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-e outbreak of COVID-19 has caused problems such as shortage of workforce, cost increase, cash flow tension, and uncertainty
of supply chain. It has a specific negative impact on the raw material supply, procurement management, production resumption,
logistics, and market of the supply chain, which can trigger cascading failures in supply chain networks. Aiming at the failure of
upstream/downstream firms in supply chain networks due to the decreased product demand/material supply under the COVID-
19, the present study adopted an underload cascading failure model for the supply chain networks. In this model, the hierarchical
supply chain networks were constructed based on the Erdos Renyi (ER) model and Barabasi Albert (BA)model.-e validity of the
model was verified under random attack and target attack. In the random attack mode, the influences of model parameters were
studied, and in the target attack mode, the influence of target protection and random protection measures on enhancing network
invulnerability was also studied. Simulation results showed that the initial load and capacity lower bound of nodes impact
cascading failure size. -e former has a positive correlation with cascading failure size, while the latter negatively correlates with
cascading failure size. Furthermore, random protection measures are more practical to prevent cascading failures.

1. Introduction

-e ongoing COVID-19 pandemic has posed severe dis-
ruptions on global supply chains [1, 2]. After the outbreak of
the COVID-19 pandemic, firms faced more challenges such
as labor shortage, cost increase, cash flow interruption, and
the other uncertain emergencies of the supply chain, which
have negative impacts on rawmaterials supply, procurement
management, production resumption, and logistics and
market in supply chains [3, 4]. A supply chain network is a
functional chain network structure organized by a few
various business entities like suppliers, manufacturers,
distributors, and retailers, realizing from raw material
purchase to finished product production and final sales [5].
As a dynamic network, the fluctuation of any part of the
network can spread quickly in the whole network [6].

Cascading failure is one of the fundamental reasons for
supply chain disruptions. Supply chains must consistently
achieve robustness by trading off efficiency against vul-
nerability [7]. -e international shipping costs have been
rising to more than 400 per cent since the outbreak of
COVID-19, resulting in port congestions and supply chain
postponements all over the world [8]. On the other side,
numerous companies went bankrupt due to COVID-19.
According to statistics released by the Administrative Office
of the U.S. Courts, there were more than one million
bankruptcy filings from 2020 to 2021 [9]. Similarly, there
were more than ten thousand company bankruptcies related
to Japan’s pandemic from 2020 to 2021 [10]. Every company
bankruptcy may become the vulnerable point causing
subsequent bankruptcies and weakening the robustness of
the entire supply chain.
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Cascading failure is a condition of interconnected sys-
tems when failure on one part can lead to a subsequent
failure in corresponding parts and finally cause an overall
failure at the system level [11]. Cascading failures in supply
chain networks have attracted much attention in recent
years. Extant studies mainly focus on network vulnerability
[12], cascading failure model [11], and emergency recovery
mechanism [13]. However, in conventional studies, the
failure is always assumed to be temporary, preidentified,
overloaded, and recoverable. For example, Lu et al. studied
the robust optimization design under the risk of supply
chain network interruption, integrated the emergency
strategy into the supply chain network design, and estab-
lished a robust mixed-integer programming model based on
a multiscenario, multiperiod, and single product [14]. Gao
and Chen established a cascaded failure model of supply
chain networks based on the complex network theory, in
which the weak link of a network was identified, and the
quantitative evaluation method of supply chain vulnerability
was proposed [15]. Yan et al. established the cascade effect
method of supply chain network system detection and gave
the dynamic node importance evaluation method, based on
the theory of complex networks [16]. He and Cheng studied
the repair mechanism of the supply chain based on the
directed weighted complex network, simulated the damaged
situation of the supply chain by adjusting the link weight of
the supply chain network, allocated limited repair resources,
and repaired the supply chain from the global damage and
node damage [17]. Recently, Saura et al. proposed an arti-
ficial intelligence-based model to capture the dynamic
feature of supply chain networks [18].

However, the cascading failure caused by COVID-19 is
quite different from the previous ones. Under the influence
of COVID-19, firms will fail due to the decreased product
demand or raw materials supply, which belongs to under-
load failure. Meanwhile, it is a sudden attack on the supply
chain with a subsequently long-term and continuous dis-
ruption. -ere is a lack of dynamic models for investigating
supply chain disruption under COVID-19. First of all, we
identify the following:

(1) In the traditionally cascading failure models, the
upper bound of node capacity is considered (i.e.,
node failure occurs when the node load exceeds the
upper bound of capacity). At the same time, the firms
under the influence of COVID-19 are faced with the
problem of decreasing product demand or insuffi-
cient rawmaterials supply, whose node failure occurs
when the node load is lower than the capacity lower
bound.

(2) In the traditionally cascading failure models, when
the node load exceeds the upper bound of capacity,
the firm cannot consume many supply orders or
demand orders. It will consider giving these orders to
other firms with a close cooperation relationship.
However, the load of firms in the supply chain
network caused by the COVID-19 will be lower than
the capacity lower bound, and the load of other firms
with close cooperation will be reduced.

We adopt Wang’s underload cascading failure model in
supply chain networks [19]. More specifically, we adapted
the model from three aspects: firm underload failure, firm
capacity lower bound, and load redistribution according to
the business relationship between firms. On the other side,
how does COVID-19 attack the supply chain? How can we
improve the supply chain to mitigate the disruption caused
by COVID-19? To answer these questions, we adopt two
attack strategies: random attack and target attack to test the
model’s performance. By numerical simulating, we find that
it is crucial to maintain close cooperation among supply
chain firms to survive the epidemic. Besides, target pro-
tection and random protection can improve the survivability
of supply chain networks.

Moreover, random protection is more effective than
target protection. It is more effective to protect small- and
medium-sized firms. Our results implicate that enhancing
cooperation relationships within a supply chain network is
an effective method to fight against COVID-19.

-e rest parts of the paper are organized as follows. In
Section 2, we have a brief systematic review of cascading
failure related to supply chain networks. Furthermore, in
Sections 3 and 4, we present the adapted fundamental model
of underload cascading failure and the cascading failure
process due to the COVID-19 pandemic. Several numerical
simulations are conducted in Section 5. Finally, we draw
several conclusions and implications specific to the situation
of COVID-19 in Sections 6 and 7.

2. The Cascading Failure Phenomena in Supply
Chain Network

Each firm has its capacity, inventory, and demand for raw
materials in the supply chain network. When the output of a
firm is lower than the minimum production requirements of
its operation due to the lack of orders or raw materials,
considering the cost problem and profit purpose, the firm
may consider suspending production or closing in severe
cases. Furthermore, other firms with business contacts with
this firm will also be affected, resulting in their output re-
duction. -is process is repeated in the supply chain net-
work, spreading failures and subsequent failures. -e
successive failures in the supply chain network mean that the
failures of one or a few firms will cause the failures of other
firms through the supply-demand connection between firms
and eventually lead to the failures of a considerable part of
the failures of the whole supply chain [20–23].

-e recent outbreak of the COVID-19 has had a specific
impact on the supply of raw materials for firms [24]. -is
negative effect may be due to shortage or interruption of
logistics, especially raw materials or components from high
incidence areas of the COVID-19 and even high trans-
portation areas. Taking the automobile supply chain as an
example, it is a complex and huge system including various
suppliers, manufacturers, logistics providers, distributors,
whose general structure is shown in Figure 1, where each
node represents a supplier, manufacturer, logistics provider,
distributor, and its main body is the material supply system
such as parts and components. -ere are more than 100,000
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Chinese auto parts firms and more than 13,000 firms above
the designated size [24]. More than 10,000 foreign-invested
auto parts firms have already established production and R&
D bases in China. China’s essential auto parts manufacturing
base is the most seriously affected by the COVID-19, Hubei
Province. More than 1,300 auto parts firms are above the
designated size, including Bosch, Delphi, Valeo, Lear,
Honeywell, and many other multinational auto parts firms.
Automobile production involves tens of thousands of parts,
thousands to tens of thousands of employees, and global
materials procurement. Any abnormality in the supply of
automobile parts will affect the production; the suspension
of some or some upstream suppliers will lead to the “chain
break” crisis in the supply chain and cascade failure [25]. At
present, automobile firms are gradually resuming produc-
tion, but the comprehensive recovery of production capacity
needs the efficient operation and synchronous cooperation
of the whole supply chain system. As the parts and com-
ponents firms in Hubei lag the whole country, it has directly
affected many domestic mainstream automobile firms and
even many international automobile firms, resulting in the
closure and suspension of production of some factories or
models.

-e COVID-19 also has an impact on procurement
management. -e procurement supply chain is a network
system, and the procurement bases are often distributed
throughout the country and even around the world.
However, due to the prevention degree of COVID-19 and
the difference of COVID-19 situation in different regions,
the procurement management of firms is faced with sig-
nificant uncertainty and adjustment risk, which significantly
reduces the efficiency of firms. Taking China’s auto parts as
an example, China is the world’s most significant auto
production and sales country and one of the most crucial

auto parts manufacturing and supply bases in the world.
However, many auto parts, materials, and equipment still
need to be imported from abroad: Germany, Japan, South
Korea, the United States, etc. At present, most of these
countries are high-risk countries. If suppliers in the above
countries stop supplying due to the COVID-19, many of the
auto parts they supply cannot be replaced. Even if they can
be replaced, it will take time. At present, many parts
companies and most auto companies in Europe have an-
nounced to stop production or partially stop production.
Besides, core components and semiconductor products
produced by Japan, South Korea, and the United States are
also widely used in the automobile industry. Most of the
vehicle firms have a large stock of imported spare parts. If the
COVID-19 situation worsens, the spare parts firms and
material firms in these countries and regions stop pro-
duction and supply; the domestic firms will be unable to
continue production after the stock is used up. -e pro-
duction of Chinese automobiles and spare parts will face a
direct impact, which directly affects the regular operation of
the whole automotive supply chain network.

-e cascading failure literature has many studies. Zhang
and Liu studied the vulnerability measurement of the lo-
gistics service supply chain, analyzed the interaction law of
internal nodes of the logistics service supply chain, and
determined the network vulnerability measurement index
[12]. Liu et al. constructed a conceptual model for supply
chain vulnerability and discussed the impact mechanism of
various factors on supply chain vulnerability [26]. Yu et al.
studied the complexity and vulnerability of the supply chain
network structure under the modern production mode and
proposed an analysis method based on the weighted im-
proved node contraction method [27]. Zeng and Zhao
proposed a dynamic network load entropy method and

Suppliers Manufacturers Logistics providers Distributors

Figure 1: A general structure of the automobile supply chain.
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discussed the vulnerability of the cluster supply chain net-
work in the process of cascading failure propagation [28].
Du et al. concluded that moral risk, market risk, and de-
cision-making risk would greatly increase the supply chain’s
vulnerability, based on the complexity of supply chain in-
tegration, operation, and environment [29]. Liu analyzed the
supply chain’s vulnerability from the perspectives of supply,
demand, and environment, established the vulnerability
analysis model of the supply chain, and made a statistical
analysis of the vulnerability [30]. Tang et al. studied the
cascading failure mechanism and the associated supply
chain network [31]. Li et al. established a network model
with a uniform degree and random distribution and a
cascaded failure and invulnerability model, according to the
characteristics of the logistics support network [32, 33]. Tang
et al. considered the characteristics of nodes such as recovery
and repeated failure, constructed a cascaded failure model
under the probability propagation mode of fault nodes, and
comprehensively analyzed the performance trade-off be-
tween edge robustness and node robustness [34]. Tang et al.
analyzed the cascading failure characteristics and the ro-
bustness of an interdependent supply chain network, which
is a typically interdependent network composed of an un-
directed cyber-layer network and a directed physical-layer
network [35]. Geng et al. studied the self-organizing elastic
recovery characteristics of the cluster supply chain network
[36]. Wang and Xiao studied the cascading failure in the
cluster supply network and proposed a resilience method to
cascading failures in the cluster supply chain network by
leveraging the social resilience of ant colonies [37, 38]. -e
next sections will employ an underload cascading failure
model to investigate the COVID-19 disruption in supply
chain networks.

3. The Underload Cascading Failure Model

With the outbreak of the COVID-19, the cascading failure
process in the supply chain network is as follows: the up-
stream firms’ products fail due to the decline of demand, and
the downstream firms fail due to the lack of material supply.
Both the decrease in product demand and the shortage of
material supply can be regarded as a load decrease.When the
load decreases below the lower bound of capacity, it will
cause failure, triggering cascading failure. -erefore, the
underload failure model can better describe the level linkage
mechanical behavior in the supply chain network. -e
following definitions are given to describe better the
underload cascading failure in the supply chain network.

In the process of modeling, the supply chain network is
represented as a directed graph structure in the form of
G � (V, E), where V � v1, v2, . . . , vN  is the set of nodes
(representing the firms), and the node types include supplier
node, manufacturer node, distributor node, and retailer
node. E � e1, e2, . . . , eM  is the set of edges (representing
the business relations between firms), if the upstream firm
node vi and the downstream firm node vj has business
relations, node vi and node vj are connected by a directed
edge as 〈vi, vj〉, and the corresponding element in E is
eij � 1; otherwise, eij � 0.

3.1. Initial Load. In the cascading failure model, the allo-
cation of the initial load is based on the importance of nodes.
Generally, two ways are often used to define a node’s initial
load as degree approach [39, 40] and the betweenness ap-
proach [41–43]. Considering that in the supply chain net-
work, the effective operation of a firm is more and more
dependent on other firms, especially its upstream and
downstream firms, which are closely connected through
business relations. -at is to say, a load of a node is naturally
closely related to that of its neighbors. So, we consider the
way in [44] to define the initial node load as follows:

L
0
i � di 

j∈Ai

dj
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

α

, (1)

where L0
i is the initial load of node vi, di � dIi

+ dOi
is the

degree of node vi, and dIi
is the number of edges from the

upstream neighbor nodes to node vi, dOi
is the number of

edges from node vi to the downstream neighbor nodes. Ai is
the neighbour nodes set of node vi, dj is the degree of the
neighbor node vj of node vi. α is an adjustable parameter
that governs the initial load strength of nodes.

3.2. LowerBoundofNodeCapacity. In the actual network, the
ability of nodes to handle the load (i.e., capacity) is usually
limited by cost and other factors. -e goal of the supply chain
network is to provide products for the end-users, and the
firms in each link are all for the ultimate purpose of making
profits. If the product demand or rawmaterial supply is lower
than a certain level, the firmwill not operate normally and will
eventually suspend production or shut down due to its in-
ability to make profits. -erefore, the load to maintain the
regular operation of the firm must be higher than a specific
bound. Underload will lead to firm failure. Considering that
the failure of the supply chain under the COVID-19 is caused
by underload, this paper only considers the capacity lower
bound of a firm, which is proportional to its initial node load
L0

i [37], and is defined as follows:

Ci � βLi, i � 1, 2, . . . , N, (2)

where Ci is the capacity lower bound of node vi and 0≤ β≤ 1
is the lower bound parameter.

3.3. Redistribution of Load. When the supply or demand of
firms declines, the firms with a closer business relationship
are most affected. In the supply chain network, a load of each
node at first is more significant than the capacity lower
bound, that is to say, a load of any node satisfies: Ci ≤Li, at
this time, the network is in “steady state”; however, in the
COVID-19 environment, the supply and demand of nodes
in the network are slowly decreasing. When Li〈Ci, node
failure occurs, that is, due to the cost and other factors, firms
will choose to stop production, which shows that this node
load will affect the load change of other nodes. -is paper
defines load redistribution according to the business rela-
tionship strength between firms [45], which is expressed as
follows:
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ΔLij � Li

Lj

m∈Ai
Lm

,

� Li

djk∈Aj
dk 

α


m∈Ai

dmh∈Am
dh 

α
,

(3)

where ΔLij is the reduced load of the upstream or down-
stream nearby node vj of node vi, Ai is the neighbor nodes
set of a failure node vi.

For the node c in Figure 2, if it fails at time t, its upstream
nearby nodes a and b, and downstream nearby nodes d and e
will suffer losses. Taking the downstream node d as an
example, its reduced load is as follows:

ΔLd � Li

Lj

m∈Ai
Lm

� Lc

Ld

La + Lb + Ld + Le
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dk 

α
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dh 
α

� Lc

ddk∈Ad
dk 

α
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di 

α
+ dbj∈Ab

dj 
α

+ ddk∈Ad
dk 

α
+ del∈Ae

dl 
α

� Lc

dddc + dddf + dddg 
α

dadc( 
α

+ dbdc( 
α

+ dddc + dddf + dddg 
α

+ dedc + dedg 
α.

(4)

And its load currently is Ld(t) � Ld(t − 1) − ΔLd, if
Li(t)〈Cd, then node d will fail at time t+ 1. For upstream
nodes, the same mode of action occurs in the opposite
direction.-e cascading failure ends when no new nodes fail
due to underload.

3.4. Evaluation Index. With the development of COVID-19,
the node load often lies between the initial load and the
capacity lower bound; that is, the node state in the model is
divided into a normal state, underload, and failure state. In
this paper, we consider the way in [46] to define the whole
network efficiency based on node efficiency to measure the
performance of a supply chain network, and the network
efficiency (denoted by EG) is expressed as follows:

EG � 
N

i�1

egi(t)

N

� 
N

i�1

siLi(t)/Li

N
,

(5)

where si ∈ [0, 1] indicates the status of each node, of which
the value 0 indicates node failure, the value 1 indicates
regular node operation, and the other values indicate node
efficiency reduction due to underload. In the paper, we
assume that all nodes typically work initially, si � 1. Li(t)

represents the load of the node vi at time t.

4. The Cascading Failure Process

Based on the above definitions, the process of cascading
failure model of supply chain network proposed is as follows:

(1) Initial condition: network G, with N nodes, M edges,
the initial load L0

i of node vi(i � 1, 2, . . . , N), ca-
pacity lower bound Ci(i � 1, 2, . . . , N), node attack
ratio p, and adjustable parameters α and β(0≤ β≤ 1).

(2) Node attack mode: when a random attack or target
attack is carried out on network nodes, the load of
the attacked nodes will be reduced in proportion to p.

(3) Load redistribution of failure nodes: when a load of a
node vi is less than its capacity lower bound, the node
fails, and its load is evenly distributed to its neighbor

La

Lb Le
Lg

LfLd

Lb

a

b

c

d

e

f

g

Figure 2: Illustration of the load redistribution after a node fails.

Mathematical Problems in Engineering 5



nodes. -e load redistribution strategy is used. -at
is, a load of its neighbor node is as follows:

Lj(t + 1) � Lj(t) − ΔLij, eij

� 〈i, j〉.
(6)

(4) For all adjacent nodes vj(j � 1, 2, ..., N) of node vi,
test their load Lj: if Lj〈Cj, it causes cascading failure
of nodes, and then vj⟶ vi, repeat (3), otherwise
keep.

(5) Simulation termination condition: for all nodes
vk(k � 1, 2, ..., N) of the network, if Lk ≥Ck the
simulation is terminated.

5. Simulation and Analysis

Because most supply chain data are confidential or pro-
prietary, building an entire supply chain network is very
difficult. From the perspective of the complex network, the
research on the supply chain network is mostly based on a
typical network model, in which random network (Erdos
Renyi, ER) [47] and scale-free network (Barabasi Albert, BA)
are primary [48]. In this paper, the ER and BA networks are
used to simulate the supply chain network to study its
cascading failure dynamics under the COVID-19. Specifi-
cally, python 3.6 is used to code the ER and BA networks and
the proposed model [49]. -e network consists of 6,000
edges and 2,000 nodes. -ese nodes are divided into four
types: supplier, manufacturer, distributor, and retailer. -e
supplier node is only associated with the manufacturer node,
the manufacturer node is associated with the supplier and
distributor node, and the distributor node is associated with
the manufacturer and retailer node. -e retailer is only
associated with the distributor. Each experiment runs 20
times independently in the experiment, and the average
value is taken as the simulation result [50].

5.1. Effect of Attack Strategies on Cascading Failures. Two
attack strategies are generally adopted to trigger the cascading
failure in the network: random attack and target attack.
Random attack refers to the random selection of a certain
proportion of network nodes for an attack. Target attack refers
to selecting a certain proportion of important nodes in the
network for an attack. In this paper, the random attack
strategy adopted is to randomly select a certain proportion of
nodes to reduce their load, and the target attack strategy is to
select a certain proportion of nodes to reduce their load
according to the descending order of node load.

Figure 3 shows the changes in network efficiency when
the ER network and BA network face random attacks and
target attacks under four kinds of parameter values. We can
see from Figure 3 that EG is descending with the increase of
attack ratio both in the ER network and in the BA network.
Taking Figure 3(c) as an example, when the attack ratio is
20%, the EG of the ER network under random attack and
target attack is 0.2825 and 0.0407, while that of the BA
network under random attack and target attack is, respec-
tively, 0.5127 and 0.7994. When the attack ratio is 50%, the

EG of the ER network under random attack and target attack
is 0.0658 and 0.0322, while that of the BA network under
random attack and target attack is, respectively, 0.1865 and
0.4998. -e results of Figure 3 show that the cascading
failures of the ER network and the BA network are more
easily triggered by random attacks than by target attacks.
Similar conclusions can also be found under other parameter
combinations.

5.2. Effect of Model Parameters on Cascading Failures.
-e random attack is more likely to trigger cascading failure
than the target attack known from Figure 4, so the following
experiments are all carried out under the random attacks.

5.2.1. Effect of α on Cascading Failures. In the experiment,
the other model parameters are β � 0.5, p � 0.4. Figure 4
shows the EG changes of two network models during cas-
cading failures with different α, where α is used to control the
load intensity of nodes. We can see from Figure 4 that EG is
ascending with the increase of α both in the ER network and
in the BA network. -is indicates that the initial load of
nodes defined according to the degree of nodes and the
degree of neighbor nodes makes the network robust to
cascading failure. When α � 0.8 and α � 0.9, the EG of the
ER network changes dramatically after being attacked. It is
shown that the robustness of the ER network against cas-
cading failure is relatively weak under the condition of these
two kinds of parameters. Furthermore, BA network also has
similar performance.

5.2.2. Effect of β on Cascading Failures. In the experiment,
the other model parameters are α � 0.9, p � 0.4. Figure 5
shows the EG changes of two network models during cas-
cading failures with different β, where β is used to control the
capacity low bound of nodes. We can see from Figure 5 that
EG is descending with the increase of β both in the ER
network and in the BA network. It indicates that the higher β
value is set (i.e., the minimum production demand of the
firm), the more likely underload failure will occur, which is
consistent with the actual situation. Furthermore, the lower
the β value, the greater the firm’s risk tolerance, and the longer
the firm can support during the COVID-19. When a node
fails, it will cause a loss to its neighbor nodes. If a load of
neighbor nodes is close to the capacity lower bound, the loss
may cause the further failure of neighbor nodes. -e
neighbour node canmake up for the loss by strengthening the
business relationship with other nodes with the same function
as the failed node to reduce the possibility of its failure.

5.2.3. Effect of p on Cascading Failures. In the experiment,
the other model parameters are α � 0.9, β � 0.6. Figure 6
shows the EG changes of two network models during cas-
cading failures with different p, where p is used to control the
load reduction ratio of the attacked node. We can see from
Figure 6 that EG is ascending with the increase of p both in
the ER network and in the BA network, and the change of
the ER network is more obvious than that of the BA network.
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Figure 3: Continued.
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When p� 0.4, that is to say, the attack node’s load is reduced
to 1 − p � 0.6≤ β of the initial load, then there is no cas-
cading failure, and the network efficiency is the largest at this
time. When p� 0.5, the load of the attacked node is reduced
to 50% of the initial load, i.e., 1 − p � 0.5≤ β1 − p � 0.5≤ β;
node failure occurs and affects the neighbor nodes,

triggering cascading failure. Currently, network efficiency is
the minimum. It shows that the closer the load reduction is
to the capacity lower bound, the more likely the nodes are to
have cascading failures. At this time, if certain supporting
measures are taken for such a firm, the ability of the firm to
resist risks can be enhanced.
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Figure 4: Network efficiency under different α. (a) ER. (b) BA.
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5.3. Effect of Protection Measures on Cascading Failures.
We study the effect of protection measures (such as loans to
enterprises and rent reduction) on cascading failure control of
the network under the target attacks. Two protection mea-
sures are used in the experiment: target protection and
random protection. Target protection refers to selecting a

certain proportion of important nodes in the network for
protection, while random protection refers to randomly
selecting a certain proportion of network nodes for protec-
tion. -e model parameters are set to α � 0.8, β � 0.4, p

� 0.3, and the proportion of nodes to be protected is 10% of
the proportion of attack nodes, that is to say, select 10% of the
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Figure 5: Network efficiency under different β. (a) ER. (b) BA.
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Figure 6: Network efficiency under different p. (a) ER (b) BA.
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proportion of attack nodes according to the descending order
of node load for target protection, or randomly select 10% of
the proportion of attack nodes for random protection. Fig-
ure 7 shows the EG changes of two network models during
cascading failures with different protection measures. We can
see from Figure 7 that two kinds of protection measures can
also improve the survivability of the ER network and BA
network, and random protection measures are more effective
than target protection measures. It shows that the protective
measures for small- and medium-sized firms are more ef-
fective. Considering the complexity and diversity of business
relationships among firms in the real supply chain network, it
is difficult to measure it accurately. -is conclusion can
provide some reference for supply chain risk management
during the COVID-19 period.

6. Conclusions and Discussion

In the present study, we propose an underload cascading
failure model to investigate the negative outcomes of de-
mand and supply declines caused by the ongoing COVID-19
pandemic. -e extant supply chain network models are
insufficient to explore the complicated and diverse char-
acteristics among firms in the supply chain network. Our
model simulates the actual situations after the outbreak of
COVID-19 by redistributing the loads among connected
nodes. We try to capture the characteristics of the con-
nections among the upstream and downstream firms. -e
numerical simulations present that the network efficiency is
positively related to the firm loads, while the network effi-
ciency is negatively related to the lower bound of production
capacity. -e simulation results show that the loads and
lower bounds’ resilience will enhance the supply chain’s
robustness when preventing the cascading failures during
COVID-19.

In addition, our model emphasises underload failure:
upstream firms fail due to the decline of demand, and
downstream firms fail due to the decrease of supply. Based
on the underload failure, we analyze the effect of model
parameters on the cascading failure of the supply chain
network. -e simulation results show that the adjustable
parameters α and β, respectively, represent the firm’s
strength and the ability to resist risks, which will affect the
spread of cascading failures. During the COVID-19, some
protection measures for some firms will positively enhance
the invulnerability of the entire supply chain network.

Finally, random attack strategies simulate the impact of
failure caused by COVID-19 on the entire supply chain
network composed of firms of variable sizes.-e simulations
of attacking the core nodes with large production scales
show that the protection measures improve network effi-
ciency. Although the core nodes play an essential role in
maintaining the stability of the supply chain network system,
providing protective measures for small- and medium-sized
enterprises has more obvious effects on preventing network
failure and improving network efficiency.

7. Theoretical and Practical Implications

Our study will contribute to the cascading failure literature
on supply chain network systems. COVID-19 poses chal-
lenges to the extant theories of supply chain management.
-e negative outcomes of the COVID-19 are unpredictable
and uncontrollable. We adapt the underload cascading
failure mode to the actual situations of COVID-19, which
have never happened before. -e proposed model will be
valuable for future studies. In addition, our study also has
three practical implications. First, for large enterprises, in-
creasing redundant partners in the supply chain network will
help to reduce the mutual trust costs for temporary
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Figure 7: Network efficiency under different protection measures. (a) ER. (b) BA.
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cooperation purposes. Production capacity exchange with
redundant cooperators will help reduce the failure rate of
enterprise nodes. In addition, enterprises can appropriately
increase the redundancy of rawmaterials and products, such
as increasing inventory and backup products. -ey can also
deal with the changes in demand or supply to maintain the
regular production progress.

Second, our study implicates that we must pay attention
to the production coordination of various small- and me-
dium-sized enterprises in the supply chain. -e problems of
difficult and expensive financing of small and medium-sized
enterprises have been intensively exposed under the impact
of the COVID-19. From the perspective of policy regulation,
policy innovation and system design play an essential role in
improving the quality and efficiency of the supply system.
During the epidemic period, the government took measures
such as economic support and tax reduction for a certain
number of small- and medium-sized enterprises, which
helped the supply chain network coordinate the production
cycle and capital flow cycle as a whole and ensure network
efficiency.

Finally, our study also implicates that we need to actively
adopt new technologies to reduce the cost and risk of supply
chain management. -e new technology can also involve
virus detection and personnel health tracking. Even if there
is a sporadic epidemic, it can respond and deal with it
quickly to provide better safety protection and psychological
protection for enterprise production, contributing to the
resumption of production and solving the problem of labor
shortages during the epidemic. In the future, we will further
study the specific protection measures to enhance the in-
vulnerability of the supply chain network.
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