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�is paper provides an e�cient pricing method for forward starting options based on Shannon wavelet expansions. Speci�cally,
we derive the pricing results under a more realistic stock model that incorporates the double exponential jump, stochastic jump
intensity, and two-factor stochastic volatilities to capture various features observed in �nancial markets. We obtain the char-
acteristic function related to the payo� function; then, the options can be well evaluated by the Shannon wavelet method.
Numerical experiments show that this method is fast and accurate compared to the Monte Carlo simulation. Finally, we study the
in�uences of changing some important parameters to further illustrate the robustness and stability of the model.

1. Introduction

A forward starting option belongs to the family of path-
dependent options, it is purchased and paid for now but
becomes active later at a starting date t0 with an expiration
date T further in the future. Forward starting options are
often used by companies as employee stock options to
motivate sta�. In addition, insurance companies often
choose forward starting options as hedging tools to reduce
the risk contained in life insurance products.

A closed-form solution for the price of forward starting
options was �rst solved by Rubinstein [1] based on the
Black–Scholes (BS) framework [2]. However, many studies
have shown that the BS model fails to capture some key
features in �nancial markets, such as nonconstant volatility
of stock price. �erefore, many researchers have introduced
stochastic volatility in price dynamics to explain volatility
smile. So far, the most common models are proposed by
Heston [3], Stein and Stein [4], and Hull and White [5].
Based on this, Kruse and Nögel [6], Amerio [7], and
Haastrecht and Pelsser [8] considered pricing forward
starting options by adding stochastic volatility to �nancial

markets. However, few researchers such as Da Fonseca et al.
[9] have shown that single-factor stochastic volatility models
do not perform well when trying to capture the long-term
structure of implied volatility.�en, Christo�ersen et al. [10]
proposed the double Heston model, allowing the volatility
dynamics to be driven by two uncorrelated stochastic
processes to provide a better �t to the empirical implied
volatility.

In addition to stochastic volatility, extreme price
movements exist in underlying price dynamics, especially
when �nancial crises happen. Merton [11] �rst incorporated
log-normal jumps in asset price. Kou and Wang [12] has
proposed another model assuming that the jump size follows
an asymmetric double exponential distribution, it can ex-
plain extreme movements in asset price and capture the
leptokurtic feature as well. Moreover, prior empirical re-
search [13] revealed a low level of correlation between stock
volatility and jump intensity; then, Huang et al. [14–16]
assumed in their work that the stochastic volatility and jump
intensity are governed by separate processes. �erefore, in
this paper, we consider combining double stochastic vola-
tilities, asymmetric double exponential jump with stochastic
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intensity in the modeling framework to valuate forward
starting options.

While the above stochastic structures work well in ef-
fectively capturing various market features and obtaining
more accurate option prices as a result, how to find a closed-
form solution under these complicated models becomes a
demanding task. +e numerical pricing methods for models
with stochastic volatility can be classified into three main
groups [14, 17]: the Monte Carlo simulation, numerical
integration methods, and partial (integro-) differential
equation methods. In general, the price of European-style
options is determined by the discounted expectation of
payoff function. Calculation of the expectation requires
knowledge about the probability density function (PDF) of
stock price. Although the PDF may not be available in most
sophisticated price processes, the Feynman–Kac theorem
connects the numerical solution of a partial (integro-) dif-
ferential equation to the expectation of payoff function.
+en, we can calculate the characteristic function for rele-
vant price processes, which is the same as the Fourier
transform of the PDF.

+e integration methods are used when the character-
istic function of the stock price is known, and a well-known
example is the fast Fourier transform (FFT) method [18].
However, the convergence of FFT depends on a damping
factor, so it is often unstable. Based on Fourier-cosine series
expansion, Fang and Oosterlee [17] proposed a more effi-
cient alternative called the COS method. It can achieve an
exponential convergence and has been widely used in the
valuation of options [19–22]. One of the drawbacks of this
method is that cosine expansions are formed on a global
basis and exhibit periodicity behavior, and errors may ac-
cumulate near the domain boundaries.

Ortiz-Gracia and Oosterlee [23] proposed another val-
uation method for plain vanilla options called the Shannon
Wavelet Inverse Fourier Technique (SWIFT). It performs
well with more flexibility and accuracy as wavelet functions
can capture local features better than cosine series. Another
main improvement of the SWIFTmethod is that it does not
require integral truncation ranges because the local wavelet
basis can adaptively indicate if the error is under a defined
tolerance.

+e main goal of this paper is to provide an efficient
method to price forward starting options. +e contributions
of this paper are mainly two-fold. Firstly, we utilize the
SWIFT method and derive a closed-form solution. Some
numerical integration methods we mentioned above have
been used to price forward starting options. Kruse andNögel
[6] did the pioneering research, and they applied the FFT
method under the Heston model. Zhang and Geng [20]
applied the COS method to price forward starting options
under the double Heston model. In this paper, we choose the
SWIFT method to valuate forward starting options, due to
the established accuracy and robustness of Shannon wavelets
in option pricing, as demonstrated in a wealth of existing
literature [14, 16, 24, 25]. Secondly, this paper proposes a
more realistic model that incorporates two-factor stochastic
volatilities, asymmetric double exponential jump with sto-
chastic jump intensity to capture various features observed

in financial markets. It is an extension of the work by
Christoffersen et al. [10], Kou and Wang [12] and Huang
et al. [16].

+e rest of the paper is arranged as follows: Section 2 sets
up the model of stock price dynamics. In Section 3, we derive
the characteristic function of the log-asset price. Section 4
first briefly introduces the Shannon wavelet method; based
on this, we derive a formula for pricing European-style
forward starting options. Numerical results and sensitivity
analysis are given in Section 5, and we conclude the paper in
Section 6.

2. The Model

We assume that (Ω,Ft, Q) is a complete probability space
where four Brownianmotions Bs

1(t), Bs
2(t), Bv

1(t), Bv
2(t), and

Bλ(t)(0≤ t≤T) are defined,Ft is a filtration, and Q is a risk-
neutral measure. +e stock price S(t), two volatilities v1(t)

and v2(t), and jump intensity λ(t) are specified as follows:

dS(t)�(r− λ(t)m)S(t)dt+
2

j�1

����
vj(t)


S(t)dB

s
j(t)+ yt − 1( S(t)dN(t),

dv1(t)�κ1 θ1 − v1(t)( dt+ε1
�����

v1(t)



dB
v
1(t),

dv2(t)�κ2 θ2 − v2(t)( dt+ε2
�����

v2(t)



dB
v
2(t),

dλ(t)�κλ θλ − λ(t)( dt+ελ
����
λ(t)


dBλ(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where r is a constant interest rate and κj, θj(j � 1, 2), and θλ
represent the mean-reverting speeds, long-term volatilities,
and long-term jump intensity, respectively. +e stochastic
processes vj(t)(j � 1, 2) and λ(t) satisfy the Feller condi-
tions [26], i.e., 2κjθj ≥ ε2j(j � 1, 2, λ) to make the relevant
process remain positive. Bs

1(t) and Bv
1(t), and Bs

2(t) and
Bv
2(t) are two pairs of Brownian motions with correlation

coefficients ρ1 and ρ2, respectively.
N(t) is a Poisson process with stochastic jump intensity

λ(t) and jump size yt � eY, where Y is a random variable and
follows an asymmetric double exponential distribution with
the density function fY(y) � p1/η1e− 1/η1y1y≥0 + q1/η2e1/η2y

1y〈0, 0 〈η1 〈1, η2〉 0, where p, q≥ 0, p + q � 1 are up-
move and down-move probabilities and m represents av-
erage jump amplitude, m: � E[eY − 1] � p/1 − η1 + q/1+

η2. We further suppose that the processes Bs
1(t), Bs

2(t),
Bv
1(t), Bv

2(t), and Bλ(t) are all independent of N(t) and Y.

Remark 1. Model equation (1) contains some special models
as follows:

(1) +e geometric Brownian motion by setting Y � κj

� θj � εj � 0(j � 1, 2, λ);
(2) +e Heston model with Y � κj � θj � εj �

0(j � 2, λ);
(3) +e double Heston model when Y � κλ � θλ �

ελ � 0;
(4) +e double exponential jump model with κj � θj �

εj � 0(j � 1, 2).
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3. Derivation of Characteristic Function

In this paper, we consider the forward starting options with
starting date t0 and expiration date T(0≤ t0 ≤T). Let K

denote the strike price. In this section, we first obtain the
characteristic function at time T for log-price X(t): � nS(t),
then derive the characteristic function of lnS(T)/S(t0) − lnK.

Lemma 1. Assume that the underlying asset follows equation
(1), then under the risk-neutral measure Q, the conditional
characteristic function φ(·) is given by

φ(u, t) � E
Q

e
iuX(T)

| Ft 

� exp iuX(t) + A(u, t) + 
2

j�1
Bj(u, t)vj(t)⎡⎢⎢⎣

+ C(u, t)λ(t)⎤⎦,

(2)

where

A(u,t) � − riu(T − t)+
κ1θ1
ε21

α+(T − t) − 2ln
α+e

ζ1(T− t)
− α−

2ζ1
⎡⎣ ⎤⎦

+
κ2θ2
ε22

β+(T − t) − 2ln
β+e

ζ2(T− t)
− β−

2ζ2
⎡⎣ ⎤⎦

+
κλθλ
ε2λ

c+(T − t) − 2ln
c+e

ζ3(T− t)
− c−

2ζ3
⎡⎣ ⎤⎦,

B1(u,t) � − u(i+u)
e
ζ1(T− t)

− 1
α+e

ζ1(T− t)
− α−

,

B2(u,t) � − u(i+u)
e
ζ2(T− t)

− 1
β+e

ζ2(T− t)
− β−

,

C(u,t) �2(Λ(u) − miu)
e
ζ3(T− t)

− 1
c+e

ζ3(T− t)
− c−

,

(3)

with

α± � κ1 − ρ1ε1iu ± ζ1,

β± � κ2 − ρ2ε2iu ± ζ2,

c± � κλ ± ζ3,

ζ1 �

���������������������

κ1 − ρ1ε1iu( 
2

+ ε21u(i + u)



,

ζ2 �

���������������������

κ2 − ρ2ε2iu( 
2

+ ε22u(i + u)



,

ζ3 �

������������������

κ2λ + 2ε2λ(miu − Λ(u))



,

Λ(u) �
p

1 − iuη1
+

q

1 + iuη2
− 1.

(4)

Proof. See Appendix A. □

Lemma 2. Given that the process V(t) follows Cox–399
Ingersoll–Ross model:

dV(t) � κ(θ − v(t))dt + ε
����
v(t)


dB(t), (5)

the expectation of exp(iuv(t)) is given by

E
Q exp(iuv(t)) |F0  � 1 − iuε2

1 − e− κt

2κ
 

−
2κθ
ε2

· exp
iue

− κt
v(0)

1 − iuε2 1 − e
− κt/2κ 

⎛⎝ ⎞⎠.

(6)

Proof. See [27]. □

Theorem 1. Suppose that the stock price follows (1), the
characteristic function of lnS(T)/S(t0)(0≤ t0 ≤T) is given by

Φ(u) � exp A u, t0(  + 
2

j�1
Bj
′ + C′⎡⎢⎢⎣ ⎤⎥⎥⎦, (7)

where

Bj
′ � −

2κjθj

ε2j
ln hj  +

Bj u, t0( e
− κjt0vj(0)

hj

, j � 1, 2,

hj � 1 − Bj u, t0( ε2j
1 − e

− κjt0

2κj

, j � 1, 2,

C′ � −
2κλθλ
ε2λ

ln hλ(  +
C u, t0( e

− κλt0λ(0)

hλ
.

(8)

Proof. See Appendix B. □

4. Pricing Method

4.1. Shannon Wavelet Series Expansion. Let L2(R) denote
the space of square integrable functions. We start with a
family of closed subspaces Vj(j ∈ Z) of L2(R) with the
following properties:

(i) · · · ⊂ V− 2 ⊂ V− 1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ,

(ii) ∪
j∈Z

Vj � L
2
(R), ∩

j∈Z
Vj � 0{ },

(iii) f(x) ∈ Vj⇔f(2x) ∈ Vj+1.

(9)

Definition 1. A function ϕ ∈L2(R) is said to generate a
multi-resolution analysis (MRA) if it generates a sequence of
closed subspaces Vj(j ∈ Z) that satisfy (i), (ii), and (iii), and
the set ϕj,k(x): � 2j/2ϕ(2jx − k) 

k∈Z forms an orthonor-
mal basis of Vj.
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Definition 2. A function ϕ ∈L2(R) is called a basic scaling
function or father wavelet if it generates a MRA.

We define a projection Pm: L2(R)⟶ Vm.

Observe that at a chosen level of resolution m, every
function f ∈L2(R) can be approximated:

f(x) ≈ Pmf(x) � 
k∈Z

Cm, kϕm, k(x), (10)

where Pmf(·) converges to f(·) as m⟶∞,
cm,k � 

+∞
− ∞ f(x)ϕm,k(x)dx are called scaling coefficients.

+e scaling functions of Shannon wavelets in Vm is
computed as

ϕm,k(x) � 2m/2ϕ 2m
x − k( 

� 2m/2sinc 2m
x − k( 

� 2m/2sin 2m
x − k( π 

2m
x − k( π

.

(11)

4.2. Pricing Method for Forward Starting Options. Here, we
consider the final payoff function of forward starting options
as [α(S(T)/S(t0) − K)]+, with α � 1 for call and α � − 1 for
put, where t0 is the starting time, T is the maturity time, and
K denotes the strike price.+en, the price of forward starting
options can be expressed as

v t0, T(  � e
− rT

E
Q α

S(T)

S t0( 
− K  

+

 . (12)

Let δ � lnS(T)/S(t0) − lnK; then, the option price
equation (12) becomes

v t0, T(  � e
− rT

K 
+∞

− ∞
α e

δ
− 1  

+
f(δ)dδ , (13)

where f(δ) represents the probability density function
(PDF) of δ.

Based on the wavelets theory discussed above, f(x) can
be expressed through Shannon wavelet expansions:

f(x) ≈ Pmf(x) � 
k∈Z

cm, kϕm, k(x) ≈ 

k2

k�k1

cm, kϕm, k(x),

(14)

the second approximately equal sign holds because if f(x)

tends to zero at infinite, cm,k satisfy limn⟶∞ cm,k � 0 (see
[23] for details).

Substituting equations (13) into (14) and exchanging the
summation and integration,

v t0, T(  � e
− rT

K 
+∞

− ∞
α e

δ
− 1 

+


k2

k�k1

cm,kϕm,k(δ)dδ

� e
− rT

K 

k2

k�k1

cm,kVm,k,

(15)

where Vm,k � 
+∞
− ∞ [α(eδ − 1)]+ϕm,k(δ)dδ.

4.2.1. Coefficients Computation

Proposition 1

sinc(t) � 
+∞

j�1
cos

πt

2j
 . (16)

Proposition 2



J

j�1
cos(πt/2j) �

1
2J− 1 

2J− 1

j�1
cos

2j − 1
2J

πt . (17)

Proof. +e results of Propositions 1 and 2 can be easily
derived by two-fold duplication formula
(sin(2a) � 2cos(a)sin(a)) and product-to-sum formula
(2cos(a)cos(b) � cos(a + b) + cos(a − b)), respectively.

According to Propositions 1 and 2, sinc(t) can be ap-
proximated as

sinc(t) ≈ sinc
∗
(t) ≔

1
2J− 1 

2J− 1

j�1
cos

2j − 1
2J

πt . (18)

+en, we replace ϕ in (11) with (18),

cm,k � 
+∞

− ∞
f(s)ϕm,k(s)ds

≈ c
∗
m,k �

2m/2

2J− 1 

2J− 1

j�1


+∞

− ∞
f(s)cos 2j −

1
2J
π 2m

s − k(  ds.

(19)

Consider the Fourier transform of f(x):

f(u) � 
+∞

− ∞
e

iux
f(x)dx, (20)

and Re[f(x)] � 
+∞
− ∞ f(x)cos(ux)dx, where Re[·] denotes

the real part of argument, the approximate computation of
the scaling coefficients cm,k can be obtained:

cm,k≈c
∗
m,k �

2m/2

2J− 1 

2J− 1

j�1
Re f (2j − 1)π

2m

2J
 e

ikπ(2j− 1)/2J

 . (21)

□

4.2.2. Pricing Formula. For formula (15), we truncated the
integration range to a finite domain Dm � [k1/2m, k2/2m]

without significant loss (see [23]), then

Vm,k ≈V
∗
m,k � 

Dm

α e
δ

− 1  
+
ϕm,k(δ)dδ

�

K2m/2

Dm∩[0,+∞]

e
δ
− 1 sinc 2mδ − k( dδ, for call

K2m/2

Dm∩[− ∞,0]

1 − e
δ

 sinc 2mδ − k( dδ, for put.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

If we define
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∏
1,k
(p, q) � ∫

q

p
excos Cj 2mx − k( )( )dx,

∏
2,k
(p, q) � ∫

q

p
cos Cj 2mx − k( )( )dx,

(23)

with Cj � 2j − 1/2Jπ; through a straight forward calculation,
the above integrals can be expressed as

∏
1,k
(p, q) �

Cj2
m

1+ Cj2
m( )

2 eqsin Cj 2mq − k( )( ) − eqsin Cj 2mp − k( )( )

+
1

Cj2
m eqcos Cj 2mq − k( )( ) − epcos Cj 2mp − k( )( )( )],

∏
2,k
(p, q) �

1
Cj2

m sin Cj 2mq − k( )( ) − sin Cj 2mp − k( )( )( ).

(24)
�ereafter,

V∗m,k �
∑
2J− 1

j�1
∏
1,k

max k1, 0( )
2m

,
k2
2m

( ) − ∏
2,k

max k1, 0( )
2m

,
k2
2m

( ) , if k2〉 0,

0, if k2 ≤ 0,




(25)

for a call option, and

V∗m,k �
∑
2J− 1

j�1
∏
1,k

k1
2m
,
min k2, 0( )

2m
( ) − ∏

2,k

k1
2m
,
min k2, 0( )

2m
( ) , if k1〈0,

0, if k1 ≥ 0,




(26)

for a put.
Based on what we have discussed above, we can obtain

the formula on the price on forward starting options:

v t0, T( ) � e− rTK ∑
k2

k�k1

cm,kVm,k, (27)

with cm,k approximated by (21) and Vm,k approximated by
equations (25) and (26).

5. Numerical Results

In this section, some numerical experiments are performed
by utilizing the SWIFT method to price forward starting
options. We �rst discuss the convergence of errors and �nd
an appropriate level of resolution m. �en, we display some
numerical results to show the performance of the SWIFT
method. Finally, we explore the price sensitivity on changing
model parameters.

5.1. Error Convergence. We choose the appropriate level of
resolution m by two error convergence analyses. Firstly, we
follow the line of [16] to compute the tail mass that the
characteristic function Φ not recovered, which can be ap-
proximated by

1
4πT 2mπ( )

Φ − 2mπ( )
∣∣∣∣

∣∣∣∣ + Φ 2mπ( )
∣∣∣∣

∣∣∣∣( ). (28)

Figure 1 shows the loss of the tail mass for characteristic
function across a range of m.

In addition, Huang et al. [16] and Ortiz-Gracia and
Oosterlee [23] have discussed that one advantage of utilizing
Shannon wavelet is that once the scaling coe�cients cm,k are
derived, and the area under the approximated density
function can be easily calculated as

A �
1
2m

cm,k1
2

+ ∑
k1〈k〈k2

cm,k +
cm,k2
2

 . (29)

10-4

10-16

10-28

10-40

Er
ro

r

10-52

10-64

10-76

10-88

10-100

1 2 3
Scale (m)

4 5

Figure 1: Error of approximation for characteristic function.
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Hence, we further investigate the lost area under
probability density function (PDF) through equation (29).
Figure 2 presents the error when approximating the density
function with Shannon wavelet expansions.

We can observe from Figure 2 that the di�erences is
negligible for m≥ 5. Meanwhile, as can be seen in Figure 1,
m � 5 is an appropriate level of approximation within a loss
tolerance level of TOL � 10− 90. �erefore, we choose m � 5
for numerical experiments.

5.2. Numerical Analysis. Here, following Fang [17], the
approximate truncated range can be calculated as

[μ1 − L
��������
μ2 +

��μ4
√√

, μ1 + L
��������
μ2 +

��μ4
√√

], where L � 10
and μn is de�ned as the nth derivative of the underlying
characteristic function, i.e., μn � 1/inznlnΦ(u)/zun ∣ u�0.
Besides, J ≔ [log2(πN)] with N ≔ max(|k1|, |k2|).

We use the pricing formula derived above to do nu-
merical experiments and analyse the speed of computation
and the accuracy and the stability of the SWIFT method.

�e values of parameters are listed in Table 1 for all
numerical examples. All of these numerical examples were

performed in Python 3.7. Also, the computer we used equips
an Intel Core i7 CPU with a 2.2GHz processor.

Here, we use three di�erent approaches (SWIFT, COS,
andMonte Carlo simulation) to calculate the price of forward
starting call options. ForMonte Carlomethod, we use 100,000
numbers of simulations with 200 numbers of time steps. �e
COS method has been proved to be highly e�cient and
accurate in a wealth of literature [17, 19, 22, 28]. Monte Carlo
simulation is a typical numerical method in the domain of
option pricing, and it can be �exibly used for various exotic
options and thus becomes one of the most common ap-
proaches in practice. �erefore in this paper, we choose the
results of the COSmethod as the benchmark and compare the
performance between SWIFT and Monte Carlo methods.

Table 2 displays the resulting prices and average CPU time
of the three methods. �e pricing results show that the price
di�erences between the SWIFTmethod and the COS method
are negligible compared to the price di�erences between
Monte Carlo simulation and COS, which means that the
SWIFT method is more accurate than Monte Carlo simula-
tion. For Monte Carlo method, we use 100,000 numbers of
simulations with 200 numbers of time steps, and it takes more

Table 1: Values of parameters.

Parameters r κ1 θ1 ε1 ρ1 κ2 θ2 ρ2
Value 0.12 1 0.6 0.2 − 0.5 6 0.4 − 0.5
Parameters ε2 κλ θλ ελ p q t0 T
Value 0.9 5 0.06 0.5 0.4 0.6 0.5 2

Table 2: Prices of forward starting options.

K Swift Cos Monte Carlo
0.8 0.481122 0.481134 0.475353
0.85 0.462878 0.462898 0.455658
0.9 0.44562 0.445649 0.450700
0.95 0.429277 0.429316 0.424487
1 0.413784 0.413833 0.403735
1.05 0.399082 0.399143 0.386637
1.1 0.385117 0.385191 0.396895
1.15 0.371838 0.371927 0.365690
1.2 0.359201 0.359306 0.356996
Average CPU time (s) 0.139041 0.060573 105.449163

8

6

4Er
ro

r

2

2

1e–10

3 4
Scale (m)

5 6 7

Figure 2: Error of approximation for density function.
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than 100 seconds to calculate. �e SWIFTand COS make big
improvement in computation speed, and the average CPU
time they need is signi�cantly less than Monte Carlo.

�en, we examine the pricing error of SWIFTandMonte
Carlo with di�erent expiration time T � 1, 1.5, 2 and dif-
ferent strike prices K � 0.8, 0.9, 1, 1.1, 1.2. Table 3 shows the
result. �e error of using the SWIFTmethod are much lower

than those computed using Monte Carlo simulation for all
expiration time and strike prices. It demonstrates that the
SWIFTmethod is more stable than Monte Carlo simulation.

5.3. SensitivityAnalysis. Wewill conduct sensitivity analyses
to study the impact of some parameters on pricing forward
starting options. �ese analyses can provide evidence for
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Table 3: Di�erences of the option prices.

K 0.8 0.9 1 1.1 1.2

T�1 Swift 3.94E − 05 4.44E − 05 9.68E − 06 1.38E − 05 3.99E − 05
Monte Carlo 9.21E − 03 1.60E − 02 7.73E − 03 6.34E − 03 4.99E − 03

T�1.5 Swift 6.81E − 05 3.22E − 05 1.07E − 05 6.15E − 06 2.29E − 05
Monte Carlo 4.21E − 03 1.53E − 02 7.70E − 03 9.21E − 03 6.58E − 03

T� 2 Swift 1.20E − 05 2.90E − 05 4.90E − 05 7.40E − 05 1.05E − 04
Monte Carlo 5.78E − 03 5.05E − 03 1.01E − 02 1.17E − 02 2.31E − 03
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robustness and stability of the SWIFT method under dif-
ferent market conditions. We mainly study the sensitivity of
option prices derived by the SWIFT method to changes in
the following parameters: (1) (Figure 3) instantaneous
volatility of v1(t): ε1, (2) (Figure 4) the speeds of mean-
reverting: κ2, (3) (Figure 5) long-term jump intensity: θλ, and
(4) (Figure 6) reciprocal of the mean value for the negative
jumps: η2.

6. Conclusion

In this paper, we use a novel valuation method to price
forward starting options. We consider a model combining
the asymmetric exponential jump, stochastic jump intensity,
and two-factor stochastic volatilities to capture various
features observed in financial markets and derive a more
realistic pricing framework. We calculate the characteristic
function related to the final payoff by applying Feyn-
man–Kac formula, and then solve the differential equations.
After deriving the characteristic function, the SWIFT
method is applied to compute the pricing results of forward
starting options. Numerical experiments are performed to
show the efficiency compared to the Monte Carlo method.
Finally, we investigate the impact of changing model

parameters to the resulting option values, thus proving the
robustness and stability of our model.

Appendix

A. Proof of Lemma 1

According to Feynman–Kac theorem, φ(u, t) satisfies the
partial integrodifferential equation (PIDE) as follows:

zφ
zt

+ r − λm −
V1 + V2

2
 

zφ
zX

+
V1 + V2

2
z
2φ

zX
2

+

2

j�1
κj θj − vj 

zφ
zvj

+
1
2
ε2jvj

z
2φ

zv
2
j

+ρjεjvj

z
2φ

zX zvj

⎡⎢⎢⎣ ⎤⎥⎥⎦

+κλ θλ − λ( 
zφ
zλ

+
1
2
ε2λλ

z
2φ

zλ2
+λ

+∞

− ∞
[φ(X + Y) − φ(Y)]f(Y)dY � 0,

φ(u,T) � exp[iuX(T)].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.1)

Notice that the integral term in equation (A.1) can be
written as


+∞

− ∞
[φ(X + Y) − φ(Y)]f(Y)dY � 

+∞

− ∞
E

Q
e

iu(X+Y)
  − E

Q
e

iuX
  f(Y)dY

� E
Q

e
iuX

  
+∞

− ∞
E

Q
e

iuY
− 1 f(Y)dY

� φ(u)Λ(u),

(A.2)

where Λ(u) � p/1 − iuη1 + q/1 + iuη2 − 1. According to
Duffie et al. [29], the solution of this PIDE has the following
form:

φ(u, t) � exp iuX(t) + A(u, t)⎡⎣

+ 
2

j�1
Bj(u, t)vj(t) + C(u, t)λ(t)⎤⎥⎥⎦,

(A.3)

with boundary conditions A(u, T) � B1(u, T) � B2(u, T) �

C(u, T) � 0.
Substituting equations (A.1) and (A.2) into (A.3) yields
zA

zt
+

zB1

zt
v1 +

zB2

zt
v2 +

zC

zt
λ + r − λm −

v1 + v2

2
 iu

+
v1 + v2

2
(iu)

2

+ 

2

j�1
κj θj − vj Bj +

1
2
ε2jvjB

2
j + ρjεjvjiuBj 

+ κλ θλ − λ( C +
1
2
ε2λλC

2
+ λΛ(u) � 0.

(A.4)

By matching coefficients, the problem can be simplified
to four differential equations:

zA(u, t)

zt
� − riu + 

2

j�1
κjθjBj +κλθλC, (A.5)

zB1(u,t)

zt
�
1
2

iu −
1
2
(iu)

2
+κ1B1 −

1
2
ε21B

2
1 − ρ1ε1iuB1,

(A.6)

zB2(u,t)

zt
�
1
2

iu −
1
2
(iu)

2
+κ2B2 −

1
2
ε22B

2
2 − ρ2ε2iuB2,

(A.7)

zC(u,t)

zt
� miu − Λ(u) +κλC −

1
2
ε2λC

2
. (A.8)

+e authors first solve the equation (A.6). Making the
substitution,

B1(u, t) �
2O′

ε21O(t)
. (A.9)

Substituting equations (A.9) into (A.6) and simplifying,
the authors derive

O′′(t) − κ1 − ρ1ε1iu( O′(t) −
ε21
4

u(i + u)O(t) � 0. (A.10)
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+is is a second-order homogenous linear differential
equation, and the solution can be written as

O(t) � C1e
(1/2)α+t

+ C2e
(1/2)α− t

, (A.11)

where α± � κ1 − ρ1ε1iu ± ζ1,
ζ1 �

����������������������

(κ1 − ρ1ε1iu)2 + ε21u(i + u)



.
According to the boundary condition, O′(T) � 0 and

O(T) � C1e
1/2α+T + C2e

1/2α− T. +e authors obtain
C1 � α− O(T)/− 2ζ1e− 1/2α+T, C2 � α+O(T)/2ζ1e− 1/2α− T,

then,
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2
ε21

C11/2α+e
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(A.12)

+e equations for B2(u, T) and C(u, T) are solved by
analogy. Hence,

B2(u, T) � − u(i + u)
− 1 + e

ζ2(T− t)

β+e
ζ2(T− t)

− β−

, (A.13)

C(u, T) � 2(Λ(u) − miu)
− 1 + e

ζ3(T− t)

c+e
ζ3(T− t)

− c−

, (A.14)

with

β± � κ2 − ρ2ε1iu ± ζ2,

ζ2 �

���������������������

κ2 − ρ2ε2iu( 
2

+ ε22u(i + u)



,

c± � κλ ± ζ3,

ζ3 �

������������������

κ2λ + 2λ2(miu − Λ(u))



.

(A.15)

Integrating on both sides of equation (A.5), the authors
yield

A(u, t) � 
T

t
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(A.16)

with
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B. Proof of Theorem 1

Φ(u) � E
Q

e
iulnS(T)/S t0( ) | F0 

� E
Q

e
iulnS(T)− iulnS t0( ) |F0 

� E
Q

e
− iuX t0( )E

Q
e

iuX(T)
|Ft0

  |F0 .

(A.18)

Here, the authors use the same method in [20]. Notice
that EQ[eiuX(T) |Ft0

] is the characteristic function of lnS(T)

which can be calculated through the formula in Lemma 1.
Substituting equations (2) into (A.18) yields,

Φ(u) � E
Q

e
− iuX t0( )φ u, t0(  |F0 

� E
Q exp A u, t0(  + 

2

j�1
Bj u, t0( vj t0( ⎡⎢⎢⎣⎡⎢⎢⎣

+ C u, t0( λ t0(  |F0.

(A.19)

Using Lemma 2 and setting h1 � 1 − B1(u, t0)ε21(1 − e− κ1

t0)/2κ1, h2 � 1 − B2(u, t0)ε22(1 − e− κ2t0)/2κ2, and hλ � 1−

C(u, t0)ε2λ(1 − e− κλt0)/2κλ, the authors derive

E
Q exp B1 u, t0( v1 t0(   |F0  � 1 − h1( 
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 , (A.20)
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− κ2t0v2(0)

h2
 , (A.21)

E
Q exp C u, t0( λ t0(   |F0  � 1 − hλ( 

− 2κλθλ/ε2λ( )exp
C u, t0( e

− κλt0λ(0)

hλ
 . (A.22)
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Combining equations (A.19) and the above three ex-
pression, then, +eorem 1 follows.
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