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Feature reduction is essential at the preprocessing stage of designing any reliable and fast disease diagnosis model. Addressing the
limitations like disease speci�city, information loss, and operating NP problem in polynomial time, this paper introduces a two-
step hybrid feature selection approach to identify a subset of most relevant and contributing features of each medical dataset for
constructing diagnostic model. �e concept of information gain is used in Step I to select the informative features, whereas a
correlation coe�cient-based approach is employed in Step II to retain the informative features possessing much dependency with
class attribute but less dependency among the non-class attributes. In particular, both the approaches are sequentially fused to
select approximately optimal features in order to construct better classi�cation model in terms of performance and time. �e
optimal threshold criteria are decided to choose the most appropriate features from the datasets. �e e�ectiveness of the proposed
approach is assessed using six individual competent learners and one ensemble learner over seventeen disease datasets of smaller
to larger dimensions. �e empirical results indicate that the proposed approach improves the performance over the datasets after
feature selection, reducing considerable amount of irrelevant and redundant data.

1. Introduction

Today, the healthcare sector is considered one of the es-
sential industries in information technology (IT). But due to
the application of IT to the healthcare industry, a huge
amount of health data is constantly being generated. As a
result, this industry demands overwork of human profes-
sionals like doctors, nurses, and other health workers to
make more e�ective and e�cient health services (e.g., di-
agnosis, nursing care, counselling, therapy, and nutrition).
However, almost all these services are primarily associated
with the diagnosis of diseases which should be accurate and
prompt (on demand). It may be noted that the use of data
mining (DM) and machine learning (ML) (including sta-
tistical analysis) has been an indispensable part of IT in the
healthcare industry to improve the quality of health services.
Undoubtedly, it is essential to design disease diagnosis
support systems (DDSSs) by applying DM and ML ap-
proaches so that healthcare professionals bene�t from

accurate and fast diagnosis, reducing their time and e�orts.
Further, DDSSs can �ll the gaps of the existing techniques
adopted in the health units, and such models avoid infor-
mation loss and reduce diagnosis costs.

However, clinical datasets are very complex in nature,
for example, disease datasets generally possess huge amount
of data with high dimensionalities (input variables/features/
attribute); data in the dataset are usually collected from
di�erent sources in a di�erent format (i.e., heterogeneous);
there may exist lots of missing data, outlier, inconsistent
data, and so on in the dataset, and characteristics of data are
dynamically changing. Among these complexities, the di-
mensionality curse makes a major issue in designing good
DDSS. Especially, clinical data with high dimensions may
have many redundant/unnecessary (i.e., highly correlated
non-target features) and irrelevant attributes (less relevant
features with class feature), and they do not contribute to
designing DDSS. Instead, they often degrade the perfor-
mance of the designed DDSS [1]. For example, machine
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learning algorithms like C4.5 [2], K-nearest neighbour
(KNN) [3], and Näıve Bayes [4] show often adverse effect on
their performances due to the presence of such redundant
attributes. Also, their presence in the database makes time
concern during construction of DDSS and decision making.
So, feature reduction is the only solution to overcome these
concerns, and any ideal reduction approach assists in de-
veloping stable DDSS, even though the characteristics of
medical data dynamically change.

Dimensionality reduction is an essential but challenging
task in data mining. It helps in data compression and hence
reduces storage space. It also reduces computation time. )e
reduction techniques are primarily divided into two cate-
gories: feature extraction (FE) and feature selection (FS). FE
methods (usually applicable in image processing and natural
language processing) aim to reduce the number of features
in a dataset by creating new features (combing the existing
ones) and then discarding the original (actual) features. On
the contrary, FS methods reduce the dataset size by choosing
only the relevant and non-redundant features but retaining
adequate information for the learning task. Several FS ap-
proaches are introduced so far specifically to tackle medical
datasets, and research is still going on for further im-
provement. )e systematic review by Kawamoto et al.
showed research interests prior to 2005 to improve clinical
practice using clinical decision support systems through FS
approaches [5]. A list of feature selection-based research
works carried out over the last 20 years on clinical datasets is
cited here to show the substantial research interest in FS in
the medical domain [6–19].

Importantly, FS techniques are being extensively applied
to reduce data dimensions in big data analytics [20, 21]. In
2021, Majid and Maryam proposed a distributed ensemble
imbalanced FS framework to deal with big imbalanced
datasets [22]. López et al. [23] proposed a distributed feature
weighting algorithm based on RELIEF technique applied for
small problem to estimate features importance of large-scale
data. Reddy et al. [24] investigated two well-known di-
mension reduction approaches, namely, linear discriminant
analysis (LDA) and principal component analysis (PCA), in
the perspective of big datasets (including cardiotocography
(CTG) dataset and diabetic retinopathy (DR) as medical
datasets) and concluded that if the dimensionality of datasets
is low, ML algorithms without dimensionality reduction
yield better results. In 2022, Chen et al. [25] proposed a
multi-tasking particle swarm optimization (PSO) approach
for high-dimensional datasets (including many clinical
datasets) to achieve higher classification accuracy in a
shorter time than other state-of-the-art FS methods on high-
dimensional classification. Interestingly, Hu et al. [26] in-
troduced a multi-participant federated evolutionary FS al-
gorithm for imbalanced data under privacy protection.

Very recently, the graph-based methods, including
graph theory [27–29], spectral embedding [30], spectral
clustering [31], and semi-supervised learning [32], are being
significantly used in many problems for FS because of their
capability of encoding similarity relationships among the
features. Interestingly, these techniques may be applied in
the medical field, since most of the medical datasets consist

of images. Alelyani proposed one bagging-based ensemble
approach to improve stability of feature selection in clinical
datasets using data variance reduction [33]. In 2021, Xie et al.
[34] developed a standard deviation and cosine similarity-
based FS approach to tackle the challenges in genomic data
analysis caused by their tens of thousands of dimensions
while having a small number of examples and unbalanced
examples between classes. In 2020, Sarkar proposed a two-
step knowledge extraction framework for faster and accurate
detection of disease [35]. )e model used the entropy re-
duction approach to select few best relevant features from
each dataset, but the issue is that several features in selected
set may be correlated (i.e., redundant) among themselves
which may often degrade the performance of the developed
model. A few more standard published studies are listed in
Tables 1 and 2, comparing their performances with the
present work.

1.1. Research Scope. As of now, there is extensive literature
on feature selection in themedical domain. Butmost of them
are disease specific or research focuses very less on gener-
alizability case. Further, deciding threshold value criteria
sufficient to identify minimal feature set is another issue in
feature reduction. Also, dimension reduction often leads to
information loss. It may be noted that, for dimension reduc-
tion, researchers prefer principal component analysis (PCA),
but retaining the number of components is a big issue in PCA.
Further, feature selection is viewed as a search optimization
problem. More specifically, minimum feature subset selection
(MFSS) is proved to be an NP problem [36, 37]. )eMFSS NP
problem is mathematically explained below.

1.1.1. Minimum Feature Subset Selection (MFSS) as NP
Problem. )e search space in context of MFSS includes all
possible feature subsets to discover the best feature subset, and
the total number of possible ways to select feature subsets will be
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where n is the dimensionality (quantity of original features)
and s denotes the size of the chosen current feature subset.

Certainly, selection of zero (0) features (i.e., nC0) may be
ignored.

1.1.2. Challenges. )e problem to discover the ideal feature
subset seems to be NP-hard because the analysis of all the
feature subsets is costly in a computational manner, time-
consuming, and inefficient even in case of small sizes. In fact,
the exhaustive search can find the optimal solution, if the
number of variables is not too large. In particular, there is
still no effective way to deal with this problem. )at is why,
the problem is attempted to solve sustainably by using
statistical or information theory-based or search-based
strategies including best-first, branch-and-bound, simulated
annealing, genetic algorithms, and so on.
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1.1.3. Present Work. In the present study, a two-step hybrid
generic model is proposed to identify an ideal subset of
features for medical datasets, taking the strength of the
existing statistical measures—information gain and corre-
lation coefficient. )e hybrid approach is a polynomial time
approximation approach to tackle MFSS problem. More
specifically, the concept of information gain is used in the
first step to identify the most relevant non-target attributes
with more information gain, whereas a correlation coeffi-
cient-based approach is used in the subsequent step to search
the non-target features having maximum dependency with
class attribute but minimum dependency among the non-
target attributes. Optimal threshold criteria are decided
based on the trial-and-error approach in Step II to select the
most informative features from the datasets. However,
threshold value is deterministically set in Step I. Generally,
threshold limits are determined by expert knowledge, but
such decision may not often result in good solution. In
addition, it may vary from problem to problem. )at is why,
threshold values in Step II are decided based on the trial-
and-error approach.)e approach also includes provision of
decremental and incremental scope of threshold values
dynamically. Hence, we may claim that this approach has
capability of high compression of storage and much time
reduction, resulting in minimum information loss (since
improvement is observed in performance metrics). Anyway,
both the steps follow backward elimination technique to
retain the best features.

1.2. Contributions of the New Hybrid Approach

(i) Operating MFSS (an NP problem) in polynomial
time by the method of hybridization and setting
optimal threshold values through trial-and-error
approach to get the maximum accuracy and mini-
mum false rate. )e time complexity of the ap-
proach is O(n3) with n attributes/features in the
dataset.

(ii) It is a generic feature reduction model for medical
datasets, i.e., it targets medical datasets irrespective
of any medical disease dataset. However, the model
may show better performance for datasets other
than medical datasets but nothing wrong is there.

(a) )e speciality about operating disease datasets is
claimed by adaptation of information gain-
based approach and correlation coefficient-
based approach in sequence. Medical datasets
usually possess more irrelevant and redundant
features. )e information gain approach in the
first step aims to eliminate the irrelevant fea-
tures, whereas the correlation coefficient-based
approach in the second step aims to eliminate
both irrelevant and redundant features (not
losing attributes with maximum information
gain).

(b) )e speciality about disease generalability in the
approach is the provision of changing threshold

values decided for non-target and target and
non-target and non-target pairs in the datasets.

(iii) Preventing information loss due to feature reduc-
tion, since the model aims not to lose the infor-
mative features while processing features in Steps I
and II as well. Prevention of information loss is
validated through performance measuring metrics
like accuracy, true positive rate (TPR), false positive
rate (FPR), and area under the receiver operating
characteristics (AUROC).

(iv) Datasets of different dimensions and rarely con-
sidered datasets like Arrhythmia, Lower back pain,
Malaria, and Parkinson’s are experimented in this
study.

(v) )e percentage of feature reduction by the new
model is high enough.

1.3. Organization of the Article. )e rest of the paper is
organized as follows. Section 2 includes previous works
related to the present work. Section 3 discusses the proposed
methodology in detail. )e implementation of the method,
the obtained results, and analysis of the results are illustrated
in Section 4. )e conclusions and the future scope are
presented in Section 5.

2. Previous Works

Prior to the model description, previous works related to the
proposed model are included in this section. It may be noted
that basic knowledge on dimensionality reduction and its
very common categories, namely, feature selection and
feature extraction, are already included in the Introduction
section. Truly, before feature reduction using machine
learning approaches, few features may be simply ignored as
follows:

(i) Domain expert may reduce unnecessary features.
(ii) Feature exceeding certain threshold value of missing

data may be removed.

Next, suspecting interdependence among features and
less contributary features, the machine learning-based fea-
ture reduction approaches need to be applied. Now based on
labelled, unlabelled, and partially labelled data, the standard
feature selectionmethods are usually divided into threemain
categories: supervised, unsupervised, and semi-supervised
[38]. Any supervised method selects and evaluates conve-
nient features based on labelled data. Entropy-based tech-
nique is a supervised FS technique. On the other hand,
unsupervised FS techniques ignore the target variable and
remove redundant variables. )e correlation coefficient-
based approach is usually considered as an example of
unsupervised FS method. Evaluating and selecting features
in the unsupervised method are made based on the ability to
meet some of the dataset’s properties, like locality preserving
ability and variance. However, a small amount of labelled
data (not all) is available in many datasets, and finding their
labels is costly. So, semi-supervised or constrained methods
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are used in such cases. In particular, the semi-supervised FS
method uses both labelled and unlabelled data.

Further, based on the evaluation methods adopted for
feature selection, the methods may be categorized as filter,
wrapper, embedded, ensemble, and hybrid approaches
[39–41]. In the filter-based method, four types of evaluation
criteria, namely, dependency, information, distance, and
consistency (i.e., unambiguous), are used.)esemethods are
classifier independent. So, such technique has better gen-
eralization property but ignores interactions between clas-
sifiers. For more details about filter-based approaches, one
may refer to the studies [42, 43]. On the contrary, a learning
algorithm in the wrapper-based method is iteratively
employed to evaluate the quality of feature subsets in the
search space. )is method interacts with classifier frequently
and focuses on minimizing the prediction error. So, the
major issue of the wrapper method is the computational
complexity. Some common examples of wrapper methods
are forward feature selection, backward feature elimination,
recursive feature elimination, etc. In this regard, one may
refer to the recent studies [44, 45]. )e embedded method is
a built-in FS mechanism that embeds the FS in the learning
algorithm and uses its properties to good feature evaluation.
)erefore, ensemble approaches are often the best way to
tackle the limitations of the individual approaches. In
general, the ensemble model aims to construct a group of
feature subsets and then produce an aggregated result out of
the group. It interacts with classifier. So, it is classifier
specific but better than wrapper method, since it interacts
with classifier once (not frequently). LASSO and RIDGE
regressions are some popular examples of this method.
)ese have inbuilt penalization functions to reduce over-
fitting. )e time complexity of this model is also high. Fi-
nally, approaches based on hybridization employ the
wrapper model’s proper performance and the filter model’s
computational efficiency. However, the accuracy issue may
be challenging in the hybrid model, since the filter and
wrapper models are considered two separate steps [46]. So,
we need to develop new ideas in order to design a newmodel
(hybrid model) that will be able to improve performance of
the learners, taking a smaller number of computational
resources. )e hybrid method can be formed by combining
two or more different methods (usually filter method). It
attempts to inherit the strengths of the individual methods.

3. ProposedHybrid Feature Selection Approach

)e conceptual view of the proposed selection-based feature
reduction approach is depicted in Figure 1. )e hybrid
approach is, indeed, Phase II of the entire work carried out in
the present study. More specifically, Phase I of the model
deals with original datasets (drawn directly from several
sources) and the performance measures of the selected
competent learners over the chosen datasets. Phase II at-
tempts to search for accurate features from each original
dataset. Finally, Phase III uses the same learners and the
same infrastructure (as applied in Phase I) to measure their
performances over the datasets with reduced features.

3.1. Definition

(i) Original Dataset. Medical datasets with original
features (drawn directly from the data repository)
are termed here as the original datasets. In such a
dataset, features/attributes are recommended by
experts (physicians).

(ii) Relevant Attribute. As per the existing literature, a
non-target feature (x) is relevant with target attri-
bute (C) if these two are highly dependent (or
correlated), otherwise irrelevant

(iii) Redundant Attribute.As per the existing literature, a
non-target feature (x) is relevant with another non-
target attribute (y) if these two are highly dependent
(or correlated). Here, same information is carried by
both x and y about the dataset

Details of Phase II.)e very common but unimportant
nominal attributes (e.g., id number, zip code, eye colour,
and so on) in medical dataset are first discarded from it.
Next, the suggested FS method is applied in Phase II. In
fact, this phase consists of two steps: Step I and Step II. An
entropy-based approach is employed in Step I to choose the
most informative features from each original dataset. In
Step II, the feature set decided by Step I (for each dataset) is
passed to a correlation-based approach that finds associ-
ation between target and non-target attribute pairs and
then non-target and non-target attribute pairs in order to
remove irreverent and redundant non-target attributes. In
particular, two supervised feature selection approaches are
fused here. Truly, the entropy-based approach emphasizes
to identify the most relevant informative features, but some
of these may have strong dependency among themselves
and this results in redundant attributes. Certainly, finding
the redundant attributes may not be resolved through this
approach. However, the correlation-based approach has
the capability to tackle this limitation. )at is why, the
entropy-based approach is applied in the first step and the
correlation-based approach is applied in the subsequent
step.

Importantly, optimal threshold criteria in Step II are
decided based on the trial-and-error approach in order to
retain the most informative as well as the essential
features of the datasets, whereas the threshold value in
Step I is set deterministically to select only the infor-
mative features. More specifically, two threshold values
in correlation-based approach are set by applying the
trial-and-error approach—one for checking relationship
between non-target and target attribute pairs and the
other for non-target and non-target attribute pairs.
Actually, the threshold values in the proposed approach
are decided based on the trial-and-error approach to
yield maximum improvement or no loss in performance
of the learners over almost all the chosen clinical data-
sets. More details about threshold values are described in
the respective algorithm sections. It may be noted that
the selection of threshold values (through trial-and-error
approach) assists to solve MFSS NP problem
approximately.

Mathematical Problems in Engineering 7



3.1.1. Concept Adopted in Step I Using Information Gain
Measure. �e approach �rst computes information gain of
each attribute and then �nds their mean (i.e., mean_-
Gain =∑ni�1 Gain (Ai)/n) and standard deviation (s.d.). Next,
parameter �reshold_value is set as

Threshold value � mean Gain − sd. (2)

Here, sd is the Gain standard deviation (later denoted as
Gain_std.)

Finally, it �lters out the attributes as follows. If any
attribute has information gain less than �reshold_value,
then it is discarded from the set of attributes.�us, it reduces
search space and enables to �lter out the right informative
attributes. �e algorithmic version of this logic is presented
in Algorithm 1.

Complexity Analysis. �e algorithm is very simple and
straightforward. Its running time (including entropy cal-
culation time) is simply O(n2), where n is the number of
attributes in the dataset. �e algorithm is implemented in
Python 3.9.

Note.�e decided �reshold_value� (mean_
Gain−Gain_std) is statistically appropriate for �ltering features.
In particular, feature possessing less than the�reshold_value is
assumed to have very low contribution in constructing expert
system and may be ignored/removed from the feature set. �is
strategy is a kind of search-based �ltration technique for di-
mensionality reduction task. Now, the joint entropy of the
discarded features is checked to conclude if they are statically
independent by using the inequality: H(X1, X2, . . ., Xk)≤
H(X1) +H(X2)+ · · ·+H(Xk). If the inequality is satis�ed, then

they are statistically independent; otherwise, they are dependent.
One may note that Shannon’s joint entropy formula for two
ensemble variables X and Y is de�ned as H(X,
Y)�−∑x∑yp(x, y)log(p(x, y)).

Now, if X and Y are dependent, we may not directly �nd
the measure of dependency level by using the inequality.
However, it can be obtained from correlation measures, and
so correlation measure is used in the subsequent step of the
ensemble approach.

Importantly, information gain (in comparison to Gini
index) is preferred here to remove irrelevant attributes, since
Gini index facilitates the bigger distributions not for lesser
distributions having small count with multiple speci�c
values.

3.1.2. Concept Adopted in Step II Using Correlation Coe�-
cient Measure. �e statistical measure, correlation coe�-
cient, represents the strength of association between the
variables. Its values lie in [−1, 1]. In this study, Pearson’s
product moment correlation coe�cient is employed. �e
adopted correlation coe�cient-based logic to reduce fea-
tures is �rst graphically shown in Figure 2 (a wheel of
complete graph) for easy understanding. �e entire logic is
described in 2 parts, namely, substeps I and II (as shown in
Figure 2).

Logic to Decide Initial �reshold Values. �e initial threshold
values primarily decided by the trial-and-error approach
(based on 10 trials) are here set as

Threshold_value1 � 0.4∗ max Correlation_coefficient Ai, C( ), i � 1, . . . , m{ }. (3)

Here, Ai is the i-th attribute and C is the class attribute.

Threshold_value2 � 0.75∗ max Correlation_coefficient Ai, Aj( ), i≠ j; i, j � 1, . . . , k; k≤m{ }. (4)

Medical Datasets with
original features

Diagnostic results yield by
the competent learners and

analysis

Hybrid Feature Selection Technique

Information gain based
feature selection approach

Correlation based feature
selection approach

Performance of the competent learners on dataset with reduced
features

Step-I Step-II

Phase I
(Prior to Feature Selection)

Phase II
(Feature Selection)

Phase III
(After Feature Selection)

Dataset with reduced
features

Figure 1: Block diagram of the proposed model.
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Here, Ai and Aj are the i-th attribute and j-th attribute,
respectively.

)is logic is implemented using Python 3.9.
Note. Here, selection of the best features is done via

removal of the irrelevant and redundant features from the
feature set.

)e high-level description of the logic is presented in
Algorithm 2.

3.2. ComplexityAnalysis. )e algorithm is very simple and it
uses two iterations (in cascaded fashion), each continuing
for a maximum of m times. So, its running time (including
correlation coefficient computation time) is simply O(m3),
where m is the number of attributes in the dataset. )e
approach is implemented in Python 3.9.

4. Experimental Results and Discussion

To assess the performance of the proposed feature selection
model, several extensive experiments are performed over
seventeen publicly available datasets drawn from several
machine learning repositories (e.g., UCI [47], Kaggle [48],
and OpenML [49]). In particular, the values of the perfor-
mance metrics obtained (before and after applying the sug-
gested hybrid approach) by six state-of-the-art and well-

known learners over the datasets are presented in Tables 3–5,
respectively. Importantly, each learner belongs to one specific
type of learning strategy, such as J48 (a decision tree-based
rule inducer [2]), JRip (Java version of Repeated Incremental
Pruning to Produce Error Reduction (RIPPER)) [50] (a se-
quential covering algorithm), nature-inspired artificial neural
network [51] (here, a 3-layer NN with ⌈((n + k)/2)⌉ neurons
in hidden layer is taken, where input layer has n neuro-
ns—one for each input parameter, whereas output layer has k
neurons—one for each class and each neuron uses sigmoid
function), KNN [3] (a distance/instance-based learner), Näıve
Bayes [4] (a probability-based learner), and support vector
machine (SVM) [52] (with popular radiant basis function
(RBF) kernel). In fact, to show the performance of the
proposed feature reduction model rigorously, learners are
chosen based on different strategies.)e experiments over the
learners are performed in Weka (Waikato environment for
knowledge analysis) platform (http://www.cs.waikato.ac.nz/
ml/weka). On the other hand, the proposed combined feature
selection model is implemented using Python 3.9.

Used Performance Measuring Metrics. )e results of the
standard performance metrics—prediction accuracy, TPR,
FPR, and AUROC obtained by the machine learning al-
gorithms (applied before and after the proposed hybrid
feature selection approach), are used to assess the

Suppose a dataset (DS) of classification problem has n attributes, say Ai, (i� 1, . . ., n) and N instances. So, DS ∈RN×n refers to the
given dataset with N instances and n dimensions (attributes). Now let F be the set of original features of DS, where F� {A1, A2, . . .,
An}. Further, let Fs denote the set of features, consisting of the most relevant informative features taken from F. Initially, Fs � F� {A1,
A2,. . ., An}.
Goal: elimination of the non-informative features from Fs.
Input: DS ∈RN×n //Dataset with n features and N instances
Output: Fn⟶ Fm //Feature set with n features to m features, m≤ n
Parameter: )reshold_value
Variables: Gain_measure[1, . . ., n], Gain_sum� 0, mean_Gain, Gain_suqare_diff� 0, Gain_sdt
begin
1. for each attribute: Ai (i� 1, . . ., n) of DS do

begin
1.1. Compute the entropy reduction measure for Ai as: Gain (E, Ai)�Entropy (E)−vj∈Ai

|Evj
|/|E| . Entropy (Evj

), where
vj (j� 1, . . ., k) denotes values of attribute Ai and Entropy (E)� , where |E| returns the number of
examples in DS, and pm � |Em|/|E|, where |Em| is the number of m-th class examples, out of c classes.

1.2 Gain_measure[i]�Gain(E, Ai)//Stores i-th attribute’s (Ai) information in i-th location of Gain_maesure[ ] array
endfor

2. for i:�1 to n do
Gain_sum�Gain_sum+Gain_measure[i]

endfor
3. mean_Gain�Gain_sum/n//finds mean value (mean_Gain) of information gain measures
4. for i:�1 to n do

4.1Gain_square_diff�Gain_square_diff + square(Gain_measure[i] –mean_Gain)//square is the math function
endfor

5. Gain_sdt�
��������������
Gain square diff


/n)//finds standard deviation (Gain_sdt) of information gain measures

6. )reshold_value�mean_Gain –Gain_std
7. for each attribute: Ai (i� 1,. . .., n) of DS do

7.1 If Gain (E, Ai), (i� 1, . . ., n)<)reshold_value, then discard Ai from Fs, i.e., Fs � Fs – {Ai}//It is backward elimination.
endfor

end//of the algorithm

ALGORITHM 1: Algorithm for information gain-based feature selection approach.
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e�ectiveness of the approach. In brief, the classi�cation
accuracy (CA) is the ability to predict the right classes
correctly. TPR is the proportion of actual positives that were
classi�ed as positives. High TPR indicates that most of the
positive cases in (TP+ FN) are correctly labelled as positive.
In medical models, we always expect high recall and low
FPR. In fact, FPR explains the number of negative cases
incorrectly predicted as positive. �is measure together with
a related measure, namely, the false negative rate, is ex-
tremely important in medical testing. Undoubtedly, FPR
increases the mental worries, and so high FPR is always bad,
and it is necessary to minimize those. Lastly, AUROC
measures the quality of predictions irrespective of the chosen
classi�cation threshold. AUROC close to 1 is desirable.

Description of the Datasets. In this study, several datasets with
di�erent properties are used in the experiments to demonstrate
the robustness and e�ectiveness of the introduced hybrid
model. �e primary characteristics of the datasets like no. of
non-target features, no. of classes, no. of instances, and presence/
absence of missing values are presented in Table 6.

A brief description of each the selected datasets is
presented in Table 7.

Logic to Handle Missing/Null Values in the Datasets.
Missing or null values exist in the datasets. To process the

missing values in the attributes, the following strategy is
adopted.

(i) If any attribute in a dataset possesses more than 60%
missing values, then that attribute is simply dropped
from the dataset.
On the other hand, any attribute with less than 60%
missing values is processed as follows.

(ii) Missing values are replaced by mean value if the
attribute type is continuous; otherwise, they are
replaced by the value with maximum frequency.

Data analysis from Table 6:

(i) Number of datasets with features less than 10 : 2
(11%); these are, namely, E. coli and New�yroid.

(ii) Number of datasets with features greater than 10 but
less than 50 :13(76%)

(iii) Number of datasets with features greater than 50 :
3(17.6%); these are, namely, Arrhythmia, Colon
Cancer (2000 features), and Lung cancer.

(iv) Number of binary class datasets: 10 (58.8%);
number of multi-class datasets: 7 (41%).

From the data analysis, it may be reported that the chosen
datasets are of di�erent sizes with diverse number of features
(smaller to larger like big data). For instance, Arrhythmia,

A2

A3

Cor (A2, A3)
Cor (A2, C)

• Non-target attributes: Ai (i=1,........., m) and the target

Note Removal of attribute means removal of node
(along with incident edges.) Sub-step II of Step II :

Assume k features are now present in D after applying Sub-step I of Step II.
For a pair of (Ai,Aj)–
• If correlation between (Ai and Aj) > 0.75 × max {Cor (Ai, Aj),

Sub-step I of Step II:
 Assume total no.of features in the dataset (D) is now m
• Remove Ai, if correlation between (Ai and C) < 0.4 × max {Cor (Aj,C);

A4

A5

A1

Am

Threshold_Value 1

Target -
attribute
(C)

Threshold Value are selected based on
Trial-and-Error approach.

Threshold_Value 2
A6

• Correlation measures among attributes pairs are assigned along
the edges shown as Cor (A2, A3), Cor (A2, C) in the figure.

attribute: C represent nodes.

Apply this logic for every pair of (non-target and target) attributes.

j=1…...,m)}

Ai; else remove Aj))
i≠j; i, j=1,.......,k} and (if (Ai has the minimum information-gain, remove

Apply this logic for every pair of (non-target and non-target) attributes.

Figure 2: A graphical representation of correlation-based feature selection logic.
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Colon cancer, and Lung cancer are significantly high di-
mensional datasets with small sample size; however, COVID-
19 is an example of low dimensional database with a large
number of samples. On the other hand, Primary Tumour is a
multi-class dataset with twenty-two different kinds of classes.

4.1. Experimental Results. )is section first describes the
experiments conducted in the present research over the
selected clinical datasets. )e obtained results are presented
in the tables, and the results are then analysed.

In the experiments, the number of selected features
(including % age of dimension reduction), the classifi-
cation accuracy (% age), TPR, FPR, and AUROC are used
as the performance measures to evaluate the performance
of the proposed model. First, a list of number of features
reduced from the original datasets is reported in Table 8
on applying the proposed feature selection approach and
its individuals. More specifically, the table describes, re-
spectively, the name of dataset (DN), number of instances
(NI), number of features (NF) in each original dataset, and

Suppose the dataset (DS) has nowm attributes, sayAi,i� 1, . . .,m (after applying Step I) andm≤ n.)erefore, DS ∈RN×mnow refers to
the given dataset withN instances andm dimensions (features), and the feature set (Fs) of DS is now described as Fs � {A1, A2, . . ., Am}.

(i) Correlation value between two variables: x and y (denoted as Cor(x, y)), is computed by the formula: Cor(x,
y)� cov(x, y)/

�����������
var(x)var(y)


, where cov(x, y)� 

m
l�1(xi − x)(y − y)/m and var(x)� 

m
i�1 (xi − x)2/m. Likewise, we get variance

for y (i.e., var(y)).
(ii) )e approach includes provision of decremental and incremental scope of threshold values dynamically.

Goal: removal of irrelevant features (via non-target to target co-relationship) and removal of redundant (with less information gain)
features (via non-target to non-target co-relationship)
Input: DS ∈RN×m //Dataset with m features and N instances
Output: Fm⟶ Fk //Feature set with m features to k features and k≤m
Parameter: )reshold_value1, )reshold_value2//For storing threshold values
Variables:
rnc[1, . . ., m], rnn[1, . . ., (m− 1)] [1, . . ., (m− 1)], Atemp//Used matrices and temporary variable, Atemp
Max_rnc� 0/∗ for capturing the maximum correlation value between class(target) and non-target attributes ∗/
Max_rnn� 0/∗ for capturing the maximum correlation value between non-target attribute and non-target attributes ∗/

Step 1. Find correlation coefficient matrix (C) of size (m+ 1)× (m+ 1) for dataset DS with total (m+ 1) attributes including the class
(target) attribute (placed at the last column of the matrix).
Actually, the matrix: C(m+ 1)× (m+ 1), is represented by the following two arrays

(i) rnc[1, . . ., m]: a 1-D array to store correlation measures between non-target and class attribute pairs:
(e.g., rnc[1]�Cor(1,class) (i.e., correlation measure between attribute 1 and the class), rnc[2]�Cor(2,class),. . .)

and
(ii) rnn[1, . . ., m][1, . . ., m]: a 2-D array to store correlation measures between non-target and non-target attribute pairs
(e.g., rnn[1][2]�Cor(1, 2), i.e., correlation measure between attributes 1 and 2), . . .

Step 2. Find the maximum value from rnc[i], i� 1, . . ., m and store that at Max_rnc
Step 3. Find the maximum value from rnn[i][j], i� 1, . . ., (m− 1); j� (i+ 1), . . ., m and store that at Max_rnn.
Substep I of Step II./∗ Removal of irrelevant non-target features from Fs using )reshold_value1 set for (non-target and class)

attributes pairs ∗/
Step 4. )reshold_value1� 0.4 ∗Max_rnc//i.e., (40% of Max_rnc)
Step 5. For each attribute: Ai (i� 1,2, . . ., m) of the current D do

Step 5.1. If rnc[i]<)reshold_value1, then discard Ai from Fs, i.e., Fs � Fs − {Ai}.//Backward elimination
endfor

Step 6. If all the attributes are discarded from FS (i.e., Fs �Φ), then perform the following substeps, else go to Step 7.
Step 6.1. )reshold_value1�)reshold_value1− 0.1 ∗Max_rnc and take Fs � {A1, A2,. . ., Am}.
Step 6.2. If )reshold_value1> 0, then go to Step 5.

Substep II of Step II./∗ Removal of redundant non-target features from the current Fs using )reshold_value2 set for non-target
and non-target attribute pairs ∗/
Step 7. )reshold_value2� 0.75 ∗Max_rnn//i.e., (75% of Max_rnn)
Step 8. For each attribute Ai (i� 1, 2, . . ., k− 1) in the current DS do//D with reduced features

Step 8.1. For each attribute Aj (j� i+ 1, 2, . . ., k) in the current DS do
Step 8.1.1. If rnn[i][j]>)reshold_value2, then find Atemp�min_information_gain(Ai,Aj) and

discard Atemp from Fs, (i.e., Fs � Fs − {Atemp}) if not already discarded.
/∗ min_information_gain(Ai, Aj) returns the attribute with minimum information gain between two attributes ∗/
endfor

endfor
Step 9. If all the attributes are discarded from FS (i.e., Fs �Φ), then perform the following substeps, else got o Step 10.

Step 9.1. )reshold_value2�)reshold_value2 + 0.1 ∗Max_rnn and take the Fs obtained after Step 6.
Step 9.2. If )reshold_value2<Max_rnn, then go to Step 8.

Step 10. Stop

ALGORITHM 2: Algorithm for correlation coefficient-based feature selection approach.
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the number of features (NF) reduced individually by Step I
and Step II and by their combination. Next, the signifi-
cance of the introduced approach is affirmed through the
standard performance metrics attained by the classifiers,
namely, J-48, NB, JRip, KNN, ANN, NBs, SVM, and
J48+JRip over the chosen benchmark datasets. Impor-
tantly, NB learner is chosen because it works better on
datasets with independent features and the suggested
approach focuses on identifying such features. In par-
ticular, the accuracy results for each dataset are shown in
Table 3 as follows:

(i) Results obtained prior to applying the proposed
hybrid approach.

(ii) Results obtained after applying the proposed ap-
proach and these results are shown within paren-
thesis as (results obtained by applying Step I
separately, results obtained by applying Step II sep-
arately, and results obtained by applying Step I and
Step II combined).

Likewise, the (TPR, FPR) and AUC (ROC) metrics
obtained from the employed learners over the datasets are
presented in Tables 4 and 5, respectively, following the same
order as adopted in case of accuracy result presentation.

For better estimation of the performance metrics of the
learners, each experiment is repeated 10 times based on 10-
fold cross validation scheme. )us, each entry of Tables 3–5
denotes the mean value of the findings obtained from 10
independent runs, where each run applies 10-fold cross
validation scheme. Particularly, in each column corre-
sponding to each row of the performance tables, the best
mean value (if obtained by any learner after feature re-
duction) is marked in bold. A head-to-head comparison of
dimensionality reduction achieved by Step I singly, Step II
singly, and their combination is reported in Table 9.

Recall that the trial-and-error approach is used here to
decide the initial threshold values (mainly for Step II) to
operate feature selection NP problem in polynomial time. In
this model, 10 trials for each dataset are conducted. At each
trial, 10% increment/decrement of max correlation (as

Table 3: Mean accuracy (% age) obtained over the datasets prior to and after feature selection.

Name of dataset J48 JRip KNN ANN Näıve Bayes SVM J48 + JRip

Arrhythmia 77.21, (78.31,
74.11, 78.98)

75.44, (74.11,
75.22, 77.43)

64.60, (65.92,
70.13, 71.09)

68.14, (72.12,
76.99, 77.21)

77.21, (77.01,
75.22, 77.85)

75.88, (78.09,
77.21, 78.09)

79.42, (77.65,
74.55, 81.07)

Breast Cancer
Wisconsin

94.42, (94.42,
94.70 94.70)

93.27, (93.84,
95.42, 94.70)

95.56, (95.56,
95.27, 95.56)

95.99, (95.99,
95.13, 96.12)

97.42, (97.28,
95.85, 97.89)

95.70, (95.85,
95.70, 95.32)

94.84, (94.42,
94.87, 94.98)

Colon Cancer 64.51, (65.47,
66.23, 67.12)

64.51, (65.47,
66.23, 67.12)

62.90, (63.19,
64.21, 64.75)

∗∗∗74.00, (79.00,
84.00, 89.00)

35.48, (35.48,
35.48, 35.48)

64.51, (65.47,
66.23, 67.12)

64.51, (65.47,
66.23, 67.12)

COVID-19 98.17, (97.95,
96.06, 98.66)

97.77, (97.62,
94.18, 97.87)

98.08, (97.92,
94.79, 97.05)

98.14, (98.08,
97.27, 98.58)

96.54, (96.72,
96.17, 97.07)

96.74, (96.85,
96.36, 97.36)

98.14, (97.88,
97.91, 98.37)

Dermatology 94.53, (94.26,
93.98, 94.98)

88.79, (90.16,
87.57, 90.05)

94.80, (94.26,
94.35, 95.12)

96.44, (96.44,
95.35, 95.62)

97.26, (97.81,
96.17, 97.27)

96.17, (96.44,
96.23, 96.78)

95.08, (93.98,
93.67, 95.82)

E. coli 84.22, (84.22,
82.73, 83.73)

80.35, (81.25,
81.84, 81.54)

80.35, (80.05,
79.46, 79.16)

85.71, (86.60,
84.82, 86.01)

85.41, (85.41,
86.01, 86.01)

83.63, (83.63,
84.22, 84.22)

83.63, (82.73,
82.14, 82.84)

Heart
(Cleveland)

52.14, (57.75,
52.80, 54.45)

54.12, (53.79,
53.79, 54.12)

55.11, (53.46,
53.46, 54.82)

51.48, (56.10,
53.46, 57.09)

55.77, (56.76,
53.46, 56.89)

54.78, (55.77,
49.50, 55.77)

53.13, (53.79,
53.79, 53.46)

Heart
(Hungarian)

81.29, (81.29,
81.29, 81.29)

79.93, (80.61,
78.23, 80.87)

80.61, (78.51,
79.55, 81.07)

81.29, (80.83,
80.12, 82.17)

83.33, (82.41,
78.23, 83.08)

81.29, (80.61,
80.61, 81.95)

80.27, (79.25,
80.61, 80.61)

Heart (Swiss) 39.02, (39.02,
39.02, 39.02)

39.83, (41.46,
41.46, 42.27)

32.52, (27.64,
36.58, 37.39)

25.20, (25.20,
40.65, 36.58)

26.82, (30.89,
39.02, 39.83)

26.82, (34.14,
39.83, 40.65)

39.83, (41.46,
41.46, 42.27)

Hepatitis 63.22, (71.57,
76.42, 81.72)

71.61, (74.96,
78.54, 80.37)

59.35, (61.93,
63.87, 65.82)

66.45, (70.80,
76.22, 79.17)

69.67, (74.35,
78.41, 83.92)

64.51, (68.93,
75.65, 81.76)

69.67, (74.38,
78.42, 82.90)

Indian Liver
Patient

68.95, (66.72,
68.95 68.95)

69.81, (69.12,
71.18, 71.18)

64.49, (65.35,
63.97, 63.97)

69.12, (69.92,
70.32, 70.32)

55.74, (55.74,
55.23, 57.12)

71.35, (71.35,
71.35, 71.35)

70.84, (68.27,
70.49, 72.14)

Lower Back Pain 81.61, (81.61,
73.54, 80.51)

80.96, (82.25,
76.45, 82.17)

62.25, (81.61,
57.41, 81.02)

75.48, (84.51,
66.45, 84.13)

77.74, (77.74,
74.19, 78.01)

77.41, (78.70,
68.70, 78.78)

81.61, (81.61,
76.12, 82.17)

Lung Cancer 78.12, (78.12,
84.37, 84.37)

78.12, (75.00,
81.25, 84.37)

68.75, (71.87,
78.12, 78.12)

65.62, (68.75,
65.62, 75.00)

78.12, (77.01,
78.12, 78.12)

65.62, (68.75,
56.25, 71.87)

81.25, (80.81,
84.37, 84.37)

Malaria 65.57, (65.57,
65.57, 65.57)

62.90, (63.50,
64.39, 64.58)

56.97, (56.37,
62.01, 62.47)

55.48, (54.70,
56.08, 56.71)

63.79, (63.17,
62.61, 64.01)

59.94, (61.72,
61.42, 61.72)

65.57, (65.28,
65.57, 65.68)

New )yroid 69.76, (69.76,
69.76, 69.76)

75.34, (75.34,
75.81, 75.81)

80.46, (80.46,
79.87, 80.78)

88.37, (88.37,
87.81, 87.81)

91.62, (91.62,
91.62, 91.62)

88.83, (88.83,
87.51, 88.94)

72.09, (72.09,
72.23, 72.23)

Parkinson 80.51, (80.51,
82.05, 84.10)

87.69, (85.64,
86.66, 89.23)

96.41, (95.81,
95.38, 97.82)

90.76, (91.79,
92.30, 92.59)

69.23, (68.71,
73.84, 80.51)

87.17, (86.66,
86.15, 87.41)

82.56, (81.53,
84.61, 85.12)

Primary Tumour 71.09, (71.09,
73.15, 74.92)

71.68, (71.68,
78.76, 78.92)

73.15, (73.15,
71.68, 73.15)

69.91, (69.91,
73.74, 79.05)

77.58, (77.58,
75.51, 78.17)

75.51, (75.51,
79.94, 80.23)

71.38, (71.38,
73.45, 74.33)

Note: accuracy values obtained by step I only, step II only, and their combination are shown within parenthesis.
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Table 4: Mean TPR and FPR in the format (TPR, FPR) obtained over the datasets prior to and after feature selection.

Name of
dataset J48 JRip KNN ANN Näıve Bayes SVM J48 + JRip

Arrhythmia

(0.772, 0.232),
(0.783, 0.222),
(0.741, 0.266),
(0.790, 0.212)

(0.754, 0.246),
(0.741, 0.258),
(0.752, 0.248)
(0.774, 0.231)

(0.646, 0.381),
(0.659, 0.366),
(0.701, 0.336),
(0.697, 0.338)

(0.681, 0.341),
(0.721, 0.309),
(0.770, 0.236),
(0.772, 0.236)

(0.722, 0.252),
(0.770, 0.253),
(0.752, 0.270),
(0.779, 0.248)

(0.759, 0.259),
(0.781, 0.241),
(0.772, 0.249),
(0.781, 0.239)

(0.794, 0.210),
(0.777, 0.228),
(0.746, 0.255),
(0.811, 0.205)

Breast Cancer
Wisconsin

(0.944, 0.065),
(0.944, 0.065),
(0.947, 0.063),
(0.947, 0.063)

(0.933,0.079),
(0.938, 0.076),
(0.954, 0.059),
(0.947, 0.063)

(0.956, 0.063),
(0.956, 0.063),
(0.953, 0.064),
(0.955, 0.063)

(0.960, 0.043),
(0.960, 0.043),
(0.951, 0.059),
(0.946, 0.068)

(0.974, 0.019),
(0.973, 0.022),
(0.959, 0.043),
(0.969, 0.032)

(0.957, 0.054),
(0.959, 0.049),
(0.957, 0.056),
(0.953, 0.061)

(0.948, 0.059),
(0.944, 0.067),
(0.949, 0.058),
(0.950, 0.053)

Colon Cancer

(0.645, 0.645),
(0.654, 0.621),
(0.662, 0.615),
(0.671, 0.607)

(0.645, 0.645),
(0.654, 0.634),
(0.662, 0.628),
(0.671, 0.621)

(0.629, 0.654),
(0.631, 0.647),
(0.642, 0.642),
(0.647, 0.637)

∗∗∗(0.888,
0.400), (0.923,
0.500), (0.833,
0142), (0.928,

0.200)

(0.355, 0.355),
(0.355, 0.355),
(0.355, 0.355),
(0.355, 0.355)

(0.645, 0.645),
(0.654, 0.641),
(0.662, 0.637),
(0.671, 0.627)

(0.645, 0.645),
(0.654, 0.639),
(0.662, 0.636),
(0.671, 0.631)

COVID-19

(0.982, 0.030),
(0.980, 0.035),
(0.951, 0.162),
(0.967, 0.080)

(0.978, 0.032),
(0.976, 0.038),
(0.942, 0.142),
(0.966, 0.060)

(0.981, 0.031),
(0.979, 0.033),
(0.948, 0.127),
(0.971, 0.048)

(0.981, 0.028),
(0.981, 0.030),
(0.949, 0.152),
(0.964, 0.109)

(0.965, 0.099),
(0.967, 0.082),
(0.930, 0.253),
(0.925, 0.239)

(0.967, 0.126),
(0.969, 0.131),
(0.949, 0.173),
(0.944, 0.234)

(0.981, 0.032),
(0.979, 0.038),
(0.949, 0.173),
(0.966, 0.084)

Dermatology

(0.945, 0.013),
(0.943, 0.013),
(0.940, 0.018),
(0.950, 0.009)

(0.888, 0.025),
(0.902, 0.024),
(0.850, 0.040),
(0.850, 0.039)

(0.948, 0.010),
(0.943, 0.011),
(0.913, 0.016),
(0.907, 0.017)

(0.964, 0.007),
(0.964, 0.007),
(0.954, 0.009),
(0.956, 0.009)

(0.973, 0.005),
(0.978, 0.004),
(0.962, 0.008),
(0.973, 0.005)

(0.962, 0.007),
(0.964, 0.007),
(0.945, 0.012),
(0.961, 0.008)

(0.951, 0.010),
(0.940, 0.013),
(0.918, 0.022),
(0.940, 0.013)

E. coli

(0.842, 0.040),
(0.842, 0.040),
(0.827, 0.044),
(0.837, 0.042)

(0.804, 0.068),
(0.813, 0.056),
(0.818, 0.062),
(0.815, 0.052)

(0.804, 0.054),
(0.801, 0.054),
(0.795, 0.051),
(0.792, 0.051)

(0.857, 0.038),
(0.866, 0.035),
(0.848, 0.040),
(0.860, 0.037)

(0.854, 0.036),
(0.854, 0.036),
(0.860, 0.035),
(0.860, 0.035)

(0.836, 0.052),
(0.836, 0.052),
(0.842, 0.047),
(0.842, 0.047)

(0.836, 0.050),
(0.827, 0.047),
(0.821, 0.057),
(0.828, 0.045)

Heart
(Cleveland)

(0.521, 0.397),
(0.578, 0.318),
(0.528, 0.470),
(0.545, 0.369)

(0.541, 0.531),
(0.538, 0.528),
(0.538, 0.521),
(0.541, 0.524)

(0.551, 0.247),
(0.535, 0.252),
(0.535, 0.267),
(0.548, 0.250)

(0.515, 0.266),
(0.561, 0.192),
(0.535, 0.210),
(0.571, 0.206)

(0.558, 0.193),
(0.568, 0.192),
(0.535, 0.193),
(0.569, 0.187)

(0.548, 0.203),
(0.558, 0.203),
(0.495, 0.252),
(0.558, 0.196)

(0.531, 0.475),
(0.538, 0.507),
(0.538, 0.521),
(0.535, 0.511)

Heart
(Hungarian)

(0.813, 0.254),
(0.813, 0.254),
(0.813, 0.254),
(0.813, 0.254)

(0.799, 0.253),
(0.806, 0.237),
(0.782, 0.271),
(0.809, 0.235)

(0.806, 0.245),
(0.785, 0.294),
(0.776, 0.295),
(0.796, 0.288)

(0.813, 0.225),
(0.808, 0.238),
(0.786, 0.277),
(0.810, 0.232)

(0.833, 0.222),
(0.824, 0.222),
(0.782, 0.250),
(0.831, 0.227)

(0.813, 0.225),
(0.806, 0.253),
(0.806, 0.266),
(0.820, 0.215)

(0.803, 0.263),
(0.793, 0.290),
(0.806, 0.266),
(0.806, 0.266)

Heart (Swiss)

(0.390, 0.390),
(0.390, 0.390),
(0.390, 0.390),
(0.390, 0.390)

(0.398, 0.353),
(0.415, 0.348),
(0.415, 0.355),
(0.423, 0.351)

(0.325, 0.283),
(0.276, 0.304),
(0.366, 0.328),
(0.374, 0.316)

(0.252, 0.329),
(0.252, 0.304),
(0.407, 0.298),
(0.366, 0.329)

(0.268, 0.326),
(0.309, 0.350),
(0.390, 0.322),
(0.398, 0.373)

(0.268, 0.319),
(0.341, 0.319),
(0.398, 0.334),
(0.407, 0.363)

(0.398, 0.353),
(0.415, 0.348),
(0.415, 0.355),
(0.423, 0.342)

Hepatitis

(0.632, 0.424),
(0.632, 0.424),
(0.658, 0.375),
(0.621, 0.437)

(0.716, 0.304),
(0.710, 0.310),
(0.735, 0.278),
(0.735, 0.278)

(0.594, 0.433),
(0.594, 0.446),
(0.619, 0.422),
(0.639, 0.383)

(0.665, 0.339),
(0.658, 0.352),
(0.632, 0.373),
(0.659, 0.350)

(0.697, 0.320),
(0.677, 0.344),
(0.671, 0.347),
(0.708, 0.312)

(0.645, 0.363),
(0.639, 0.373),
(0.600, 0.413),
(0.645, 0.359)

(0.697, 0.328),
(0.697, 0.323),
(0.735, 0.278),
(0.729, 0.289)

Indian Liver
Patient

(0.690, 0.519),
(0.667, 0.650),
(0.690, 0.673),
(0.690, 0.673)

(0.698, 0.562),
(0.691, 0.590),
(0.712, 0.571),
(0.712, 0.553)

(0.645, 0.458),
(0.654, 0.483),
(0.640, 0.517),
(0.640, 0.517)

(0.691, 0.554),
(0.700, 0.626),
(0.703, 0.624),
(0.703, 0.624)

(0.557, 0.206),
(0.557, 0.206),
(0.552, 0.212),
(0.571, 0.197)

(0.714, 0.714),
(0.714, 0.714),
(0.714, 0.714),
(0.714, 0.714)

(0.708, 0.540),
(0.683, 0.676),
(0.705, 0.674),
(0.721, 0.518)

Lower Back
Pain

(0.816, 0.281),
(0.816, 0.276),
(0.735, 0.215),
(0.805, 0.261)

(0.810, 0.274),
(0.823, 0.221),
(0.765, 0.275),
(0.822, 0.224)

(0.623, 0.452),
(0.816, 0.203),
(0.574, 0.517),
(0.810, 0.218)

(0.755, 0.316),
(0.845, 0.231),
(0.665, 0.458),
(0.841, 0.237)

(0.777, 0.179),
(0.777, 0.174),
(0.742, 0.332),
(0.780, 0.172)

(0.774, 0.385),
(0.787, 0.379),
(0.687, 0.620),
(0.788, 0.374)

(0.816, 0.266),
(0.816, 0.239),
(0.761, 0.255),
(0.822, 0.232)

Lung Cancer

(0.580, 0.580),
(0.781, 0.424),
(0.844, 0.332),
(0.844, 0.332)

(0.525, 0.578),
(0.750, 0.436),
(0.813, 0.412),
(0.844, 0.332)

(0.568, 0.436),
(0.719, 0.448),
(0.781, 0.356),
(0.781, 0.356)

(0.542, 0.527),
(0.688, 0.460),
(0.656, 0.540)
(0.750, 0.368)

(0.586, 0.433),
(0.750, 0.436),
(0.781, 0.356),
(0.781, 0.356)

(0.614, 0.407),
(0.688, 0.460),
(0.563, 0.645),

(0.719,
0.381))

(0.533, 0.600),
(0.808, 0.392),
(0.844, 0.332),
(0.844, 0.332)

Malaria

(0.656, 0.656),
(0.656, 0.656),
(0.656, 0.656),
(0.656, 0.656)

(0.629, 0.649),
(0.635, 0.613),
(0.644, 0.618),
(0.646, 0.608)

(0.570, 0.582),
(0.564, 0.622),
(0.620, 0.568),
(0.620, 0.565)

(0.555, 0.533),
(0.547, 0.554),
(0.561, 0.566),
(0.567, 0.559)

(0.638, 0.555),
(0.632, 0.558),
(0.626, 0.544),
(0.640, 0.547)

(0.599, 0.587),
(0.617, 0.586),
(0.614, 0.592),
(0.617, 0.590)

(0.656, 0.656),
(0.653, 0.659),
(0.656, 0.656),
(0.657, 0.654)
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specified in Substeps I and II of correlation-based algorithm)
is done. Based on 10 trials, the threshold values (as shown in
equations (3) and (4) in Section 3) produce better perfor-
mance over almost all the selected datasets, resulting in
acceptable amount of data reduction.

Referring to Table 8, we get the dimension reduction (%
age) of the used clinical datasets by Step I and Step II
separately and by the combination of Step I and Step II, and
the corresponding measures are presented in Table 9.

4.2. Discussion on the Experimental Results. Based on the
empirical results yielded by the applied learners over the
chosen datasets, some significant findings about the pro-
posed hybrid feature selection approach are listed below.

(i) From Table 8, we may claim that the proposed
approach is good enough to reduce noise from
medical data. )e justification behind its strength is
analysed below from the results presented in
Tables 3–5 and 9.

(a) Table 3 reveals that each learner’s classification
accuracy over almost all the clinical datasets is
improved after applying the combined ap-
proach. More clearly, the competent classifiers’
mean accuracy (%) (presented in Table 3) in-
creases in almost all cases after removing the
non-informative, irrelevant, and redundant
features. Notably, the performance of the NB
classifier improves sufficiently over almost all
the datasets, and it indicates that the introduced
approach is good enough for reducing redun-
dant features. )e reason is that the NB learner
works better over the dataset with independent
features and the suggested approach can select
such attributes. )us, we may claim that the
redundant features are removed from the
datasets by applying this approach.

(b) Table 4 reports that the metrics TPR and FPR
bagged by the chosen learners over the datasets

are improved considerably (i.e., TPR increases
and FPR decreases almost over all the datasets)
after applying the introduced feature reduction
approach.

(c) Table 5 deals with ROC-AUC metric, the most
desirable performance metric of learners for
clinical datasets. )e head-to-head comparison
of AUC values achieved by the learners between
original datasets and the datasets with reduced
features shows that AUC has increased over
almost all the datasets after applying hybrid FS
approach—it indicates a positive signal of the
proposed approach.

(d) From Table 9, it is clear that the proposed model
results in more than 50% reduction of the
features in 15 datasets (except E. coli and New
)yroid). In particular, 80% or more data re-
duction is made in 4 datasets, namely, Ar-
rhythmia, Breast Cancer, Colon Cancer, Heart
(Hung.), Heart (Swiss), and Lower Back Pain.
Further, it is worth noting that the reduction in
the datasets does not affect the classification
accuracy, rather performance metrics are im-
proved. More specifically, the original datasets
contain about 50% to 80% redundant attributes,
but the current hybrid approach is competent
enough in removing these redundant attributes
without affecting the classification accuracy.
Consequently, removal of the features enables
learning algorithms to speed up. Further, the
comparison results presented in Table 9 exhibit
that the proposed system is efficient in terms of
data reduction as compared to the sole infor-
mation gain-based approach and correlation
coefficient-based approach. However, it may be
noted that the individual correlation coefficient-
based approach is better than the information
gain-based approach alone. )e reason is that
perfectly correlated variables are truly redun-
dant in the sense that no additional information

Table 4: Continued.

Name of
dataset J48 JRip KNN ANN Näıve Bayes SVM J48 + JRip

New )yroid

(0.698, 0.698),
(0.698, 0.698),
(0.698, 0.698),
(0.698, 0.698)

(0.753,0.421),
(0.753, 0.421),
(0.758, 0.450)
(0.758, 0.450)

(0.805, 0.431),
(0.805, 0.431),
(0.799, 0.432),
(0.807, 0.428)

(0.884, 0.249),
(0.884, 0.249),
(0.878, 0.283),
(0.878, 0.283)

(0.916, 0.174),
(0.916, 0.174),
(0.916, 0.174),
(0.916, 0.174)

(0.888, 0.248),
(0.888, 0.248),
(0.875, 0.274),
(0.889, 0.246)

(0.721, 0.585),
(0.721, 0.585),
(0.722, 0.582),
(0.722, 0.582)

Parkinson

(0.805, 0.344),
(0.805, 0.330),
(0.821, 0.297),
(0.841, 0.290)

(0.877, 0.251),
(0.856, 0.313),
(0.867, 0.366),
(0.892, 0.246)

(0.964, 0.040),
(0.958, 0.057),
(0.954, 0.043),
(0.958, 0.051)

(0.908, 0.128),
(0.918, 0.111),
(0.923, 0.151),
(0.926, 0.149)

(0.692, 0.157),
(0.687, 0.172),
(0.738, 0.324),
(0.805, 0.400)

(0.872, 0.379),
(0.867, 0.380),
(0.862, 0.410),
(0.874, 0.375)

(0.826, 0.324),
(0.815, 0.313),
(0.846, 0.289),
(0.851, 0.315)

Primary
Tumour

(0.711, 0.428),
(0.711, 0.428),
(0.732, 0.693),
(0.749, 0.578)

(0.717, 0.370),
(0.717, 0.370),
(0.788, 0.352),
(0.789, 0.350)

(0.732, 0.345),
(0.732, 0.345),
(0.717, 0.481),
(0.732, 0.414)

(0.699, 0.370),
(0.699, 0.370),
(0.737, 0.459),
(0.791, 0.378)

(0.776, 0.276),
(0.776, 0.276),
(0.755, 0.432),
(0.782, 0.368)

(0.755, 0.320),
(0.755, 0.320),
(0.799, 0.395),
(0.802, 0.381)

(0.714, 0.422),
(0.714, 0.422),
(0.735, 0.699),
(0.743, 0.634)

Note: mean TPR and FPR obtained by step I only, step II only, and their combination are shown within parenthesis.
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is gained by adding them. Besides, the corre-
lation coefficient-based approach’s data reduc-
tion capability demonstrates that clinical
datasets often possess more redundant features,
and removal of those is possible via a correla-
tion-based approach.

(ii) It is well accepted to the researchers that the SVM
learner is comparatively appropriate for datasets
with high dimension but small number of classes.
Examples include here Arrhythmia, Lung cancer,
and COVID-19. But the improvement in the per-
formance of this learner over the datasets is ob-
served here after reducing the redundant features.

(iii) In some datasets, improvement in the used metrics
yielded by some learners (not for all the chosen
learners) is observed to be unchanged or very less or
acceptably down, but amount (% age) of dimension
reduction (i.e., noise reduction) is considerably
good. )is may be due to the adopted learning
strategies by the learners that usually desire more

features while training. Again, increasing the
number of features in a dataset may not be always
helpful to increase the classification performance of
the data. In other way, increasing the number of
features may often result in reduction of classifi-
cation rate after a peak.

)e proposed approach is not compared with other
standard works in the literature, since almost all the ap-
proaches in the literature have chosen only few medical
datasets (not a list of datasets) and few of them are disease
specific. Of greater interest, the data reduction (% age) and
classification accuracy performances of the present two-step
system are compared with some standard studies for few
specific clinical datasets, and these are presented, respec-
tively, in Tables 1 and 2.

Referring Tables 1 and 2, the following insights may be
highlighted in favor of the proposed approach.

(i) )e presented model is generic (i.e., not disease
specific). From Tables 1 and 2, it is observed that

Table 5: AUROC obtained on the datasets prior to and after feature selection.

Name of dataset J48 JRip KNN ANN Näıve Bayes SVM J48 + JRip

Arrhythmia 0.774, (0.767,
0.735, 0.793)

0.786, (0.735,
0.777, 0.788)

0.631, (0.642,
0.690, 0.697)

0.740, (0.762,
0.835, 0.825)

0.809, (0.807,
0.844, 0.812)

0.750, (0.770,
0.761, 0.771)

0.840, (0.824,
0.821, 0.848)

Breast Cancer
Wisconsin

0.955, (0.955,
0.958, 0.958)

0.947, (0.944,
0.948, 0.958)

0.983, (0.984,
0.987, 0.987)

0.988, (0.988,
0.983, 0.977)

0.993, (0.993,
0.987, 0.991)

0.952, (0.955,
0.951, 0.948)

0.981, (0.982,
0.977, 0.984)

Colon Cancer 0.464, (0.469,
0.473, 0.479)

0.464, (0.471,
0.475, 0.481)

0.460, (0.465,
0.471, 0.478)

∗∗∗0.500, (0.500,
0.500, 0.500)

0.518, (0.506,
0.513, 0.516)

0.500, (0.515,
0.523, 0.529)

0.464, (0.469,
0.473, 0.480)

COVID-19 0.995, (0.994,
0.959, 0.986)

0.980, (0.981,
0.923, 0.968)

0.998, (0.998,
0.988, 0.997)

0.996, (0.995,
0.984, 0.988)

0.990, (0.991,
0.953, 0.954)

0.921, (0.919,
0.855, 0.855)

0.995, (0.993,
0.970, 0.991)

Dermatology 0.976, (0.976,
0.968 0.978)

0.966, (0.902,
0.932, 0.950)

0.990, (0.987,
0.970, 0.967)

0.998, (0.998,
0.997, 0.996)

0.999, (0.999,
0.998, 0.998)

0.985, (0.987,
0.981, 0.989)

0.991, (0.990,
0.975, 0.984)

E. coli 0.920, (0.920,
0.906, 0.906)

0.906, (0.902,
0.927, 0.913)

0.878, (0.877,
0.869, 0.868)

0.953, (0.956,
0.870, 0.959)

0.960, (0.960,
0.961 0.961)

0.943, (0.942,
0.939, 0.948)

0.941, (0.941,
0.943, 0.938)

Heart
(Cleveland)

0.597, (0.684,
0.545, 0.627)

0.505, (0.496,
0.496, 0.491)

0.749, (0.763,
0.741, 0.768)

0.701, (0.772,
0.757, 0.734)

0.793, (0.807,
0.792, 0.809)

0.718, (0.711,
0.679, 0.711)

0.603, (0.696,
0.551, 0.623)

Heart
(Hungarian)

0.708, (0.708,
0.708, 0.708)

0.786, (0.755,
0.751, 0.789)

0.833, (0.782,
0.844, 0.847)

0.855, (0.828,
0.864, 0.835)

0.897, (0.883,
0.868, 0.893)

0.794, (0.776,
0.770, 0.798)

0.757, (0.777,
0.755, 0.718)

Heart (Swiss) 0.455, (0.455,
0.455, 0.455)

0.487, (0.507,
0.504 0.527)

0.501, (0.473,
0.503, 0.543)

0.462, (0.509,
0.570 0.544)

0.461, (0.449,
0.540, 0.453)

0.504, (0.515,
0.551, 0.550)

0.478, (0.499,
0.496, 0.521)

Hepatitis 0.577, (0.577,
0.615, 0.572)

0.668, (0.670,
0.685, 0.685)

0.615, (0.568,
0.657, 0.664)

0.674, (0.703,
0.676, 0.699)

0.728, (0.739,
0.701, 0.742)

0.641, (0.615,
0.594, 0.648)

0.690, (0.680,
0.667 0.692)

Indian Liver
Patient

0.678, (0.629,
0.584, 0.584)

0.582, (0.545,
0.586, 0.586)

0.573, (0.568,
0.535, 0.535)

0.710, (0.728,
0.729, 0.729)

0.726, (0.733,
0.734, 0.810)

0.500, (0.500,
0.500, 0.500)

0.696, (0.630,
0.640, 0.721)

Lower Back Pain 0.816, (0.838,
0.730, 0.807)

0.804, (0.822,
0.741, 0.818)

0.585, (0.807,
0.529, 0.802)

0.852, (0.925,
0.689, 0.912)

0.879, (0.880,
0.804, 0.884)

0.695, (0.704,
0.533, 0.716)

0.870, (0.897,
0.755, 0.914)

Lung Cancer 0.708, (0.708,
0.862, 0.862)

0.589, (0.577,
0.582, 0.638)

0.396, (0.570,
0.676, 0.725)

0.676, (0.758,
0.681 0.758)

0.773, (0.792,
0.802 0.821)

0.558, (0.614,
0.459 0.669)

0.766, (0.785,
0.848, 0.843)

Malaria 0.488, (0.488,
0.488, 0.488)

0.478, (0.497,
0.511, 0.515)

0.507, (0.463,
0.484, 0.486)

0.538, (0.514,
0.513, 0.517)

0.567, (0.565,
0.600, 0.605)

0.506, (0.516,
0.511, 0.514)

0.478, (0.497,
0.511 0.517)

New )yroid 0.480, (0.480,
0.480, 0.480)

0.690, (0.690,
0.744, 0.744)

0.890, (0.890,
0.884, 0.892)

0.929, (0.929,
0.921, 0.921)

0.968, (0.968,
0.968, 0.968)

0.852, (0.852,
0.842, 0.854)

0.689, (0.689,
0.692, 0.692)

Parkinson 0.769, (0.773,
0.799, 0.813)

0.846, (0.757,
0.741, 0.805)

0.967, (0.962,
0.953, 0.964)

0.947, (0.953,
0.955, 0.957)

0.858, (0.863,
0.858 0.817)

0.747, (0.743,
0.726, 0.751)

0.856, (0.831,
0.829, 0.872)

Primary Tumour 0.670, (0.670,
0.512, 0.681)

0.686, (0.686,
0.682, 0.687)

0.756, (0.756,
0.691, 0.708)

0.740, (0.740,
0.703, 0.796)

0.803, (0.803,
0.749, 0.808)

0.717, (0.717,
0.702, 0.711)

0.714, (0.714,
0.689, 0.725)

∗∗∗Architectural limitation ofWEKA is unable to support ANN learner to execute Colon cancer dataset with more features.)at is why, 3-layer NN learner is
implemented using Python 3.9 and the performancemetrics of the learner in the tables corresponding to the Colon dataset are filled. AUROC obtained by step
I only, step II only, and their combination are shown within parenthesis.
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most of the feature reduction models are disease
specific and they used heuristic/metaheuristic/
combinatorial strategy to tackle the MFSS NP
problem. )erefore, lack of generability and time
consideration are the main drawbacks of the de-
scribed studies. Actually, due to application of
heuristic/metaheuristic/combinatorial strategy,
the chance of increasing time may increase.

(ii) It is a good alternative of the standard dimension
reduction models for clinical datasets. Data
compression by the proposed model (as compared
to most of the standard clinical dimension re-
duction models) is noticeable and performances
over the datasets are quite encouraging. Some

datasets of the comparison tables are analysed
below.

(a) For Breast cancer dataset, the present approach
exhibits performance wise better (or equal) to
the studies [53, 58].

(b) In case of Colon cancer, the proposed approach
attains better performance as compared to the
methods [14, 53], reducing considerable amount
of data reduction.

(c) About Lung cancer dataset, the % age of data
reduction and the CA achieved by [54] are,
respectively, 54% and 75%, whereas our ap-
proach bags these measures as 65% and 84.34%
(although, not better than [58]).

Table 6: Summary of the selected datasets.

Sl. No. Problem name No. of non-target attributes No. of classes No. of examples Missing values
1. Arrhythmia 279 2 452 No
2. Breast Cancer Wisconsin 10 2 699 Yes
3. Colon Cancer 2000 2 62 No
4. COVID-19 20 2 5434 No
5. Dermatology 34 6 366 Yes
6. E. coli 8 8 336 No
7. Heart (Cleveland) 13 5 303 Yes
8. Heart (Hungarian) 13 2 294 Yes
9. Heart (Swiss) 13 5 123 Yes
10. Hepatitis 19 2 155 Yes
11. Indian Liver Patient 10 2 583 No
12. Lower Back Pain 12 2 310 No
13. Lung Cancer 56 3 32 Yes
14. Malaria 17 2 337 No
15. New )yroid 5 3 215 Yes
16. Parkinson 22 2 195 No
17. Primary Tumour 17 22 339 Yes

Table 7: Dataset description.

Sl.
No. Dataset Description

1. Arrhythmia )is dataset aims to identify the heart arrhythmia or irregular heartbeat from ECG recordings.
2. Breast Cancer Wisconsin )is dataset aims to identify whether a breast sample taken from a patient is cancerous or benign.
3. Colon Cancer )e purpose of this dataset is to analyse tumour and normal colon tissues.

4. COVID-19 )e purpose of this dataset is to predict whether COVID-19 is possibly present or not from the
symptoms.

5. Dermatology )e goal of this dataset is to figure out what kind of erythemato-squamous disease there is.
6. E. coli )is dataset aims to predict the cellular localization sites of E. coli proteins.

7. Heart (Cleveland, Hungarian,
and Swiss)

)is dataset seeks to determine if a patient has the cardiac disease, which is represented by an
integer value scale from zero to four.

8. Hepatitis )e goal is to determine whether the person dies or lives.
9. Indian Liver Patient )e goal of this dataset is to identify liver disease at early stages.

10. Lower Back Pain )is dataset determines if a person is abnormal or normal using acquired physical spine details/
data.

11. Lung Cancer )e goal of this dataset is to predict whether or not someone has lung disease.

12. Malaria )e main aim of this dataset is to identify from the symptoms whether the patient is suffering
from malaria or not.

13. New )yroid )e aim of this dataset is to predict whether a person has thyroid or not.
14. Parkinson )e aim of this dataset is to predict whether a person has Parkinson or not.
15. Primary Tumour )e aim of this dataset is to identify the location of the tumour.
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(d) For Indian liver dataset, the study [57] reduces
90% data and attains 71.68% CA but the present
study results in 50% data reduction and 72.14%
CA. On the other hand, the work [55] yields only
70% CA without removing any feature.

(e) Parkinson disease is rarely experimented. )e
cited study [57] reduces only 31% data reduction
and attains 90.78% CA, whereas the presented
model results in 77% data reduction and yields
97.82% CA.

Table 8: Dataset with reduced feature set after Step I and Step II.

Sl.
No.

Name of dataset
(DN)

Number of
instances (NI)

No. of
features
(NF)

No. of
nominal
features

No. of features
reduced by Step I

only

No. of features
reduced by Step

II only

No. of features reduced by
Step I and Step II in sequence

(hybrid approach)
1. Arrhythmia 452 279 Nil 94 243 247

2. Breast Cancer
(Wisconsin) 699 10 2 5 6

3. Colon Cancer 62 2000 Nil 876 1638 1685
4. COVID-19 5434 20 7 12 14
5. Dermatology 366 34 Nil 3 21 23
6. E. coli 336 8 1 1 2

7. Heart
(Cleveland) 303 13 Nil 5 5 6

8. Heart
(Hungarian) 295 13 5 8 10

9. Heart (Swiss) 123 13 Nil 6 8 10
10. Hepatitis 155 19 4 10 12

11. Indian Liver
Patient 583 10 Nil 3 5 5

12. Lower Back Pain 310 12 4 7 9
13. Lung Cancer 32 56 Nil 8 33 36
14. Malaria 337 17 8 10 12
15. New )yroid 215 5 Nil Nil 1 1
16. Parkinson 195 22 4 14 17
17. Primary Tumour 339 17 Nil Nil 10 10
Note. Here, number of reduced features�number of features in the original dataset (drawn directly from the data repositories) – number of important
features selected by any feature selection approach for further use. (i) Actual features are the features in a dataset available in the data repository and these are
the features/attributes recommended by experts (physicians). (ii) Selected features are the features identified usually by the feature reduction model. (iii)
Nominal features (e.g., id number, zip code, eye colour, and so on) are very common in the medical dataset. In particular, before applying the suggested
ensemble feature selection approach over any medical dataset, such unimportant features are simply removed from the dataset.

Table 9: Comparison of dimension reduction (% age).

Sl.
No. Problem name

Dimension reduction (%) age by the
information gain-based approach

only (Step I)

Dimension reduction (%) age by the
correlation coefficient-based approach

only (Step II)

Dimension reduction (%) age by
the hybrid approach (Step

I + Step II)
1. Arrhythmia 34 87 89

2. Breast Cancer
Wisconsin 20 50 60

3. Colon Cancer 44 82 84
4. COVID-19 35 60 70
5. Dermatology 9 62 68
6. E. coli 13 13 25

7. Heart
(Cleveland) 38 38 46

8. Heart
(Hungarian) 38 61 77

9. Heart (Swiss) 46 61 77
10. Hepatitis 21 53 63

11. Indian Liver
Patient 30 50 50

12. Lower Back Pain 33 58 69
13. Lung Cancer 14 59 64
14. Malaria 47 59 71
15. New )yroid 0 20 20
16. Parkinson 18 64 77
17. Primary Tumour 0 59 59
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Few vital reasons in favor of achieving good performance
by the proposed strategy are stated below.

(i) Note that Step I of the presented approach removes
the irrelevant attributes, whereas Step II removes the
correlated redundant attribute. However, while re-
moving redundant attribute, the approach empha-
sizes to retain the informative attribute in between
the correlated attributes. )is prevents not only
information loss of the data but also stops high
dimensionality reduction. Practically, expected re-
sults are not achieved due to high dimensionality
reduction.

(ii) )e idea to decide threshold value criteria is con-
ceptually justifiable. Introduction of these threshold
values in the approach enhances the strength of the
model.

5. Conclusions and Future Scope

Conclusions. Over the last 10 years, the growth of computer
and database technologies has led to the rapid growth of
large-scale datasets. Importantly, large-scale datasets give
more accurate and valuable results. But they require high
speed to process. One reason is that the number of di-
mensions in such datasets is very high, i.e., the key issue is
the curse of dimensionality, which is mostly faced in the
applications like pattern recognition, classification, and
clustering.

A very natural question that may arise now is that earlier
feature reduction was a very much active field due to
hardware limitation. But, computational resource is now
unlimited. So, at present, we may keep the larger datasets,
since the larger the dataset is, the better it is for machine
learning and knowledge discovery. However, there may still
be redundant and irrelevant attributes in the large dataset
which need to be removed from the dataset for achieving
more effective results. Further, recently advanced machine
learning approaches are able to handle the curse of di-
mension and large datasets. But these approaches are more
suitable for large dataset (not for small size data). )at is
why, feature reduction is always welcome.

In this paper, a novel hybrid feature selection approach is
proposed to predict the disease in a cost-effective way. We
compare the classification accuracy, TPR, FPR, and AUC
over the chosen seventeen datasets with the selected features
using six individual well-known state-of-the-art learning
approaches (namely, C4.5 (J48), JRip, ANN, KNN, Näıve
Bayes, and SVM) and one hybrid learning approach
(J48 + JRip).

(i) )e list of the datasets (collected from several
standard web data repositories) consists of both
communicable and non-communicable disease
datasets of smaller to larger dimension. )e list
includes the new dreadful disease—COVID-19.

(ii) Out of 17 datasets, 4 datasets, namely, Arrhythmia,
Lower back pain, Malaria, and Parkinson, are rarely
considered by the researchers.

(iii) In terms of the selected performance metrics, the
overall performance of our method has been
found to be very good for almost all these
datasets. In summary, the presented approach
works well for all the chosen medical datasets
(i.e., it is not disease specific), and it can be an
excellent alternative to the well-known data re-
duction approaches.

(iv) )e approach is simple to implement, and com-
putational complexity is O(n3), where n is the
number of attributes in the dataset.

(v) )e percentage of feature reduction by the new
model is high.

(vi) )e article gives a solid background information
(including literature review) for researchers who
are not familiar enough with feature reduction
(specifically for medical datasets).

(vii) It assists to collect information data, saving data
collection time.

Undoubtedly, with the help of the proposed method,
redundant attributes can be removed efficiently from the
datasets without sacrificing the classification performance.
)e proposed method of feature selection was also shown to
perform well against feature selection with information gain.

5.1. Limitations

(i) )e proposed method is not applied on more
number of big medical datasets.

(ii) Two variables that are useless can be useful, but they
are simply removed here.

Future Scope. We are in the process of searching the
following.

(i) A variable that is completely useless by itself can
provide a significant performance improvement
when taken with others.

(ii) Two variables that are useless by themselves can be
useful together.

Data Availability

)e data used to support the findings of the study are in-
cluded within the article.

Additional Points

Highlights. (1) Operating dimension is reduced in polyno-
mial time. (2) Model is generic for medical datasets. (3) Data
loss is prevented and diagnostic accuracy is improved. (4)
Learning and diagnostic time is reduced. (5) Storage space is
compressed.
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