.194) (−0.360, 0.499) (−0.217, 0.159) 0.565 0.292 0.859 0.376
3 h (−0.204, 0.470) (−0.305, 0.510) (−0.412,0.507) (−0.265, 0.163) 0.674 0.815 0.919 0.428
6 h (−0.222, 0.618) (−0.578, 1.011) (−0.492, 0.560) (−0.350, 0.222) 0.840 1.590 1.052 0.572
12 h (−0.328, 0.815) (−1.179, 1,869) (−0.810, 0.719) (−0.632, 0.345) 1.143 3.048 1.529 0.977
24 h (−0.628, 1.439) (−2.340, 3.609) (−1.594, 1.404) (−1.397, 1.010) 2.066 5.949 2.998 2.407
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Figure 4: RMS of 28 satellites for the forecast duration of 1 h (a) and 6 h (b).
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Figure 5: 1e forecast errors of the 28 satellites for the forecast duration of 1 h (a) and 6 h (b).
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conventional GM (1,1), QP, and ARIMA. Stability is
another indicator to evaluate the prediction performance,
which can be analysed qualitatively by the forecast error
chart of multiple satellites and be analysed quantitatively
with the width of the confidence interval. 1e forecast
errors of the four models are shown in Figure 5. Because
of the limited space for this article, only the prediction
errors of the next 1 h and 6 h predicted by clock bias of
the first day are displayed here and those of other
forecast durations are not presented one by one. 1e
values of the confidence interval and its width are listed in
Tables 4 and 5.

By observing the signal curve in Figure 5, we can find
that the error distribution of the traditional GM (1,1) model
is relatively scattered both 1 h and 6 h forecast duration but
that of the improved GM (1,1) model is the most compact.
When the forecast duration is 1 h (the left side of Figure 5),
the forecast error curves of almost all the satellites for the
IGM model are distributed between minus 0.5 ns and plus
0.5 ns and that of QP and ARIMA are also the same with
IGM except one or two curves. However, most error curves
of the GM model are scattered, and many error values are
beyond plus or minus 1 ns. We can find out easily from
Figure 4(a) the corresponding satellite numbers with large
error values. With the increase in forecast duration, the error
curves of each model begin to diverge slowly, and there are a
few curves deviating from the central axis seriously. Rela-
tively speaking, the error curve of the IGM model diverges
most slowly, and the maximum value of the error curve far
away from the central position is also significantly smaller
than that of other models. In addition, the change trend of
the forecast error curve of the IGM and GM is almost the
same, but the change range of IGM is far less than that of
GM. In accordance with the above qualitative analysis, we
can conclude that the improved GM (1,1) model has the
highest stability among the four models.

1e confidence interval and its width of the first day
for the four models are listed in Table 4. Generally, the
lower limit of the confidence interval is negative and the
upper limit is positive, in clock bias prediction. However,
when the prediction accuracy is very low, both the lower
limit and upper limit are positive or negative such as that
on March 10 and 11 here. 1erefore, Table 5 only lists the
average value of the 25 days’ confidence interval and its
width. All the values in both tables are calculated at the
confidence level of 0.95.

Comparing the data of the corresponding forecast
duration in the two tables, we can see that the average
confidence interval width of 25 days is slightly higher
than that of the first day. Furthermore, it can be seen from
the data in the single table that the models whose con-
fidence interval width values change from large to small
are GM, ARIMA, QP, and IGM when the forecast du-
ration is within 3 h, but those of the models are ARIMA,
GM, QP, and IGM while the forecast duration is greater
than 3 h, except that the confidence interval widths of
ARIMA for 15mins forecast duration and QP for 12 h
forecast duration are slightly lower than IGM. It is further
proved by the quantitative data that the stability of IGM is

the highest among the four models. Compared with GM,
the average prediction stability of the IGM model of 25
days for the forecast duration of 15 mins, 30 m, 1 h, 3 h,
6 h, 12 h, and 24 h has been increased by approximately
(56.99, 59.72, 56.23, 53.43, 45.63, 36.1, and 19.71) %,
respectively.

5. Conclusion

Aiming at the instability performance of the traditional
GM (1,1) model in short-term clock bias prediction, an
improved method is proposed by optimizing initial
conditions. In order to verify the effectiveness of the
improved GM (1,1) model, we apply it to predict the GPS
rapid precision clock bias, then use RMS and the confidence
interval width of forecast error to evaluate the accuracy and
stability of the prediction model, and finally draw the fol-
lowing conclusions:

(1) 1e improved GM (1,1) model can be used to predict
SCB effectively, and we can obtain better prediction
result even when the clock bias signal fluctuates
seriously. In addition, the improved GM (1,1) model
is not sensitive to the type of satellite clock, the
fluctuation characteristics of clock bias signal, and its
influence is much less than that of the QP model,
ARIMA model, and traditional GM (1,1) model.

(2) 1e prediction accuracy and stability of the im-
proved GM (1,1) model are much higher than that of
the QP model, ARIMA, and traditional GM (1,1)
model, especially for the short forecast duration.
However, with the increase in forecast duration, the
improvement rate of accuracy and stability of IGM
begin to decline, compared with other models.
1erefore, in future research, we can combine the
method mentioned in this article with other mea-
sures, such as preprocessing the initial sequence,
reconstructing the background value, and optimiz-
ing the time response function to further enhance the
accuracy and stability of the GM (1,1) model.
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