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Rolling bearings, as important parts on supporting rotating shafts, frequently su�er from fatigue failures. If these rolling bearing
failures are not found in time, it will have a huge impact on the whole mechanical system’s operating safety and operating life. To
improve the diagnosis of di�erent faults as well as di�erent degrees of faults, a fault diagnosis method based on the multifractal
detrended �uctuation analysis (MFDFA) method-singularity power spectrum (SPS) with extreme learning machine (ELM) is
proposed. First, MFDFA and SPS analyses are performed on vibration acceleration signals with di�erent faults and di�erent
degrees of damage under the same operating conditions, the spectral parameters of stability and quantitative description of
di�erentiation are selected for feature extraction, and then the selected six feature parameters are put into the extreme learning
machine for fault classi�cation.�e e�ectiveness of the MFDFA-SPS feature extraction method is demonstrated by analyzing and
testing the measured bearing signals. �e fault diagnosis accuracy of the bearing fault signals can reach 99.2% based on the
MFDFA-SPS with ELMmethod by using the CaseWestern Reserve database.�e improvements are 6.79% and 18.42% compared
to the fault diagnosis methods based on MFDFA with ELM and SPS with ELM. Compared with the methods based on MFDFA-
SPS with LSSVM classi�er and SVM classi�er, the accuracy improvements are 3.54% and 4.25%, respectively. �e results show
that the method proposed in this paper can achieve the diagnosis of bearing faults and the method based on MFDFA-SPS with
ELM is more e£cient than the methods based on MFDFA-SPS with LSSVM and SVM classi�ers, which is suitable for practical
engineering problem-solving.

1. Introduction

Rolling bearing is one of the important components of the
mechanical transmission system, due to corrosion and
fatigue factors, and easy to cause bearing abrasion, pitting,
and cracking failures [1]. Di�erent faults cause di�erent
vibration noise and increased rotational resistance,
making the whole transmission system life decay or even
fail [2]. �erefore, it is important to ensure the normal
operation of the bearings in the gearbox or drive shaft and
the timely diagnosis and analysis of the structural com-
ponents after a failure occurs for the normal operation of
the whole unit.

Since the concept of “fractal” was �rst introduced by
Mandelbrot in the 1980s [3], this theory of studying non-
linear systems has been widely applied in many �elds and

has achieved fruitful results. �e object of study of fractal
theory is not smooth and irregular geometry in nature, and
the bearing fault diagnosis method based on fractal theory is
one of the more suitable and e�ective methods for bearing
fault identi�cation. Commonly used fractal theory basis
includes iterative function system (IFS), fractal Brownian
random �eld, single fractal, extended fractal, multifractal,
and multifractal correlation [4, 5]. �e di�erence in internal
signal characteristics between faulty vibration signals and
normal operation vibration signals is usually used in re-
search for fault diagnosis by extracting fractal geometric
change features.

For decades, scholars worldwide have proposed many
methods for fault diagnosis of bearings, and the current
mainstream diagnosis methods are the temperature analysis
method [6] and vibration analysis method [7]. �e enriched
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fault features such as cyclic power spectra [8] and vibration
cyclostationarity [9] parameters can be extracted when using
bearing vibration signals for fault monitoring, which enables
excellent diagnostic performance. +e vibration analysis
method mainly performs digital signal acquisition of the
faulty bearing vibration signal, and its acquisition method is
low cost and contains rich fault information in the vibration
signal, which is convenient for real-time diagnosis and
analysis.

For the analysis of nonlinear signal characteristics from
the perspective of multifractals, Shao et al. [10] used the
fractal box dimension method to quantitatively charac-
terize the vibration signals of faulty bearings and found that
the fractal dimensions of the faults differed from each other
in their manifestations. Liu et al. [11] used detrended
fluctuation analysis (DFA) to extract features of wind
turbine bearing faults and proved that the fault charac-
teristic parameters can be obtained by multifractal
detrended fluctuation analysis (MFDFA). Lin and Chen
[12] used the shape and location feature parameters of the
multifractal spectrum obtained by the detrended fluctua-
tion analysis and combined with the martingale repulsion
to achieve the identification of the bearing damage degree.
Chen et al. [13] proposed a fault prediction method based
on fractal dimension using an extreme learning machine
(ELM). Xiong et al. [14] used multifractal detrended
fluctuation analysis methods with PSO optimized LSSVM
classification method to achieve fault diagnosis of bearings.
Numerous worldwide research papers have demonstrated
that fractal theory can be applied to faulty bearing vibration
signal processing, and the difference lies in the different
effects of using different feature parameters’ extraction
criteria and classifiers. At present, the classifier based on
combining multifractal theory and deep learning is the
current niche use diagnosis method, and the diagnosis
effect is fast and has a good diagnosis rate with further
development trends. ELM and deep learning are comple-
mentary, and some applications combine the two to get
promising results, such as using CNNs for feature ex-
traction [15] and ELMs for classifiers.

In summary, to further realize the applicability of fractal
theory to bearing fault analysis and diagnosis, this paper
proposes a rolling bearing composite fault method based on
MFDFA-singularity power spectrum (SPS) and ELM. +e
method is a quantitative description of nonlinear signals
using multifractals for feature extraction. ELM is applied for
further exploration of multiple classifications, and the val-
idity of the method is verified by the actual measurement of
many different types of faulty bearing signals.

+is paper is organized as follows: Section 2 describes the
specific model of the MFDFA algorithm; Section 3 describes
the specific steps of the SPS algorithm; Section 4 presents a
brief description of the ELM tool and the way to extract
features using the algorithms in Sections 2 and 3; Section 5
describes the source of data, the specific feature parameter
distribution, and the results of the experiments; the main
findings and conclusions of the article are summarized in
Section 6.

2. The Multifractal Detrended
Fluctuation Analysis

+e MFDFA algorithm implementation steps are described
as follows [12]:

Step 1: for a times series x(t) of length N,
t � 1, 2, . . . , N, construct a new sequence y(t):

y(t) � 
t

i�1
x(i) −

1
N



N

j�1
x(j)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, t � 1, 2, . . . , N.

(1)

Step 2: partition the sequence y(t) into NS � [N/S]

mutually disjoint equal-length subintervals. +ere are s

data points in each interval, max m + 2, 10{ }≤ s≤N/10.
Since the sequence length N is not necessarily an in-
teger multiple of s, then y(t) will have segments
remaining, and to make the sequence of the last small
segment processed, the partitioning process can be
repeated from the tail of the sequence y(t), thus
obtaining 2Ns equal-length subintervals. m represents
the order of polynomial fit, generally taken as
m � 1, 2, 3, . . .. Here, MFDFA can be denoted as
MFDFA-m, and when m takes the value of 1, the
method is denoted as MFDFA-1.
+e mth-order polynomial y(m)

v (t) in the vth subin-
terval (v � 1, 2, . . . , 2Ns) is fitted by the least-squares
method, and the residual corresponding to the label t in
this interval is calculated as follows:

yv(t) � y(t) − y
(m)
v (t), t � (v − 1)s + i, i � 1, 2, ..., s.

(2)

Step 3: calculate the mean square error separately:

Fv(s) �
1
s


s

i�1
y
2
v[(v − 1)s + i]⎡⎣ ⎤⎦

1/2

, v � 1, 2, 3, . . . , Ns,

Fv(s) �
1
s


s

i�1
y
2
v N − v − Ns( s + i ⎡⎣ ⎤⎦

1/2

, v � Ns + 1, . . . , 2Ns.

(3)

Step 4: calculate the global root mean square value of
order q, when q≠ 0, with

Fq(s) �
1

2Ns



2Nq

v�1
Fv(s) 

q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/q

. (4)

When q � 0, the calculation formula is

ln Fq�0(s)  �
1

2Ns



2Nq

v�1
ln Fv(s) . (5)
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Step 5: change the value of scale s to obtain the cor-
responding Fq(s); if the signal sequence has a power-
law relationship scale-invariant signal, then

Fq(s) ∼ s
H(q)

, (6)

where H(q) is the q-order Hurst exponent.
Find the scaling range with a linear relationship
between log10[Fq(s)] and log10(s). Find the slope of
its linear regression line, denoted as H(q), by cal-
culating the first-order polynomial fit coefficient
between the scale s and the logarithmic value of the
function Fq(s) in the scaling range. If the relationship
between log10[Fq(s)] and log10(s) is S-shaped curve,
the value of H(q) cannot be estimated.
Step 6: the correlation between H(q) and the
multifractal mass exponent τ(q) can be expressed as

τ(q) � qH(q) − Df, (7)

where Df denotes the topological dimension of the
multifractal signal, and for a one-dimensional time
series of signals, Df � 1.
Step 7: the singularity intensity function α(q) and the
singularity dimension f(α) can be obtained by the
Legendre transformation:

α(q) �
dτ(q)

dq
,

f(α) � infq[qα(q) − τ(9)].

(8)

In the process of changing q value from negative to
positive, if H(q) remains almost constant, the relationship
between q-order mass exponent τ(q) and q is linear; then,
the signal has single fractal characteristics and the width
of the singularity spectrum is small and tends to 0. On the
contrary, if H(q) changes to a large extent, the rela-
tionship between q-order mass exponent τ(q) and q is not
linear; then, the signal has multifractal characteristics and
the width of the singularity spectrum is large. In this
paper, we use MFDFA-1 method with one-direction
partition process, just do the partitioning process from
head to tail of the sequence y(t), thus obtaining Ns equal-
length subintervals.

3. TheMultifractal Singularity Power Spectrum
Algorithm (SPS)

3.1. SPSAlgorithm. Suppose a set of signals or time series is a
continuous signal.

Defining xα(t) � x(t): α(x(t)) � α{ } as a fractal sub-
band signal or a fractal subset of signal x(t), the time-
indexed set corresponding to xα(t) constitutes the set
t(α) � t, α(x(t)) � α{ }; then, xα(t) is denoted as

xα(t) �

x(t), t ∈ t(α),

0, t ∈
[0, T]

t(α)
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where α(x(t)) is the singularity exponent of x(t) at the time
t. According to the theory of multifractals, x(t) is a thick
subset supported by a tight set ∪ αxα(t). Meanwhile,
xα1(t), xα2(t), xα3(t), . . . form the segments of x(t), where
xαi(t) are mutually disjoint, and we obtain xαi(t)∩xαj(t) �

φ, i≠ j.
All measurable subsets constitute the set system

I � xα1(t), xα2(t), xα3(t), . . . , and I is a topological mea-
surable set. +ere exists a measurable function f: I⟶ R+,
and (X, I, f) constitutes a measurable space.

Based on the singularity decomposition, we can obtain
the singular subset xα

T(t) of xT(t) under the fractal trun-
cation signal. +e fractal energy measure of xα

T(t) can be
expressed as

P
T
x � 

α
P

T
x(α)dα, (10)

where PT
x(α) is the singularity measure of each fractal subset

xα
T(t) and the singularity power spectral density of xT(α). It

reflects the distribution of the fractal power of xT(t) with the
singularity exponent. +e fractal power analysis of the
singularity fractal subset xα

T(t) gives the singularity power
spectrum of xT(t) as

p
T
x(α) �

1
T xT(t)( 


+

−T/2

x
α
T(t)



2

��������

1 + tg
2θt

 dH x
α
T(t)( . (11)

+e fractal power measurement of the signal sequence
xT(t) and the singularity power spectrum distribution
satisfy the following relationship:

p
T
x � 

α
p

T
x(α)dα

� 
α


+T/2

−T/2

1
T xT(t)( 

x
α
T(t)



2

��������

1 + tg
2θt

 dH x
α
T(t)( dα.

(12)

+erefore, the SPS distribution function of the signal
x(t) can be defined as a limit form:

Px(α) � lim
T⟶∞

p
T
x

� 
+∞

−∞
lim

T⟶∞

x
α
T(t)



2

T xT(t)( 

��������

1 + tg
2 θt

 H x
α
T(dt)( ,

(13)

where θi is the local orientation angle of the truncated signal
xT(t) (equivalent to the tangent direction of a conventional
curve) and dH(xα

T(t)) denotes the differential of the
Hausdorff measure of xT(t). Based on the modulus squared
of the signal, the local azimuth of the fractal time element,
and the Hausdorff measure, equation (15) represents the
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power distribution of the fractal signal concerning the
singularity exponent. +us, the fractal energy measurement
and the singularity power spectrum satisfy the relationship

Px � 
α
Px(α)dα. (14)

For fractal signals with a period T or finite time support
x(t), t ∈ [−T/2, T/2]. Singularity energy spectral density and
singularity power spectral density functions can be defined
as

Ex(α) � 
T/2

−T/2

xα(t)



2

��������

1 + tg
2θαt

 H(x(dt)),

Px(α) �
1

T(x(t))


T/2

−T/2

xα(t)



2

��������

1 + tg
2θαt

 H(x(dt)).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

It can be obtained that the singularity power spectrum
reflects the fractal energy per unit singularity exponent
interval, and it reflects how the fractal energy is distributed
with the variation of the singularity exponent.

3.2. Specific Steps of the SPS Algorithm. +e multifractal
singularity power spectrum (SPS) algorithm is a quantitative
analysis method to study the correlation of a sequence [16].
+e steps of the SPS algorithm are as follows:

Step 1: calculate the instantaneous singularity expo-
nent: for a given time series x(t), estimate the in-
stantaneous singularity exponent αx(kn) of the series.
Step 2: construct the singularity subset signal:
according to the instantaneous singularity exponent
αx(kn), set the singularity variable change interval
[αmin, αmax], where αmin ≤ αx(kn)≤ αmax, and divide the
interval into Nα discrete singularity exponent sets
αq , q � 1, 2, . . . , Nα + 1 according to the singularity
exponent interval equivalence, where α1 � αmin and
αNα+1 � αmax. Nα is the number of discretized singu-
larity indices.
Step 3: according to the interval segment of the sin-
gularity exponent after discretization, the singularity
decomposition of this time series is performed; the
data points whose singularity indices fall in the in-
terval (αi, αi+1], i � 1, 2, . . . , Nα − 1, are specified as
subsets belonging to the same singularity exponent αi,
and the data points whose singularity indices fall in the
interval [αi, αi+1], i � Nα, are specified as subsets be-
longing to the same singularity exponent αi; thus, it is
possible to obtain the fractal subsets with the same
singularity exponents. We denote the subset of the
same singularity exponent αq by x(αq) �

x(i), αx(i) � αq  and the total sequence by
x � x(i){ } � ∪Nα

q�1 x(αq) , q � 1, 2, . . . , Nα, where
x(αq) denotes the set of all moments in the time series
and x(i){ } has the instantaneous singularity exponent

value αq. +e number of points in the subset x(αq) is
related to the specific calculation, and the subset
corresponding to each singularity exponent αq is
denoted as xαq

(t).
Step 4: calculate the average power Px(αq) of the
singularity subset with the same singularity exponent
α � αq: based on doing the singularity subset decom-
position on x(t), for the singularity subset xα(t), for a
given singularity exponent α � αq, calculate the power
Px(αq) of the subset (time series) with the same sin-
gularity exponent; for the convenience of presentation,
denote this time series with its corresponding singu-
larity subset x(αq)  as xαq

(t) and its discrete form as

xαq
(k) , k � 1, 2, . . . , Nαq

, where Nαq
is, respectively,

the number of discrete point sets contained in the time
series x(t), as the average power
P(αq) � 1/Nαq

k‖xαq
(k)‖2.

Step 5: calculate the singular power spectrum: iterate
over all the singularity indices to obtain the singularity
power spectrum Px(α).

4. Extreme Learning Machine

+e ELM algorithm [17] has the advantages of strong
generalization ability and fast learning speed, which over-
comes the disadvantages of a traditional neural network
learning algorithm (such as BP neural network algorithm)
that requires continuous iteration, many training times, low
learning efficiency, and slow convergence speed, and is a new
type of single implicit layer feedforward neural network.+e
ELM consists of three parts: input layer, hidden layer, and
output layer, and the specific structure is shown in Figure 1.

ωij is the value of the connection between the input layer
and the hidden layer, which is denoted as

ωij �

ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

⋮ ⋮ ⋮

ωl1 ωl2 · · · ωln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

x1

x2

xn

ωij βjk

y1

y2

ym

Input layer Hidden layer Output layer

Figure 1: Structure of basic ELM.
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βjk is the value of the connection between the hidden
layer and the output layer, which is denoted as

βjk �

β11 β12 · · · β1m

β21 β22 · · · β2m

⋮ ⋮ ⋮

βl1 βl2 · · · βlm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where n is the number of neurons in the input layer, l is the
number of neurons in the hidden layer, and m is the number
of neurons in the output layer.

+e threshold of the implicit layer neuron b is expressed
as

b � b1 b2 · · · bl 
T
. (18)

Let g(x) be the hidden layer neuron excitation function,
and the output T can be expressed as the following equation:

T � t1 t2 · · · tm 
T

, (19)

tj �

t1j

t2j

⋮
tmj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�


l

i�1
βi1 ωixj + bi 



l

i�1
βi2 ωixj + bi 

⋮



l

i�1
βim ωixj + bi 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

ωi � ωi1 ωi2 · · · ωin , xj � x1j x2j · · · xnj 
T
. (21)

Equation (22) can also be expressed as Hβ � T′, where
T′ is the transpose matrix of T and H is the hidden output
array, and the expression is

H �

g ω1x1 + b1(  g ω2x1 + b2(  · · · g ωlx1 + bl( 

g ω1x2 + b1(  g ω2x2 + b2(  · · · g ωlx2 + bl( 

⋮ ⋮ ⋮

g ω1xQ + b1  g ω2xQ + b2  · · · g ωlxQ + bl 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

+e system of equations’ least squares β is

minβ Hβ − T′
����

����. (23)

+e solution is β′ � H†T′, where H† is the Moor-
e–Penrose generalized inverse of the output matrix of the
hidden layer.

4.1. Extraction of Fractal Characteristic Features in Bearing
Signals. Statistical physics can be used to obtain a partition
function for the set of probabilities of regular and irregular
fractals, which uses the q − th power of the probability as a
weight to distinguish subsets with different sizes of proba-
bilities. In some cases, the collocation function has scale
invariance of the form ετ(q) over a certain range (and over an
infinite range in the case of regular fractals). Figure 2 shows

the sketch of the multifractal spectrum used to extract
features, Figure 3 shows the sketch of the Hurst exponents,
and Figure 4 shows the sketch of the singularity power
spectrum.

+e generalized fractal dimension Df can be obtained
from τ(q), and themultifractal spectrum f(α) is obtained by
the Legendre transform. αmax andf(αmax) of themultifractal
spectrum reflect the properties of the smallest subset of
probabilities. αmin and f(αmin) reflect the properties of the
largest subset of probabilities.f(α0) reflects the properties of
the most contingent subset. +e width Δα � αmax − αmin of
the multifractal spectrum reflects the size of the probability
distribution range.

+emore inhomogeneous the probability distribution is,
the wider the corresponding f(α) curve is and therefore the
larger the Δα value becomes. In the practical problem of
bearing fault signals such as having irregular distribution in
space, the quantitative characterization of the inhomoge-
neous distribution of physical quantities can be achieved
with the specific parameters of the multiple fractal spectrum,
so it is suitable for the feature extraction of different kinds of
bearing faults and different degrees of damage to achieve the
diagnosis and identification of faults.

+e value of the weighting factor q is also worth dis-
cussing when calculating the multifractal spectrum of the
measured signal. When calculating the multifractal spec-
trum according to the multifractal detrended fluctuation
analysis, different values of q are used to divide the signal
into regions with different levels for the study. +eoretically,
the larger the range of q is (−∞< q<∞), the more complete
the representation of the multifractal spectrum, but in
practice, as |q| increases, the computational effort increases
exponentially, and the increase of q to a certain level will
inevitably cause computer overflow errors. However, if the
range of q is too small, the change of f(α) is still large for
every increasement of Δ|q| � 1.+e obtained is only a part of
the multifractal spectrum, which cannot fully reflect the
probability distribution of the object of study. In general,

αmax

f (α0)

αmin

f (
α)

α (q)

Δα=αmax-αmin

α0

Figure 2: Multifractal spectrum.
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when q increases to a certain degree, regardless of the degree
of a signal probability distribution, α(q) and f(α) basically
do not change with the increase of q, and the range of q can
be cut off. In the calculation of the stochastic fractal, a
criterion for determining |q|max can be chosen based on this
property, and a coefficient η for the variation of f with the
value of q can be defined as follows:

η �
fq − fq−1

fq − fmax
. (24)

When q is infinite, fq � fq−1, η � 0. In the actual cal-
culation, a value slightly larger than 0 is chosen as a criterion,
for example, η< 0.1%.

In the fractal analysis of the actual faulty bearing signal,
the data are divided into segments of equal length, and each
segment contains 2048 points. +e efficiency can be ensured
when |q|max � 5, and without losing the multiple fractal
spectrum features, the spectral parameters are characterized
comprehensively.

Mandelbrot in his book “Fractals: Form, Chance, and
Dimension” [15] gives a portrayal of the Hurst phenomenon,
that is, river flow in which a larger-than-average flood may
follow a larger flood and then, suddenly, a below-average
flood, followed by more below-average floods; the whole
process like there is a cycle, but not for the periodicity, and
the standard statistical analysis also reveals significant
correlations between observations. To separate the fractal
time series from other time series, the Hurst exponent was
therefore constructed to estimate the fractal dimension of
the time series and the degree of series persistence or inverse
persistence. When calculating the Hurst indices for mea-
sured bearing failure signals, the Hurst indices for different
failures and signals with different fault levels also reflect
different distributions, and the Hurst indices corresponding
to different q values are taken for feature extraction when the
value of |q|max is given. +e features taken in this paper are
included in Table 1.

5. Applications

5.1. Dataset Introduction. +e bearing signals used in the
experiments were obtained from the Bearing Data Center at
the Electrical Laboratory of Case Western Reserve Uni-
versity, USA [18, 19]. +e experimental platform consists of
a 1.5 kW (2 hp) electric motor (electric motor in the left side
of Figure 5), a torque sensor/translator (torque transducer
and encoder in the middle of Figure 5), and a power test
meter (the dynamometer in Figure 5).+e rotational speed is
1772 r/min, the sampling frequency is 12 kHz, and the
sampling time is 10 s. Single point faults were introduced to
the test bearings using electrodischarge machining with fault
diameters of 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils (1
mil� 0.001 inches). SKF bearings were used for the 7, 14, and
21 mils diameter faults, and NTN equivalent bearings were
used for the 28 mils and 40 mils faults. All experimental data
use drive-end acceleration data, which are called vibration
acceleration signals. +e validity of the proposed method in
this paper is verified by selecting the data of the normal state
shown in Figure 6(a) and 6 fault states. +e fault state data
are inner-race 7 mils (slight inner-race fault) shown in
Figure 6(b), inner-race 28 mils (serious inner-race fault)
shown in Figure 6(c), outer-race 7 mils (slight outer-race
fault) shown in Figure 6(d), outer-race 28 mils (serious
outer-race fault) shown in Figure 6(e), rolling elements 7
mils (slight ball fault) shown in Figure 6(f), and rolling
elements 28 mils fault (serious ball fault) shown in
Figure 6(g). Because of the inconsistent length of the bearing
signals, each of the data shown in Figure 6 is only for a
sampling time of 5 seconds. Each type of data is divided into
50 equal segments with 2048 points per segment. We have 7
kinds of signals in different states. +e validation acceler-
ation data of each state are divided into 50 sets, and we can
get 350 sets. During the analysis of the MFDFA-1 algorithm
for all the selected bearing signals, the subinterval segments
are taken as 12 values equally spaced and rounded between
10 and 128, and the values of q are taken as 31 values equally
spaced between [−5, 5] according to the rule of equation
(24). +e data storage format, the feature extraction
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α

Figure 4: Singularity power spectrum.
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Figure 3: Hurst exponents.
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algorithms utilized, and the classifier application process all
run on the MATLAB2020a platform. In the singularity
power spectrum algorithm analysis process, the selection of
subintervals is to distinguish the singularity exponent α into
50 equally spaced segments. +e time-domain waveform of
the vibration signal of each state bearing is shown in
Figure 6.

5.2. Steps of Bearing FaultDiagnosis. To ensure the reliability
of the experimental results, the bearing signals in the da-
tabase are tested with the same type of bearings and the same
operating conditions except for the degree of damage. +e
flowchart of the proposed algorithm is shown in Figure 7.

Step 1: the MFDFA and SPS algorithms are used to
process the normal bearing signals and the bearing fault
signals with different damage faults and different
damage degrees to obtain the corresponding multiple
fractal spectrum and SPS spectrum
Step 2: feature extraction using the six specific features
mentioned in the above section
Step 3: the ELM classifier is used to classify the bearings
in seven states, and multiple classification tools are
taken to compare the classification effects

5.3. Experimental Results. First, the MFDFA and SPS al-
gorithms were used to analyze the bearing signals in seven
states, with ten samples for each state, and the corresponding

multifractal spectrum and SPS spectrum were obtained, as
shown in Figures 8–10.

Figure 8 showsmultifractal spectra of seven signals based
on MFDFA-1, where MFDFA-1 means the order of the
polynomial of MFDFA is 1. It can be seen that the multi-
fractal spectral lines in different states are hump-shaped and
the spectrum widths and the location of the spectrum
vertices of the corresponding multifractal spectra are dif-
ferent from each other. +e location of the top of the
multifractal spectrum of the normal bearing signal is in the
rightmost part of Figure 8, and the length of the spectrum
width is the shortest.+e locations of the top of the spectra of
the rest of faulty bearing signals are shifted to the left side of
the spectrum of the normal signal. +e spectrum widths of
the rest of the faulty bearing signals are wider than the one of
the normal signals, which indicates that the internal prob-
ability density of the faulty bearing signal has changed to
different degrees.

+e multifractal spectrum width of the normal bearing
vibration acceleration signal is narrower than that of the
faulty bearing signal, which indicates that the distribution of
the probability of the amplitude of the normal operation
signal is more even. An increase in the multifractal spectrum
width usually implies an increase in the irregular properties
within the signal. +e purple solid line corresponds to a
larger value of f(αmax) for slight outer-race fault signal,
indicating that the signal has a larger number of subsets with
small probability, and the αmin value is the smallest, which
corresponds to the subsets with maximum probability.

Fan end
bearing

Drive end
bearing

Electric
motor Torque

transducer
& encoder

Dynamometer

Figure 5: Experimental setup.

Table 1: +e six characteristic parameters extracted by MFDFA and SPS.

MFDFA

α0 +e abscissa of the multifractal spectrum vertices
Δα +e width of the multifractal spectrum

H(q � −5) +e value of the hurst exponent when q � −5
H(q � 0) +e value of the hurst exponent when q � 0
H(q � 5) +e value of the hurst exponent when q � 5

SPS  P(α) Summation of the singularity power spectrum
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Compared with the serious outer-race fault (olive green
dotted line), the two multifractal spectra are in the shape of
right hook, which indicates that the signal of the outer-race
fault signal is predominated by the subset with small
probability. +e α0 positions of the two signals are different,
indicating that the most probable subsets are different. +e
spectrum widths of the two signals are similar to each other,
which means that the probability density distributions of the

corresponding signals are similar to each other, and the
difference lies in the range of probability distributions of the
two kinds of signals.

+e values of f(αmin) corresponding to slight ball fault
(blue-green dotted line) and serious ball fault (red solid line)
are at a large level. +e spectrum widths Δα of the spectra of
the two kinds of signals are smaller than those of the other
faults, indicating that the probability distribution of the ball
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Figure 6: +e waveforms of seven vibration acceleration signals in each state. (a) Normal. (b) 7 mils, slight inner-race fault. (c) 28 mils,
serious inner-race fault. (d) 7 mils, slight outer-race fault. (e) 28 mils, serious outer-race fault. (f ) 7 mils, slight ball fault. (g) 28 mils fault,
serious ball fault.
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fault signal is more uniform than the probability distribu-
tions of the other faults. +e two spectrum lines are in the
shape of left hook, which means that the large probability
subsets dominate the signal.

+e spectrum lines of slight inner-race fault (red solid
line) and serious inner-race fault (blue solid line) are both
left hook-shaped, and the α0 positions of two curves are also

close to each other. +e values of f(αmax) and f(αmin) of
serious inner-race fault signal are smaller than those of slight
inner-race fault signal. +is means that the number of both
the small and large probability subsets of the serious inner-
race fault signal is smaller. +e value of Δα for serious inner-
race fault signal is larger than that of slight inner-race fault
signal, so the probability density distribution of serious

MFDFA-1 SPS

Calculate the yv
(1)(t), yv

(t)

Calculate local detrended fluctuation
Fv (s)

Calculate the H (q), τ (q), α (q) , and f (α)

Calculate Overall detrended fluctuation
Fq (s)

Vibration signals of rolling bearings in each status

Calculate the instantaneous singularity
exponent αx (kn), and get

αmin ≤ αx (kn) ≤ αmax

Divide the singularity exponents αx (kn)
into Nα equal intervals to get
Nα+1 singularity exponents

{αq}, q=1, 2, 3, …, Nα

Calculate the subset xαi (t) of each
singularity exponent αi, αi ∈ [αi, αi+1),

i=1, 2,…, Nα–1, αi ∈ [αi, αi+1], i=Nα

Composed into a vector
[α0, Δα, H (q=–5), H (q=0), H (q=5), ∑P (α)]

Calculate the cumulative-sum

Calculate the average singularity power of
Px (αq) each subset of Px (αq) αq, q=1, 2, …, Nα

Calculate the singularity power
spectrum Px (αq) over all the singularity

exponents αq, q=1, 2, …, Nα

Classification based on ELM

1y (t)=
N

i

i=1

N

j=1
x (i) – x (j) , t=1, 2, …, N

Figure 7: Flowchart of algorithm procedures.
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inner-race fault signal is more uneven than that of slight
inner-race fault signal.

By comparing the multifractal spectra of signals with the
same fault and different degrees of damage, it can be found
that the multifractal spectra of signals with different degrees
of damage for the same fault have similar shapes (left hook
or right hook), but the difference lies in the difference in the
uniformity of the probability density distribution (the size of
Δα value).

Figure 9 shows the q-order Hurst exponent H(q) cal-
culated by MFDFA-1. It can be seen in Figure 9 that when q

is changing from −5 to 5 by increasement of Δq � 1/3, the
curve of H(q) for the bearing vibration acceleration signal in
the normal state is different from the line of H(q) for the
overall faulty bearing vibration acceleration signal distri-
bution, indicating that once the bearing fails, the internal
tortuous state of the signal will change. +e q-order Hurst
exponent H(q) of serious bearing fault signal is generally
larger than that of slight bearing faults. H(q) for the normal
state is calculated in the range of q ∈ [−5, 5]; it is uniformly
distributed. +e distinction is evident when comparing with
the q-order Hurst exponent H(q) values of faulty signals.
When q< 0, the H(q) values for the signals of serious inner-
race fault, serious outer-race fault, and serious rolling ele-
ment fault are greater than the H(q) values of the corre-
sponding slight fault signals. When q> 0, as q increases,
there appear noticeable differences of the H(q) values for
signals of slight inner-race fault, slight outer-race fault, and
slight ball fault. +erefore, the two points at the endpoints
H(q � −5) andH(q � 5) with the points in the middle
H(q � 0) can be chosen as the feature values to distinguish
the degree of fault for a given value of q. In the range
q ∈ [−5, −4], the H(q) values for the signals of the serious
outer-race fault and the serious inner-race fault are more
distinguishable from the rest of the fault signals, and the
curves of the H(q) values for the signals of the two ball fault
signals are difficult to be distinguished from the curves of

H(q) values for the slight outer-race fault and the slight
inner-race fault in this interval. However, with the increase
of q value, theH(q) values for the signal of slight ball fault do
not drop as rapidly as the H(q) values for the rest of the fault
signals. +e H(q) curve of slight ball fault signal is distin-
guishable from that of the serious ball fault in the interval
q ∈ [3, 5]. Similarly, as the value of q increases, the difference
between H(q) curves of the slight outer-race fault signal and
serious outer-race fault signal is almost the same except in
the range q ∈ [−5, −2]. Conversely, the H(q) curves of
signals of the two inner-race faults and the serious outer-race
faults in the range q ∈ [2, 5] are difficult to be distinguished
from each other. +e difference between the H(q) curves of
the signals of the two kinds of inner-race faults is greater in
the range q ∈ [−5, 0] than that in the interval q ∈ [1, 5].
When q> 0, H(q) reflects the degree of fluctuation of the
major trend within the signal, and when q< 0, H(q) reflects
the degree of fluctuation of the minor trend within the
signal. As a result, it can be obtained that the degree of
fluctuation of minor trends within the signal of serious
degree of bearing fault is usually greater than that of the
signal of slight degree of bearing fault when q ∈ [−5, 0].

Figure 10 shows the singularity power spectra of seven
signals based on the SPS method. In Figure 10, the char-
acteristics of the SPS spectra of the faulty bearing signals in
different states are not the same and the power spectra at
specific different singularity values changed to a larger extent
due to the shift in the distribution range of the singularity
values. +e normal bearing signal has a large singularity
exponent distribution and a uniform power distribution.
+e distribution range of the singularity exponents of the
faulty bearing signal changes, and the power distribution
becomes uneven compared to the normal state. According to
the occurrence of such a phenomenon, extracting the fea-
tures with a large degree of variation can effectively dis-
tinguish the bearing fault and the degree of failure. +e
specific distribution of the 5 feature parameters
(α0,Δα, H(q � −5), H(q � 0), andH(q � 5)) of the 70
samples (all training sets consisted of 10 sets of each state, so
we get 70 sets for training) calculated by MFDFA-1 and
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Serious Outer-race fault

Slight Ball fault
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Figure 8: +e multifractal spectra of seven signals based on
MFDFA-1.

Normal

Slight Inner-race fault

Serious Outer-race fault

Serious Ball fault

Slight Outer-race fault

Serious Inner-race fault

Slight Ball fault

-4 -3 -2 -1 0 1 2 3 4 5-5
q

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

H
 (q

)

Figure 9: +e Hurst exponents of seven signals based onMFDFA-1.
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Figure 10: +e singularity power spectra of seven signals based on the SPS method.

Table 2: +e detailed descriptions of seven vibration signals.

Operational status α0 Δα H(q � −5) H(q � 0) H(q � 5)  P(α)

Normal

0.9428 0.1920 0.9709 1.0180 0.9719 0.164
0.9015 0.0505 0.8890 0.9016 0.9220 0.1889
0.8604 0.0810 0.8634 0.8810 0.8793 0.2001
0.9444 0.1205 0.9494 0.9777 0.9601 0.2048
0.879 0.2475 0.9031 1.0036 0.9064 0.187
0.8412 0.0875 0.8521 0.8633 0.8646 0.1941
0.8953 0.0358 0.8728 0.8839 0.9002 0.2125
0.8845 0.1472 0.9252 0.9704 0.9296 0.1795
0.8943 0.2320 0.9318 1.0088 0.9348 0.2152
0.8801 0.2773 0.9592 1.0447 0.9659 0.1808

Slight inner-race fault

0.0212 0.7166 0.2469 0.4784 0.2680 3.8163
0.017 0.7609 0.2410 0.4953 0.2626 3.4612
0.0282 0.7446 0.2399 0.4968 0.2612 3.6263
0.0194 0.7637 0.2446 0.4934 0.2655 3.9188
0.0199 0.7514 0.2423 0.4926 0.2635 3.6843
0.0338 0.7990 0.2349 0.5216 0.2558 3.9312
0.0232 0.7452 0.2408 0.5013 0.2629 3.8348
0.026 0.8390 0.2442 0.5325 0.2647 3.8426
0.0206 0.7632 0.2394 0.4959 0.2606 3.7296
0.0165 0.6942 0.2382 0.4722 0.2601 4.4186
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 P(α) calculated by using the SPS method are shown in
Figures 10–15. +e horizontal coordination denotes the
number index of the sample signal.+e vertical coordination
denotes the feature parameter chosen for classification. +e
values of the six specific characteristic parameters are shown
in Table 2.

In Figure 11, the normal state signal has the largest
value of α0 and the α0 value of the signal for the occur-
rence of faults is smaller than the α0 value of the normal
state. Similarly, the α0 values of the same faults at different
degrees present a larger α0 value for the signal with
serious degree faults than for the signal with slight

Table 2: Continued.

Operational status α0 Δα H(q � −5) H(q � 0) H(q � 5)  P(α)

Serious inner-race fault

0.0179 1.0454 0.2957 0.6971 0.3247 6.5567
0.0138 1.0007 0.3016 0.6499 0.3295 9.7837

−0.0038 0.9971 0.2993 0.6581 0.3295 8.4325
−0.0253 1.0316 0.2864 0.6547 0.3164 9.2739
0.0035 1.0547 0.2926 0.6672 0.3211 6.15
0.0027 0.9944 0.3019 0.6717 0.3329 7.4287

−0.0039 1.1739 0.3056 0.7462 0.3361 5.5631
0.0178 1.0191 0.2899 0.6604 0.3158 8.1085

−0.0172 1.1845 0.3005 0.7466 0.3317 7.1877
0.0032 1.1686 0.2995 0.7543 0.3297 7.1261

Slight outer-race fault

−0.113 0.8248 0.2408 0.4875 0.2780 15.47
−0.1201 0.8391 0.2584 0.5113 0.3007 14.3396
−0.1166 0.8249 0.2392 0.4847 0.2766 14.1815
−0.1082 0.8311 0.2301 0.4799 0.2639 13.2106
−0.1168 0.8655 0.2504 0.5129 0.2900 12.5522
−0.1169 0.8559 0.2426 0.5009 0.2797 15.8954
−0.1179 0.9478 0.2421 0.5299 0.2788 14.9106
−0.1099 0.8490 0.2501 0.5178 0.2895 17.2239
−0.1111 0.8175 0.2446 0.4951 0.2834 21.1568
−0.1081 1.0547 0.2337 0.5815 0.2699 18.6271

Serious outer-race fault

−0.0035 0.9119 0.3916 0.6694 0.4321 15.9467
−0.0135 1.1838 0.3972 0.8284 0.4442 13.4769
−0.0468 1.0179 0.3876 0.6946 0.4304 19.988
−0.0231 1.0009 0.3887 0.7131 0.4342 17.8346
−0.03 1.0657 0.3965 0.7533 0.4433 17.228
0.0041 0.9967 0.3921 0.7576 0.4387 11.4255

−0.0169 0.9972 0.3727 0.7098 0.4144 17.3455
−0.0311 1.0928 0.3804 0.7604 0.4261 22.7398
−0.0226 1.0415 0.3886 0.7333 0.4342 23.2125
−0.0111 0.9941 0.3875 0.7321 0.4340 22.9646

Slight ball fault

0.2136 0.5286 0.3091 0.4942 0.3175 0.9391
0.2006 0.4239 0.2935 0.4254 0.3008 0.9505
0.2255 0.3932 0.3093 0.4395 0.3166 0.8477
0.2318 0.2892 0.2961 0.3894 0.3016 0.9875
0.2353 0.4336 0.3075 0.4580 0.3144 0.9626
0.245 0.2882 0.3101 0.4053 0.3158 0.9358
0.2234 0.4132 0.3150 0.4592 0.3237 0.8414
0.2308 0.4095 0.2942 0.4448 0.3009 0.934
0.2447 0.4384 0.3159 0.4689 0.3227 0.8998
0.2311 0.5342 0.3153 0.5191 0.3243 0.903

Serious ball fault

0.3011 0.5576 0.4128 0.6061 0.4229 0.6763
0.2925 0.4627 0.3897 0.5352 0.3975 0.3966
0.2533 0.6487 0.3998 0.5921 0.4105 0.5959
0.2751 0.4947 0.3835 0.5475 0.3930 0.5489
0.2931 0.4189 0.3927 0.5301 0.4013 0.6171
0.2697 0.4043 0.3623 0.4861 0.3698 0.5054
0.2823 0.4570 0.3861 0.5381 0.3952 0.5189
0.2843 0.4149 0.3782 0.5047 0.3856 0.6314
0.2821 0.3931 0.3873 0.4916 0.3944 0.8207
0.2831 0.4511 0.3873 0.5228 0.3953 0.657

12 Mathematical Problems in Engineering



degree faults. +is indicates that the two parameters Δα
and α0 can be used as characteristic parameters to dis-
tinguish the normal state from fault states and also
provides some possibilities to distinguish the degree of
the fault as well.

In Figure 12, the distribution of Δα values for normal
signals is at a low level, accompanied by an increase in Δα
values in the case of faults, while the Δα values for faults of
the same type but of different degrees are larger for serious
faults than for slight faults.

In Figure 13, when q � −5, the values of the q-order Hurst
exponent H(q � −5) for different degrees of the same fault
start to be distinguishable, especially for serious and slight
faults in the inner-race as well as for serious and slight faults in
the outer-race.+erefore, the q-order Hurst exponent value at

q � −5 is sensitive to the degree of inner- and outer-race faults
and is suitable for extraction as a feature parameter.

In Figure 14, when q � 0, H(q � 0) corresponding to
serious rolling element faults can be distinguished as a whole
from those corresponding to slight rolling element faults. It
also shows good differentiation between serious outer-race
faults and slight outer-race faults.

In Figure 15, when q � 5, H(q � 5) for the signal of
rolling element fault is relatively larger than those for the
inner-race fault and outer-race fault values, but it is less
sensitive to the degree of damage of the fault.

+e singularity power spectra of the seven signals also
exhibit distinguishability between normal and fault states. In
Figure 10, the distribution of singularity exponents α for the
normal state lies in the rightmost of the figure. +e
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Figure 11: +e distribution range of feature α0 calculated by
MFDFA-1.
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Figure 12: +e distribution range of feature Δα calculated by
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distribution of the singularity power of the signal in the
normal state is flat compared to the singularity power of the
signal in the faulty state. Among them, in the distribution of
α, the serious inner-race fault signal lies in the leftmost of the
figure, and the serious outer-race fault signal has the largest
power extrema in its distribution range of α. +e values of
the singularity power of slight inner-race fault signal are
overall smaller than those of severe degree inner-race fault
signal. However, the singularity power spectra cannot be
separated from each other evidently.

In Figure 16, the distribution of  P(α) for the seven
states of the bearing signal is depicted. +e distribution of
 P(α) for serious outer-race fault signal is the widest;
comparing to slight outer-race fault signal, there are
crossovers existed in some samples, but the majority of

samples have greater  P(α) values than slight degrees of
outer-race faults.  P(α) distinguishes the degree of two
inner-race fault signals, and the distributions of both feature
lines are distinguished evidently in Figure 16. Since the
singularity power spectrum distribution of ball fault signal is
stable, there is only a minor difference between the  P(α)

feature lines of serious ball fault signal and slight ball fault
signal, but  P(α) is more stable for the samples.

Some valuable patterns can be drawn from these plots;
the magnitude of the spectrum vertex position α0 usually
increases as the degree of damage increases for the same fault
type. +e multifractal spectrum width Δα is more likely to
increase for severely damaged faults than for slightly
damaged faults. Except for rolling element faults, the SPS
summation  P(α) feature values for severely damaged
inner and outer-race faults are usually larger than those for
slightly damaged inner- and outer-race faults. +e above
analysis proves that the six characteristics selected in this
paper can effectively quantify the types of bearing faults and
the degrees of damage.

According to the representation law of these six features,
the six parameters are composed into a vector to represent
the different bearing state characteristics.

For classification of types using ELM, the number of
hidden neurons is 50 and the transfer function is sigmoidal
function.+e training set consisting of 70 samples is fed into
the ELM classifier, and the remaining samples after seg-
menting the data are used as the test set. +e ELM classi-
fication results are shown in Figure 17. Similarly, the training
set is trained using SVM and LSSVM tools, respectively, and
the same is verified for the test set. +e classification results
obtained are shown in Figures 18 and 19. In the multi-
classification problem of bearing faults using SVM, Support
Vector Machine for Regression (SVR) is chosen. +e kernel
function is chosen as radial basis function with a gamma
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Figure 15:+e distribution range of feature H(q � 5) calculated by
MFDFA-1.
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Figure 16: +e distribution range of feature  P(α) calculated by
the SPS method.
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Figure 17: Classification results of the ELM model based on
MFDFA-SPS.
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parameter coefficient of 0.05. For classification of fault
signals using LSSVM, the optimization function is chosen as
simplex, and the training and test sets are classified using a
cross-validation method.

As can be seen in Figures 20 and 21, we have 7 kinds of
signals in different states; the validation acceleration data of
each state are divided into 50 sets, so we can get 350 sets. All
training sets consisted of 10 sets of each state, so we get 70
sets for training, and the number of total test sets is 350. +e
average runtime and correct recognition rates of five
methods are shown in Table 3. +e diagnostic results of the

five classification tools illustrate that this feature extraction
method can distinguish different kinds of bearing fault
signals with different faults. Among the ELM classifier
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Figure 19: Classification results of the SVM model based on
MFDFA-SPS.
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Figure 20: Classification results of the ELMmodel based onMFDFA.
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Figure 21: Classification results of the ELM model based on SPS.

Table 3: Average runtime and recognition accuracy of five methods.

Algorithm Average
runtime (s)

Average recognition
accuracy (%)

MFDFA+ELM 54.41 92.46
SPS + ELM 2.05 80.83
MFDFA-SPS +ELM 54.56 99.25
MFDFA-
SPS + LSSVM 55.52 95

MFDFA-SPS + SVM 54.22 95.71
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Figure 18: Classification results of the LSSVM model based on
MFDFA-SPS.
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results, there are no errors in the test set except for only one
data belonging to the serious rolling element fault in the test
set is classified into the slight rolling element fault with a
correct rate of 99.25%. In the results obtained by the
MFDFA-SPS-based detection method with SVM classifi-
cation, the highest probability of errors was found for ball
faults, with an overall correct rate of 95%. In the LSSVM
classification results, the correct rate also reached 95.71%
due to the excessive number of parameters that needed to be
preset and did not have optimization.

+erefore, based on the overall classification correctness,
it can be obtained that the MFDFA-SPS-based feature ex-
traction method can be applied to the fault diagnosis of
bearings, and the classification method can be further op-
timized to achieve better classification results.

6. Conclusions

Based on the above study, the following conclusions can be
drawn:

(1) By applying the bearing faults from the CaseWestern
Reserve database, the bearing fault diagnosis method
combining MFDFA with SPS and ELM can be ap-
plied to diagnose different faults as well as faults with
different damage levels

(2) +e MFDFA-SPS fault feature extraction method
based on ELM does not require preprocessing of
fault data and is suitable for real-time monitoring of
the operation status of bearing faults

If only SPS is used to extract the specific feature pa-
rameters of the faulty bearing because the distribution
range of the singularity values of different degrees of the
faulty signal is different (except for some serious faulty
signals), it will cause the stacking of different signal
spectrum lines in different intervals of distribution, and the
intuitive spectrum line discrimination is not strong only
from the graph, so we need to combine other feature ex-
traction methods and choose a more effective classifier for
classification to achieve a better classification effect on the
rolling bearing signal.

+e proposed method has 3 advantages. First, the
proposed method has no preprocessing procedure for the
sampled data, which substantially reduces the complexity of
the overall diagnostic process. Second, the feature extraction
time using the MFDFA-SPS algorithm is short, which im-
proves the efficiency of online fault diagnosis. +e various
bearing signal data used in this paper have only 2048 points,
and the need for fault diagnosis can be achieved in a short
time. Finally, the effect of classification can reach more than
99%, which ensures the reliability of the diagnosis method.
+erefore, the proposed method is suitable for application to
practical engineering problems.

With the approach proposed in the above section, we can
still achieve good diagnostic results based on the Case
Western Reserve bearing database using a smaller number of
training set. +e future direction of research is to test the
sensitivity of this method to the feature extraction and fault
diagnosis effect of different bearing vibration signals, as well

as to realize the composite fault diagnosis of different faults
superimposed.
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