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Topological index is a mapping which corresponds underlying graph with a numeric value and invariant up to all the iso-
morphisms of graph. Our study is based on a partial open question regarding topological indices: for which members of n-vertex
graph family, certain index has minimum or maximum value? In this work, we answered the above-mentioned question regarding
AZI and ABC for transformed families of graphs I and A, (I*'). We investigated the fact of pendent paths and the trans-
formation A, over these indices and developed the tight upper bounds regarding these families of graphs. Moreover, we

characterized transformed graphs associated with maximum values of these indices.

1. Introduction

Nowadays, graph theory has potential applications in dif-
ferent fields of science. It is especially used for theoretical
study of chemical compounds in chemistry. This area of
study named as chemical graph theory deals with the
problems related to the properties in chemistry. In the
middle of last century, theoretical study of chemical com-
pounds attracted the researchers due to its effective appli-
cations such as prediction of physiochemical properties of
substances in cheminformatics, pharmaceutical sciences,
materials science, engineering, and so forth [1]. Chem-
informatics is comparatively the latest area of information
technology which comprises chemistry, mathematics, and
other informational sciences that concentrate on gather-
ing, storing, treating, and examining chemical data. There
are many theoretical molecular descriptors in literature
used to predict properties of chemical compounds. Among

these molecular descriptors, topological indices have an
impact in chemistry due to the prediction of physi-
ochemical properties of underlying substance. Its role in
“quantitative-structure property relationship” (QSPR) or
“quantitative-structure activity relationship” (QSAR) in-
vestigation models is also remarkable [2, 3].

In 1947, Wiener for the first time introduced the use of
topological index during his work on paraffin’s boiling
points [4] and provided that it has best correlation with the
boiling points of alkanes. The discovery of the Wiener index
provided emerging research platform to the research
community. In the later years, researchers of different
communities proposed many other topological indices and
used them for approximation of the chemical properties of
their own interest.

In the race for better prediction, Randic [5] in 1975
introduced degree-based topological index named Randi¢
connectivity index which was the best predictive invariant in
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those days. The Randi¢ index was reported as the first de-
gree-based index in QSPR study because Zagreb indices by
Gutman and Trinajstic [6] were used for totally different
purpose before Randi¢ index. In 1998, parallel to the work of
Bollobdas and Erdos [7], Estrada et al. [8] defined atom bond

connectivity (ABC) index as
deg, + deg, -2
deg, x deg, ’

uv; (T)
which has a good correlation with the heat of formation of
alkanes. Star graph among trees and complete graph in
general for fixed number of vertices have maximal value for
ABC index [9]. For more details, one can see [10, 11]. Furtula
et al. [12] made a generalization of ABC index as

()

uveE (T)
by replacing 1/2 with —A. The augmented Zagreb index AZI
is ABCy,A =3 as,
(its)

Its correlation potential reported is even better than that
of other indices in [13-15].

Mathematical study of ABC index and AZI [16-35]
encouraged us to answer the fundamental question re-
garding characterization of transformed families of graphs
with maximum and minimum values for ABC index and

ABC(T) = (1)

deg, +deg, -2

ABCU(D) = deg, x deg

(2)

deg, x deg,

AZI(T) = —
(D) deg, +deg, — 2

2

uveE(T)

(3)
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AZI. Gupta et.al. determined bounds for symmetric division
degree index in [36]. In this work, we studied ABC index and
AZI for transformed graphs I and A, (T*) under the fact
of transformation A, 0 <a <[ — 2. We characterize extremal
graphs of these transformed families of graphs for
AZIand ABC and established their bounds for T*' and
A, (Tk!), When a path is attached with the fully connected
vertex (vertex with degree greater than one) of the graph,
then it has an impact over the increase and decrease of the
index under study. Throughout this work, consider graph
%! [37]. 1t comprises n-vertex simple connected graph T
along with k pendent paths of length [ > 2 attached withv € T
having degree 2<d,<A;. Let deg, = 8r<degu
deg, <...<Ap+1 be the degree sequence of I'®. X/ j
shown in Flgure L.

L1. Graph Transformations. Let H(I) c E(T'), I'' =T - H
be the new graph generated by removing set edges of H (T),
and I'n =T -V, (T) be the new graph generated by deleting
set of vertices V,(I)cV(T). We define following
transformations.

Let A,; 0<a <l -2 be the transformation defined over
pendent paths attached with the graph [38]. A, has solid
effect over increase and decrease of AZI and ABC.

111. Transformation A. Let w; € V(I), degw >2, for
1Sj<k<n and paths pendent at w; of the form

j
{w ubulu? v, ul lui} comprise T/, Then,

A L R L R ¢ J

k k
kl\ _ kil 23 3 4 -1 1 -1 1
A(l“n )—Fn —Zl{u]uj,uju],...,u ”}+Zl{w]”]’”]”y---’”j u]}. (4)
j= j=
The transformation A is shown in Figure 2. Proposition 1. Let
1.1.2. Transformation A,. A, is the a>0 time repetition of f0=f(Gm)
transformation A. 3 (5)
Let graph I = I'(V, E) with degree of vertex u € I, dp < _ n¢
deg, < Ar and 8y <deg, <A + 1 be the degree of v € ¥/, n+{-2)"

2. Upper Bounds for AZI (T*") and AZI (A, (T*))

Initially, we proved Proposition 1, which is helpful to prove
the main results for AZL

Then, for azb and (=2, f(a,{)= f (b, ().

Proof. Let

f@,0=fn

{

n+{-2

n¢

).
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FIGURE 1: Graph T*/,

(a N (Y
fwxd—fw£7—(a+g_z>'(b+(—2)

(@Cb+(-2)-bCa+{-2)
(@a+{-2°®b+(-2)
P (B +(0-2° 436" ((-2)+3b({-2)") - b°(a + ({-2)° +3a° ({ - 2) + 3a({ - 2)*))
(a+(-2°b+(-2)

(6)
(@ -0")(§-2) + 307" (a - b) (1 - 2) + 3ab(a’ - b ) (1 - 2)°)
) (a+(=2(b+{-2)°
_C(a-b)(a® +ab+b")((-2)" +3a’b* (a-b)({ - 2) +3ab(a+b)(a-b)({-2)°)
) (a+(- 2" (b+(~2)
O (a-b)((a®+ab+b)((-2)° +3a’b* ({ - 2) + 3ab(a +b) ({ - 2)°) .
= =0.
@+(=27(b+(-2) )
This implies (1) ©(1,v) is decreasing for v>2.
@)= f (b0 (7) (2) ®(2,v) = 8 for any real number v.
o (3) For fixed v=3, ®(u,v) is increasing and © (u,v) >8
for u>2.
Lemma 1 (see [15]). Let
In Theorem 1, we discuss the effect of pendent paths over
O (u,v) = O (v, ) AZI and determine its upper bound.
v A3 (8)
= <u P 2) . Theorem 1. Let graph I comprise n-vertex graph I' having

m edges and p>0 pendent vertices. Then,
Then,

2\ 3 3 3 2 3 3
AZI(rk,l)Skﬁ[<(Ar+l) ) +<Ar(Ar+1)> +AZI(F)—kﬁ|:<8F(8F+l)> +< Op ) :|+8k1+p|:8—(Ar+1> :| (9)
" 2 2Ap 2A0p -1 2 200 - 1 200 - 2 Ap
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FiGUuRre 2: Transformation A.

Equality holds for a complete graph I' of size n with
pendent paths of length [ at each vertex, i.e., k = n.

Proof. Let T® be the graph formed by k number of paths
having length I pendent at distinct vertices u € I' such that
2<deg, <6; + 1. Then,

The construction of Tﬁ’l,l >2, implies |E (Fﬁ’l)| =m +Kkl,
and for

uv € B(I}),

(deg, + deg,) € {3,4,deg, + 3,deg, + deg,, deg,, + deg, + 1}.

(11)
deg,d ’
AZI(T) = Z (%) ) (10) The edge set of Fﬁ’l is partitioned as
web(r) \9€8, +deg,
A; = {uv € Fﬁ’lz deg, = 1,deg, = 2},
Ay = {uv € I“ﬁ’l: deg, = deg, = 2},
Ageg, 43 = {uv € Fﬁ‘l: Op <deg, = deg, <Ap +1,deg, = 2},
Adeg +deg, = {uv € I‘ﬁ’lz Op <deg, = deg,,deg, = deg, < Ar}»
Adeg, +deg,+1 = {uv € l"ﬁ’l: Op <deg, = deg,,deg, = deg, + L<Ar + 1},
d 3
AZI(FZ,I) — < degudegv ) + < degu €8 ) ,
uv are edges of pendent paths deg“ + degV -2 uvare edges of I degu + degV -2
deg, de ’ deg, de } deg, de deg, de }
kI _ 8u9€8, 8u9€8,y 8.9¢8, 8.9€8y
AZI(rn ) B m;% <degu + degv - 2> * m;ﬂ% <degu + degv - 2> * UVEAyeq, 13 <degu + degv - 2> ' z <deg’4 + deg" B 2>

deg, deg,

’ (d d 2) *
uv are pendent edges of I eg, +deg, — UVEA oy,

+degy

uved deg, + deg, + 1

deg,,deg,>2

deg, deg, ’
deg, +deg,— 2/
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The construction of AZI(F’:[’Z) implies that the cardinality |A | = p. For 6 minimum degree of vertices of ' and

. . 1+deg,
of A; is k ie,|[A;]l=k|A)=k(I-2), |Agg.sl=k  maximum degree A, using Proposition 1 and Lemma 1, we
have
|Adegu+3| =k, Adegu + degu +1 SkAr - p> and
deg,,deg, >2
deg, de ’
(H) <8p,
uv are pendent edges of I deg“ + degv -2
3 2\ 3 3
y < deg, deg, ) kA [( (Ap+1) ) +(AF(AF+1)> ]
UVEA Geg tdeg,+1 degu + degv -2) 2 2Ar 2Ar -1 (13)

deg,,,deg, >2

3 3 3 2 3

Z (degudegv) SAZI(F)—p<AF+1) _ kép |:(5r(8r+1)> +( or ) ]

uved g deg, + deg, — 2 A 2 200 - 1 26, - 2
eg,+deg,

deg,,deg, >2

Now, from equation (12), we get

233 3 3 2 3
AZI(Fﬁ’l)Skﬁ [((Ar+1) ) +<Ar(Ar+1)) ]+AZI(F)—kﬁ|:(8r(8r+l)) +( Sr ) ]
2 20, 20 - 1 2 |\ 26,-1 20; - 2

Ar+1Y
—p(fA—) + 8k + 8k (I — 2) + 8k + 8p.
T

(14)

After simplification, we get

iy Ar [ (A + 1) ’ Ar(Ap+ 1)) S [(dc (0 + )Y’ 8 ’ Ar+1Y
AZI(Fn)SkZ[(2AF> + ﬁ +AZI(I‘)—k? 261.,—1 + 281.,—2 +8kl+p 8 — Tr .

(15)

Inequality (15) completes the proof. Theorem 2. Let graph '™ comprise n-vertex simple con-
In Theorem 2, we discussed the effect of successive  nected graph I'. Then,

applications of transformation A as shown in Figure 2 over

AZL O

243 3 3 2 3 3
AZI(Aa(rk’l))gﬁ (Ap+a+1) + Ap(Ap+a+1)\'| ko (6 (Or+a+1) (5% 2 ols- Ap+1
" 2 2Ar +a 2Ar +a— 1 2 20 +a—1 20; - 2 Ay
+ 8kl — 8ka + AZI(T).
(16)



Equality holds for a complete graph I' of size n with
pendent paths of length [ at each vertex, i.e., k = n.

Proof. Let a simple graph I of order n, Size m having p>0
pendent vrtives. The augmented Zagreb index of any graph I
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The construction of Tﬁ’l,l >2, implies |E (Fﬁ’l)| =m + Kkl
After successive applications of transformation A as A,
a<l-1, the edge set of A,(I™) is partitioned as
E(degu+degv) (Alx (Fﬁ’l)) Where

is
deg,deg ’
AZI(T) = (—) . (17)
wg(r) deg, +deg, — 2
(deg, + deg,) € {3,4,deg, + a + 2,deg, + a + 3,deg, + deg,, deg, + a + 1 + deg,}, (18)

which implies

Ey(A(T8")) ={uv e IT}': deg, = 1,deg, =2},
E (A, I‘]:ll ={uv e I";’l: deg, = deg, = 2},
Egeg, rar2 Aa Fﬁ’l =Juv € F]:l’l: Op<deg, =deg, +a+1<Ap+a+1,deg, = 1},

deg, deg,

deg, deg,

: 8p <deg, = deg,.deg, = deg, <A},

(4u(r)) =
(4u(r) =
(4d(r)) ={
Egeg vars(Aa(Th')) ={uv € I}': 0y <deg, = deg, + a+ 1<Ap+a+1,deg, =2},
(4d(r)) ={
(4u(r)) =

: 8p <deg, = deg,, deg, <Ar,deg, = deg, + a + 1},

deg,deg, )3

uv are edges of pendent paths <deg’4 + deg" - 2> uvare edges of I <deg” + degV -2

deg,deg } } deg, deg } deg,deg }
AZI A rk;l - u vV u v u vV
( a( n )) Z <degu +deg, - 2> * Z (degu + deg, - 2> " uveA%umz (degM +deg, — 2) i uvﬁA%Wn (degu + deg, - 2)

uveA, uveA,

N deg,deg,

The construction of AZI (I'*!) implies that the cardinality
is

_degides, ), <7
uv are pendent edges of T <d€gu + degV - 2> UVEAjeg, 1deg, degu + degV -2

deg,deg, ’ . deg, deg, }
deg, +deg,— 2/

(19)

UVEA deg +deg, +a+]
deg,.deg, >2

IEdegu+a+3(Aa(rﬁ’l)) | = ka

A de gy +tdeg,+1 |<kAp - p, (20)

de g,,de g, >2

and |Ay, 4 | = p. For 6 minimum degree of vertices of T
and maximum degree A, using Lemma 1, we have
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deg, deg, )3 <8p

uvare pendent edges of T (degu + deg, - 2

Z deg,deg, 3?& (Ap+a+1)° 3+ Ar(Ap+a+1)\
deg, +deg, -2/ = 2 2Ar +2a 2Ar+a— 1 ’

deg, +deg, +a+1

uveA

deg,,,deg, >2 (21)

Z deg,deg, ’ <ka Ar+a+1 3,
deg, +deg, — 2 Ar+a

uve Adegu +a+2

3
y (%) <8k
deg, +deg, — 2

”VEAdegu +at+3

Substituting these changes in equation (19), we have
following inequality.

3 24 3 3
AZI(Aa(Fﬁ‘l))38k+8k(l—2—oc)+8k+k(x<%> +8p+k%|:((Ar+a+l) ) +(Ar(Ar+a+l)>:|

rta 2Ar + 2Ar+a -1
(22)
3 2 3 3
+AZI(F)—kﬁ Or(Sp +a+1) N or ) Ar+a+1 .
2 26p+a—1 26p — 2 Ar+«
After simplification, we get
kAL (Ap+a+ 12\ (Ar(Ap+a+ DY ko [0 (0 +a+ 1)) 2\
AZI(A,(T) < =E r + =L Ejand o | 6 e ULELARLIPA) ) (P S
2 20, + 20 +a— 1 2 |\ 26, +a-1 20, - 2
(23)
Ar+ 1Y
+p|:8—< Lt ) ] + 8Kl — 8ka + AZI(T).
r
Inequality (23) completes the proof. O (3) For fixed y>2, O(x, y) is decreasing for x.
3. Upper Bounds for ABC (1“’,;”) Proposition 2 is related to the ABC index.
and ABC (A, (T*))
Proposition 2. Let
Lemma 2 (see [39, 40]). Let O, 0) =D n)
O (x,y) =@ (y,x)
2 (25)
_ pty-2 29 R
= P
For n,{,A e R,n,{<A and n,{,A>2.
DO (1, () =D (A, A). 26
Then, (1,0) 2D (A, 4) (26)

(1) @ (1, y) is increasing for y.
(2) ©(2,y) = V2/2 for any real number y. Proof. Let



By Lemma 2, for y =2 or { =2 and A =2,

O(17,0) =D, n)

n+¢-2 27

n¢

@ (n,0) = ©(A,A)

=®(A0)

D(1,0) - D(AA) = \JW— \/T

_ Ja+r2+B+2)-2  pp+2)-2
N @B\ 2

| a+2+B  RGp+2)-2
“Na+2@+2) | (2’

1
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=D (n,4)
V2

=

(28)

Now fory>3or{>3and A=(,leta,fy>1,a<y, =
yand n=2+ao0or{=2+p,A=2+y,

) VaT 2Bt DB D + 2y +2) - 2/ (y +2)?

1

[ a+2+f

2(y+2)-2
(@+2)(B+2)

(y +2)°

B 2

i Vet 2+ BI@t DB+ D + 2y +2) - 2/ (y +2)

1

1 2
_[<ﬂ+2>+ @+2)B+D G+ (y+2)2]

[ y-8 B 1

) Va T2t BI@r DB+ D + 2y +2) -2y +2)° L

1

2
B+2) @+2B+2) (+2) (y+2)2]

[ y-8

) Va T2t BI@r DB+ D + 2y +2) -2y +2)° L

1

2
(/3+2)+ﬁ/(oc+2)(ﬁ+2)—y/(y+2) ]

) \/oc+2+[ﬁ’/(oc+2)([j’+2)+\/2()1+2)—2/(y+2)2 L

1

[ y-B +ﬁ(y+2)2—y(¢x+2)([3+2)]
B+2) (@+2)(B+2)(y+2)

) \/0c+2+[3/(oc+2)([3+2)+\/2()}-%2)—2/()/+2)2 L

1

[ v-B +ﬁy(V—a)+2y(ﬁ—a)+4ﬁ—4y]
(B+2) (a+2)(B+2)(y+2)

) \/oc+2+[3/(oc+2)([3+2)+\/2()}-%2)—2/()/+2)2 L

1

[ v-B +ﬁy(V—a)+2y(ﬁ—a)+4(ﬁ—y)]
(B+2) (a+2)(B+2)(y+2)

) \/oc+2+/3/(oc+2)([j’+2)+\/2()/+2)—2/(y+2)2

Briy-a)+2y(B-a) (y=P(@+D(r+2)—4)
[ (a+2)(B+2)(y+2) (@+2)(B+2)(y+2)°

(A== (A-n+2( =) (A-0)(nA* - 4)

1
2\/;7+(—2/17(+\/A+A—2/AA|:

nea’

nea’ ]
(29)
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Since @ (7, {) is a symmetric function, one can let # > { or
{ >, so the factor ({ —#) >0 along withn —2>0,{-2>0,
A-2>0A-#%>0,and A — {>0. All the factors involved in
equation (29) are positive. This implies

O (1,0) - D (A, A)>0. (30)

Hence, for all #,{>2 and #,{<A,

D(17,)=D(A,A). (31)

In Theorem 3, we discuss the effect of pendent paths over
ABC index and determine its upper bound. O

Theorem 3. Let graph I'™! and I’ having order n, sizem , and
p =0 pendent vertices. Then,

[ 24, -1

ABC(r’;”)skAr\E—kgf[l 28

Equality holds for T = C, with pendent paths at each
vertex, i.e., k =n.

Proof. Let T ﬁ’l be the graph. ABC(T) is

deg, + deg, -2

\j(Ar +1)° " \jAr (Ar+1)

NG A V2
]+2k1+p< (Ar+1)—2>+ABC(F). (32)

The construction of T¥!,1> 2, implies |E (T®)| = m + kI,
and for

uv € E(TV),

(deg, + deg,) € {3,4,deg, + 3,deg, + deg,, deg, + deg, + 1}.

ABC(T) = : 33 34
(D) W;D deg,deg, (33) (34)
We use edge set partition of ™! defined in Theorem 1:
ABC(T) = W N W
uv are edges of pendent paths €8udegy uvare edges of T €8udcgy

e deg, +deg, —2

deg, + deg, -2

Z deg, + deg, -2

deg“degV UVEA g, 13 degudegv
deg, +deg, — 2 deg + deg, — 2 deg, + deg, — 2
. deg, + deg, =2 deg, rdeg, =2,y [deg, +deg, =2
uveA deg” deg" uv are pendent edges of T degu degV UVEA ey, +deg, degu degv

deg, +deg, +1

deg,,deg, >2
The construction of ABC (T’ ﬁ’l) implies that the cardi-
nality of A; is k, ie., |A;| =k, [A ] = k(I -2), IAdegu+3| =k,

| Ageg, 3l = Adeg, + deg, +1 <kAp, and [Aj,q,| = p-
deg,,deg, >2

(35)

For 6y minimum degree of vertices of I' and maximum
degree Ar, using Lemma 2 and Proposition 2, we have

degu + degv - 2< \/A—F

uv are pendent edges of T

deg, deg,

_Ar+1p’

deg, + deg, — 2 1
y o frdmo2 g, L
uveA deg,+deg,+1 degudegv \/5

deg, or deg, 22
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deg, +deg, -2 1 kép |: I 2Ar I 2Ar -1 ]
\{%SABC(I’)—‘D——— (36)
uveA dezg,ﬁdegu degudegv \/E 2 V(AF + 1 \JAF (Al" + 1)

deg,,.deg, >2

Now, from equation (35),

) ’ V2, kér A [260-1 _\F V2, \/z
ABC(T,') <ABC(I) + p +kAr\f k [\I(Ar+1) \JAF(Ar+1):| 5P 2k(l 2) +

(37)
After simplification,
1 k(S 2A 2Ar -1 A 2
ABC(T )<kAr\f | 24 [ 2Ar \/_kl +p v V2 + ABC(I). (38)
V(Ar+1 \jAr (Ar+1) (Ar+1) 2
Inequality (38) completes the proof. Theorem 4. Let graph I'™ with maximum degree of Ay + 1
Theorem 4 gives the discussion about the effect of  and minimum 8. Then,
successive applications of transformation A as shown in
Figure 2 over ABC index. O
1 [ Ar+a | 28 +2a-1
ABC(A,(T¥)) < —=Kl +k L kA L
(4(1)) s 5K + N rarn) NG o) (br+ar)
kop [ [ 2Ap +2a | 2Ar+2a-1
- (39)
2 \j(Ar+(x+1) \](Ar+(x)(Ar+cx+1)

Ar +a 1
+p< 7(Ar+(x+ 1) _W> + ABC(T).

Equality holds for I' a complete graph of size n with ~ Proof. Let I*! graph having pendent paths and A, be the «
pendent paths of length [ at each vertex, i.e., k = n. time repetition of transformation A. ABC(I) is
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After successive applications of transformation A as A,,

d deg, — 2 a

ABC(I) = Z 968y T CC8y 7 2 (40)  a<l-1, the edge set of A, (T*) is partitioned as
deg,deg,

uveE (T) E (deg +deg) (Aa ( FﬁJ )) where

(deg, + deg,) € {3,4,deg, + a +2,deg, + a + 3,deg, + deg,, deg, + a + 1 + deg,}. (41)

The construction of A, (Fﬁ’l) shows

Ey(A,(1})) ={uv e I} deg, = 1,deg, =2},
E,(A, (1)) ={uv e I}: deg, = deg, =2},
Egeg oo Aa(Th')) ={uv € T} 6 + 1< deg, = deg, +a+ 1<Ap +a+1,deg, = 1},
Egeg rass(Ae(Th')) =fuv € I}': 8 + 1< deg, = deg, + a+ 1 <Ap +a+ 1,deg, = 2}
Egeg,vaeg,(Ae(Th')) =fuv € I}': 6 < deg, = deg,, deg, = deg, <A},
seg,rartsde,(Aa(Th)) ={uv € I}: 6, < deg, = deg,, deg, < A, deg, = deg, +a+1}, (42)
()= ¥ e T

uv are edges of pendent paths uvare edges of I

deg,, + deg, — 2 deg, + deg, — 2 deg, + deg, — 2 deg,, + deg, — 2
ABC(A,(T¥) = Y = T - Y ey T2y —ouT TCov T 2, “Cou T 6y T £
( ( )) W;3 deg,deg, MVZE:;‘A deg, deg, e Aéumu deg, deg, v A%NH deg,deg,
N z deg,, + deg, — 2 N Z deg, + deg, — 2 . Z deg,, + deg, — 2.
uv are pendent edges of T degu degV UveA, degu degV degu degv

degy +degy UVEA deg +deg,+a+1
deg,.deg, >2

The construction of A, (F’;’l) implies that
[B(Au(1)] = &,

|E4(A“(rﬁ’l))| =k(-a-2) Adegu +deg, +1 =

|Edegu+a+2(Aa(rﬁ’l))| = ke, deg,,, deg, >2

'Edegu+¢x+3(Atx(rl:l)l))' = k’

(43)
kA - p,
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and [Ay, 4 | = p. For ; minimum degree of vertices of T
and maximum degree Ar, using Lemma 2 and Proposition 2,

we have
’degu+degv—2<P ’ Ar+«a
uv are pendent edges of I degudegv \/ (AF Ta+t 1)
Z ’degu +deg, -2 < KA ’ 26p +2a -1
deg,deg, ~ "\(6p+a)(6r+a+1)
”VEAdegu+degv+(x+l\J Bucc8 \J(r ) Cr )
deg,,deg, >2
’degu + deg, — 2 ’ Ar+«
z deg,deg, = k(x\j (Ar+a+1) (44)

“VGAdegu +at2

Z degu+degv—2_ik
uveAdeguwﬁS degudegv \/5 )

degu+degv—2<ABC(r)_ 1 k& [ 2Ap+20 ko | 2Ap+2a-1
deg,deg, ‘D\/f 2 (Ar+“+1)2 ZV(Ar+a)(Ar+o¢+1)'

uveA

deg, + deg,

deg,,deg, >2

Substituting these changes in equation (42), we have
following inequality.

Kl Acta 1, 1 Ar+a | 280 +2a-1
ABC(A, (T, ))spwi(Ar+a+l)+ﬁk(l 2 a)+ﬁk+ka,ﬁrﬂ“1)+kAr\j(5r+“)(8r+a+1)+ABC(r)

1 ke[ [ 2Ar+2a +[ 20 +2a— 1
P2 N@arrar)? " N@rra)@rrar) |

(45)

After simplification, we get

1 A +a [ 20 +20-1 ko[ [ 2Ap+2a | 2Ap+2a-1
ABC(A,(TF)) < —=Kl + kay|[———— + kA L -t L L
(4(I)) s 5K + ke Arrar)) NG a)Grrar ) 2 [Vaprar1)  \Br+a)(Arrarl)

Ar+« 1
+P< Grrarl) ‘ﬁ> +ABCD.
(46)
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Inequality (46) completes the proof. O

4. Conclusion

The study of mathematical aspect regarding topological
indices is a partially open problem: for which members of
graph family, certain index has minimal or maximal value?
In this work, we deal with this fundamental question. We
considered graphs of family I/ with 0 < k < n pendent paths
of length />2 and transformed family A,(T%') where
transformation A, is the graph transformation. The con-
cluding key points concerning our study are given as follows.
We studied the fact of pendent paths over the increase and
decrease of AZI and ABC index in addition to defining upper
bounds for these indices and mentioned graphs with
maximum values of these indices. We discussed the fact of
defined transformation as A,; 0<a<l-2, 0<k<n over
AZI and ABC indices. We determined upper bounds and
characterized extremal graphs for such bounds.
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