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In this paper, using the basic concepts of symmetric q-calculus operator theory, we de�ne a symmetric q-di�erence operator for
m-fold symmetric functions. By considering this operator, we de�ne a new subclassRb(φ, m, q) ofm-fold symmetric bi-univalent
functions in open unit diskU. As in applications of Faber polynomial expansions forfm ∈Rb(φ, m, q), we �nd general coe�cient
|amk+1| for n≥ 4, Fekete–Szegő problems, and initial coe�cients |am+1| and |a2m+1|. Also, we construct q-Bernardi integral operator
for m-fold symmetric functions, and with the help of this newly de�ned operator, we discuss some applications of our main
results. For validity of our result, we have chosen to give some known special cases of our main results in the form of corollaries
and remarks.

1. Introduction and Definitions

Let A denote the set of all analytic functions f1(z) in the
open unit disk U � z: |z|< 1{ }, and thus each analytic
function can be written in terms of power series:

f1(z) � z +∑
∞

n�2
anz

n. (1)

A function f1 ∈ A in open unit disk U is considered to
be normalized function if it ful�lls the condition of nor-
malization, that is,

f1(0) � 0,

f′(0) � 1.
(2)

A function f1(z) is said to be univalent in the open unit
disk U at opints z1, z2 ∈ D if

z1 ≠ z2⇒f1 z1( )≠f1 z2( ). (3)

and here S represent the class of univalent function. We
know that every f1 ∈ S has an inverse f− 11 , which is given as

f− 11 f1(z)( ) � z, z ∈ U,

f1 f
− 1
1 (w)( ) � w, |w|< r0(f), r0(f)≥

1
4
,

(4)

where
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g1(w) � f
− 1
1 (w) � w − a2w

2
+ 2a

2
2 − a3􏼐 􏼑w

3
− 5a

3
2 − 5a2a3 + a4􏼐 􏼑w

4
+ . . . . (5)

An analytic function f1 and its inverse are univalent in
U; then, f1 is called bi-univalent. An analytic function f1 is
called bi-Bazilevic inU if f1 and f− 1

1 are Bazilevic inU (see
[1]).)e behavior of these types of functions is unpredictable
and not much is known about their coefficients. Let Σ denote
the class of analytic and bi-univalent functions in U. For
f1 ∈ Σ, in [2], Levin showed that |a2|< 1.51, and after that,
Branan and Clunie [3] investigated |a2|≤

�
2

√
. Furthermore,

in paper [4], Netanyahu showed that maximum of f1 ∈ Σ is
max |a2| � 4/3.

In 1986, Branan and Taha [5] defined the subclass of the
bi-univalent functions of class Σ, and also, Srivastava et al. in
[6] investigated various subclasses of class Σ. After that,
Frasin and Aouf [7], Xu et al. [8, 9], and Hayami and Owa
[10] followed their work by introducing new subclasses of
class Σ. For more studies, we refer the readers to [11, 12].)e
performance of the coefficients of the functions f1 and f− 1

1 is
unpredictable due to the bi-univalency requirements;
therefore, we cannot much investigate about general coef-
ficient |an| for n≥ 4.

In [13], Faber introduced Faber polynomials and used it
to determine the general coefficient bounds |an| for n≥ 4.
Furthermore, Gong [14] explained importance of Faber
polynomials in mathematical sciences, especially in geo-
metric function theory. Recently, Airault [15] gave some
remarks on Faber polynomials, and in [16], he discussed
more about Faber polynomials on differential calculus.

By using the Faber polynomial expansion technique,
Hamidi and Jahangiri [17, 18] investigated some new co-
efficient estimates for analytic bi-close-to-convex functions.

In the literature, there are only a few works determining the
general coefficient bounds |an| for f1 ∈ Σ given by (1) by
using Faber polynomial expansions. By using Faber poly-
nomial expansion, we have known very little about the
bounds of Maclaurin’s series coefficient |an| for n≥ 4. Re-
cently, many authors have conducted some studies about
Faber polynomial expansion and determined general coef-
ficient bounds |an| for n≥ 4 (for details, see [19–22]).

A domain U is recognized m-fold symmetric if

fm e
i(2π/m)

z􏼐 􏼑 � e
i(2π/m)

fm(z), z ∈ U, f ∈ A, (6)

where m is a positive integer. )e function fm ∈ S, of the
form

h(z) �

������

f z
m

( 􏼁
m

􏽱

, (7)

is univalent and maps the unit disk U into a region with
m-fold symmetry.

A function fm is called m-fold symmetric if it has the
following normalized form:

fm(z) � z + 􏽘
∞

k�1
amk+1z

mk+1
. (8)

Let Sm denote the set of all m-fold symmetric univalent
functions and note that S1 � S (for details, see [14, 23]).

)e univalent function fm of form (8) is said to be
m-fold symmetric bi-univalent function in U if its inverse
f− 1

m is univalent and the series expansion for f− 1
m is given as

follows:

gm(w) � f
− 1
m (w) � w − am+1w

m+1
+ Υ1(a, m)w

2m+1
− Υ2(a, m)w

3m+1
+ . . . , (9)

where

Υ1(a, m) � (m + 1)a
2
m+1 − a2m+1􏼐 􏼑,

Υ2(a, m) �
1
2

(m + 1)(3m + 2)a
3
m+1 − (3m + 2)am+1a2m+1 + a3m+1􏼚 􏼛,

(10)

and series for f− 1
m (w) was proved by Srivastava et al. in [24]

and denoted by Σm. For m � 1, the series in (9) corresponds
with (5) of the class Σ. Srivastava et al. [24] defined a subclass
of class Σm and investigated initial coefficient bounds while
Hamidi and Jahangiri [25] also defined m-fold symmetric bi-
starlike functions.

Many authors investigated several subclasses of A by
using the basic concepts of q-calculus and fractional
q-calculus. Ismail et al. [26] were the first ones to in-
troduce a q-difference operator Dq for the class S of

normalized starlike functions in U. A number of re-
searchers have got inspired by the q-calculus because of its
divers applications in mathematics and physics [24].
Historically, Srivastava [27] was the first who made used of
q-calculus in the context of geometric function theory. In
1909, Jackson [28, 29] defined the q-analogue of derivative
and integral operator and discussed some of its applica-
tions. Aral and Gupta [30, 31] introduced the q-Baska-
kov–Durrmeyer operator while the author in [32] studied
the q-Picard and q-Gauss–Weierstrass singular integral
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operators. Recently, Kanas and Raducanu [33] introduced
the q-analogue of Ruscheweyh differential operator while
Aldweby and Darus [34] and Mahmood and Sokoł [35]
discussed some applications of this differential operator.
In [36], using the symmetric q-derivative operator, a
subclass of analytic and bi-univalent functions has been
introduced and discussed. Some properties of q-close-to-
convex functions have been obtained in [37], while Hu
et al. [38] considered some subclasses of starlike functions
and have obtained some sufficiency criteria for their de-
fined functions class. For some recent investigations, we
refer the readers to [39, 40].

)e theory of q-symmetric calculus has been used in
different fields of mathematics and physics, for example,
Lavagno studied quantum mechanics in [41] while Da
Cruz et al. [42] discussed q-symmetric variation calculus.
After that, several authors used basic concepts of
q-symmetric calculus in geometric function theory from
different aspects and defined some new subclasses of
analytic functions and investigated some new results.
Kanas et al. [43] implemented some basics concepts of
q-symmetric calculus and defined q-symmetric deriva-
tive. )ey discussed some applications of this operator on
new subclasses of analytic functions. Furthermore, Khan
et al. [44] defined symmetric conic domain by using the
concepts of q-symmetric calculus and used this domain to
investigate some new subclasses of analytic functions. But
in geometric function theory, using q-symmetric calculus
very little work has been done. Especially, very few ar-
ticles have been published so far on this topic.

Here we recall few basic concepts and definitions of the
q-symmetric difference calculus. )roughout this paper, we
suppose that 0< q< 1 and

N � 1, 2, 3, . . .{ }. (11)

)e q-symmetric number frequently occurs in the study
of q-deformed quantum mechanical simple harmonic os-
cillator (see [45]) and can be defined as follows.

Definition 1. For n ∈ N, the q-symmetric number is defined
by

􏽧[n, q] �
q

− n
− q

n

q
− 1

− q
, 􏽧[0, q] � 0. (12)

Remark 1. We note that the q-symmetric number does not
reduce to the q-number.

Definition 2. For any n ∈ Z+ ∪ 0{ }, the q-symmetric number
shift factorial is defined by

􏽧[n, q]! � 􏽧[n, q] 􏽧[n − 1, q] 􏽧[n − 2, q] . . . 􏽧[2, q] 􏽧[1, q], n≥ 1,

􏽧[0, q]! � 1.

(13)

Note that
lim

q⟶1−

􏽧[n, q]! � n!. (14)

Definition 3 (see [46]). )e q-symmetric derivative (q-dif-
ference) operator for f1 ∈ A is defined by

􏽥Dqf1(z) �
1
z

f1(qz) − f1 q
− 1

z􏼐 􏼑

q − q
− 1

⎛⎝ ⎞⎠, z ∈ U

� 1 + 􏽘
∞

n�1

􏽧[n, q]anz
n− 1

, (z≠ 0, q≠ 1),

􏽥Dqz
n

� 􏽧[n, q]z
n− 1

,

􏽥Dq 􏽘

∞

n�1
anz

n
⎧⎨

⎩

⎫⎬

⎭ � 􏽘
∞

n�1

􏽧[n, q]anz
n− 1

.

(15)

We can observe that

lim
q⟶1−

􏽥Dqf1(z) � f1′(z). (16)

Here we define q-symmetric derivative (q-difference)
operator for m-fold symmetric analytic functions.

Definition 4. Let fm ∈ Σm of form (8); then, q-symmetric
derivative (q-difference) operator for fm can be defined as

􏽥Dqfm(z) �
fm(qz) − fm q

− 1
z􏼐 􏼑

q − q
− 1

􏼐 􏼑z

� 1 + 􏽘
∞

k�1

􏽧[mk + 1, q]amk+1z
mk

.

(17)

Note that for n ∈ N � 1, 2, 3, . . .{ } and z ∈ U,

􏽥Dqz
mk+1

� 􏽧[mk + 1, q]z
mk

,

􏽥Dq 􏽘

∞

k�1
amk+1z

mk+1⎧⎨

⎩

⎫⎬

⎭ � 􏽘
∞

k�1

􏽧[mk + 1, q]amk+1z
mk

.
(18)

Recently, Bulut [47] used a Faber polynomial technique
on fm ∈ Σm and investigated some useful results. Here, in
this article, we define a new subclass 􏽥Rb(φ, m, q) of m-fold
symmetric analytic bi-univalent functions associated with
q-symmetric derivative (q-difference) operator. We shall
implement a Faber polynomial expansions technique to
determine the estimates for the general coefficient bounds
|amk+1|, as well as initial coefficients |am+1|, |a2m+1| and
Fekete–Szegő problem for 􏽥Rb(φ, m, q).

Definition 5. A function fm ∈ Σm is said to be in the class
􏽥Rb(φ, m, q), as fm ∈ 􏽥Rb(φ, m, q) if and only if
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1 +
1
b

􏽥Dqfm(z) − 1􏽮 􏽯≺φ(z),

1 +
1
b

􏽥Dqgm(w) − 1􏽮 􏽯≺φ(w),

(19)

where φ ∈, b ∈ C 0{ }, z, w ∈ U, and gm(w) � f− 1
m (w) is

defined by (9).

Remark 2. For q⟶ 1− , m � 1, 􏽥Rb(φ, m, q) � Rb(φ) in-
troduced by Hamidi and Jahangiri in [18].

Here in this paper, the symmetric q-difference operator
for m-fold symmetric functions is defined. )en, by using
this newly defined operator, we defined a new subclass

Rb(φ, m, q) of m-fold symmetric bi-univalent functions in
open unit disk U. As in applications of Faber polynomial
expansions for fm ∈Rb(φ, m, q), we find general coefficient
|amk+1| for n≥ 4, Fekete–Szegő problems, initial and coef-
ficients |am+1| and |a2m+1|. Also, q-Bernardi integral operator
for m-fold symmetric functions is constructed, and with the
help of this operator, we discuss some applications of our
main results.

2. Main Results

Using the Faber polynomial expansion of functions f1 ∈ A
of form (1), the coefficients of its inverse map g � f− 1

1 may
be expressed as [16]

g1(w) � f
− 1
1 (w) � w + 􏽘

∞

n�2

1
n

K
− n
n− 1 a2, a3, . . .( 􏼁w

n
, (20)

where

K
− n
n− 1 �

(− n)!

(− 2n + 1)!(n − 5)!
a

n− 1
2 +

(− n)!

[2(− n + 1)]!(n − 3)!
a

n− 3
2 a3 +

(− n)!

(− 2n + 3)!(n − 4)!
a

n− 4
2 a4

+
(− n)!

[2(− n + 2)]!(n − 5)!
a

n− 5
2 a5 +(− n + 2)a

2
3􏽨 􏽩 +

(− n)!

(− 2n + 5)!(n − 6)!
a

n− 6
2 a6 +(− 2n + 5)a3a4􏼂 􏼃 + 􏽘

j≥ 7
a

n− j
2 Vj,

(21)

such that Vj with 7≤ j≤ n is a homogeneous polynomial in
the variables |a2|, |a3|, . . . |an| [48]. In particular, the first
three terms of K− n

n− 1 are
1
2
K

− 2
1 � − a2,

1
3
K

− 3
2 � 2a

2
2 − a3,

1
4
K

− 4
3 � − 5a

3
2 − 5a2a3 + a4􏼐 􏼑.

(22)

For more details, see [15, 16, 48].
Similarly, Bulut [47] used the Faber polynomial ex-

pansion on (8) and obtained the series of the form

fm(z) � z + 􏽘
∞

k�1
amk+1z

mk+1

� z + 􏽘
∞

k�1
K

(1/m)
k a2, a3, . . . ak+1( 􏼁z

mk+1
.

(23)

)e coefficients of its inverse map gm � f− 1
m can be

expressed as

gm(z) � f
− 1
m (z)

� w + 􏽘
∞

k�1

1
(mk + 1)

K
− (mk+1)
k am+1, a2m+1, . . . amk+1( 􏼁w

mk+1
.

(24)

Theorem 1. For b ∈ C\ 0{ }, let fm ∈ 􏽥Rb(φ, m, q) be given by
(8); if amj+1 � 0, 1≤ j≤ k − 1, then

amk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2|b|

􏽧[mk + 1, q]
, for k ≥ 2. (25)

Proof. Let fm ∈ 􏽥Rb(φ, m, q) of form (8); then,

1 +
1
b

􏽥Dqfm(z) − 1􏽮 􏽯 � 1 + 􏽘
∞

k�1

􏽧[mk + 1, q]

b
amk+1z

mk
, (26)

and for its inverse map gm � f− 1
m , we have

1 +
1
b

􏽥Dqgm(w) − 1􏽮 􏽯 � 1 + 􏽘
∞

k�1

􏽧[mk + 1, q]

b
Amk+1w

mk
, (27)

where Amk+1 � 1/(mk + 1)K
− (mk+1)
k (am+1, a2m+1, . . . amk+1),

k≥ 1.

4 Mathematical Problems in Engineering



On the other hand, since fm ∈ 􏽥Rb(φ, m) and
gm � f− 1

m ∈ 􏽥Rb(φ, m, q) by definitions p(z) and r(w), we
have

p(z) � c1z
m

+ c2z
2m

+ . . . � 􏽘
∞

k�1
ckz

mk
,

r(w) � d1w
m

+ d2w
2m

+ · · · � 􏽘
∞

k�1
dkw

mk
,

(28)

where

φ(p(z)) � 1 + 􏽘
∞

k�1
􏽐
k

l�1
φlK

l
k c1, c2, . . . , ck( 􏼁z

mk
, (29)

φ(r(w)) � 1 + 􏽘
∞

k�1
􏽘

k

l�1
φlK

l
k d1, d2, . . . , dk( 􏼁w

mk
. (30)

Equating the coefficients of (26) and (29), we have

1
b

􏽧[mk + 1, q]amk+1 � 􏽘
k− 1

l�1
φlK

l
k c1, c2, . . . , ck( 􏼁. (31)

Similarly, from (27) and (30), we have

1
b

􏽧[mk + 1, q]Amk+1 � 􏽘
k− 1

l�1
φlK

l
k d1, d2, . . . , dk( 􏼁. (32)

Since amj+1 � 0, 1≤ j≤ k − 1, we have

Amk+1 � − amk+1, (33)

1
b

􏽧[mk + 1, q]amk+1 � φ1ck, (34)

1
b

􏽧[mk + 1, q]Amk+1 � φ1dk. (35)

Taking the absolute values of (34) and (35), we have

1
b

􏽧[mk + 1, q]amk+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� φ1ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

−
1
b

􏽧[mk + 1, q]amk+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� φ1dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(36)

Now using the fact that |φ1|≤ 2, |ck|≤ 1, and |dk|≤ 1, we
have

amk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
|b|

􏽧[mk + 1, q]
φ1ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
|b|

􏽧[mk + 1, q]
φ1dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, amk+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2|b|

􏽧[mk + 1, q]
.

(37)

Hence, )eorem 1 is complete. □

For q⟶ 1− , m � 1, and k � n − 1, in )eorem 1, we
obtain the following known corollary.

Corollary 1 (see [18]). For b ∈ C\ 0{ }, let f ∈ 􏽥Rb(φ); if
aj+1 � 0, 1≤ j≤ n, then

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2|b|

n
, forn≥ 3. (38)

Theorem 2. For b ∈ C\ 0{ }, let fm ∈ 􏽥Rb(φ, m, q) be given by
(8); then,

am+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

2|b|

􏽧[m + 1, q]
, if |b|<

8
􏽧[m + 1, q] 􏽧[2m + 1, q]

,

�����������������
8|b|

􏽧[m + 1, q] 􏽧[2m + 1, q]

􏽳

, if |b|≥
8

􏽧[m + 1, q] 􏽧[2m + 1, q]
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a2m+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

2|b|

􏽧[2m + 1, q]
+

2|b|
2

􏽧[m + 1, q]
, if |b|<

2
􏽧[2m + 1, q]

,

4|b|

􏽧[2m + 1, q]
, if |b|≥

2
􏽧[2m + 1, q]

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

a2m+1 − 􏽧[m + 1, q]a
2
m+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
4|b|

􏽧[2m + 1, q]
, (40)

a2m+1 −
􏽧[m + 1, q]

2
a
2
m+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

2|b|

􏽧[2m + 1, q]
. (41)

Proof. Taking k � 1 in (31) and k � 2 in (32), then we have
1
b

􏽧[m + 1, q]am+1 � φ1c1, (42)

1
b

􏽧[2m + 1, q]a2m+1 � φ1c2 + φ2c
2
1, (43)

−
1
b

􏽧[m + 1, q]am+1 � φ1d1, (44)

1
b

􏽧[2m + 1, q] 􏽧[m + 1, q]a
2
m+1 − a2m+1􏽮 􏽯 � φ1d2 + φ2d

2
1.

(45)

From (42) and (44) and using the fact that |φ1|≤ 2,
|ck|≤ 1, and |dk|≤ 1, we have

am+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
|b|

􏽧[m + 1, q]
φ1c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

|b|

􏽧[m + 1, q]
φ1d1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
2|b|

􏽧[m + 1, q]
.

(46)

Adding (43) and (45), we have

a
2
m+1 �

b φ1 c2 + d2( 􏼁 + φ2 c
2
1 + d

2
1􏼐 􏼑􏽮 􏽯

􏽧[m + 1, q] 􏽧[2m + 1, q]
. (47)
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Taking modulus on (47), we have

am+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

�����������������
8|b|

􏽧[m + 1, q] 􏽧[2m + 1, q]

􏽳

. (48)

Now the bounds |am+1| can be justified since

|b|<

�����������������
8|b|

􏽧[m + 1, q] 􏽧[2m + 1, q]

􏽳

for |b|<
8

􏽧[m + 1, q] 􏽧[2m + 1, q]
.

(49)

From (43), we have

a2m+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
|b| φ1c2 + φ2c

2
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽧[2m + 1, q]
≤

4|b|

􏽧[2m + 1, q]
. (50)

Next we subtract (45) from (43), and we have

2 􏽧[2m + 1, q]

b
a2m+1 −

􏽧[m + 1, q]

2
a
2
m+1􏼨 􏼩 � φ1 c2 − d2( 􏼁 + φ2 c

2
1 − d

2
1􏼐 􏼑 � φ1 c2 − d2( 􏼁, (51)

or

a2m+1 �
􏽧[m + 1, q]

2
a
2
m+1 +

φ1b c2 − d2( 􏼁

2 􏽧[2m + 1, q]
. (52)

After some simple calculation for (52) and taking the
absolute values, we get

a2m+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
φ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b| c2 − d2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 􏽧[2m + 1, q]
+

􏽧[m + 1, q]

2
a
2
m+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (53)

Using assertion (46) on (53), we have

a2m+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2|b|

􏽧[2m + 1, q]
+

2|b|
2

􏽧[m + 1, q]
. (54)

It follows from (50) and (54) that

2|b|

􏽧[2m + 1, q]
+

2|b|
2

􏽧[m + 1, q]
≤

2|b|

􏽧[2m + 1, q]
if |b|<

2
􏽧[2m + 1, q]

.

(55)

Again, we rewrite (45) for the result of (40) as follows:
1
b

􏽧[2m + 1, q] 􏽧[m + 1, q]a
2
m+1 − a2m+1􏽮 􏽯 � φ1d2 + φ2d

2
1. (56)

Taking the absolute value and using the fact that |φ1|≤ 2,
|ck|≤ 1, and |dk|≤ 1, we have

a2m+1 − [m + 1, q]a
2
m+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

4|b|

􏽧[2m + 1, q]
. (57)

Finally, from (51), we have

2 􏽧[2m + 1, q]

b
a2m+1 −

􏽧[m + 1, q]

2
a
2
m+1􏼨 􏼩 � φ1 c2 − d2( 􏼁. (58)

Taking the absolute value and using the fact that |φ1|≤ 2,
|ck|≤ 1, and |dk|≤ 1, we have

a2m+1 −
􏽧[m + 1, q]

2
a
2
m+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

2|b|

􏽧[2m + 1, q]
. (59)

□

Putting q⟶ 1− , m � 1, and k � n − 1 in)eorem (29),
we obtain the following known corollary.

Corollary 2 (see [18]). For b ∈ C\ 0{ }, let f ∈ 􏽥Rb(φ) be given
by (1); then,

a2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

|b|, if |b|<
4
3
,

���
4|b|

3

􏽲

, if |b|≥
4
3
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

2|b|

3
+|b|

2
, if |b|<

2
3
,

4|b|

3
, if |b|≥

2
3
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a3 − 2a
2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

4|b|

3
,

a3 −
(m + 1)

2
a
2
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2|b|

3
.

(60)

3. Applications of the Main Results

In this section, firstly we define the q-Bernardi integral
operator L(fm) � 􏽥B

q

β,m for m-fold symmetric analytic
functions and then use it to discuss some applications of our
main results.

Let fm ∈ Am of form (8); then,L: Am⟶ Am is called
the q-Bernardi integral operator for functions defined by
L(fm) � 􏽥B

q

β,m with β> − 1, and 􏽥B
q

β,m is given by
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􏽥B
q

β,mfm(z) �
􏽧[1+β,q]

z
β 􏽚

z

0
t
β− 1

fm(t)dqt, (61)

� z + 􏽘
∞

k�1

􏽧[β+1,q]

􏽧[mk +1+β,q]
amk+1z

mk+1
, z ∈U

� z + 􏽘

∞

k�1

􏽥Bmk+1amk+1z
mk+1

,

(62)

where

􏽥Bmk+1 �
􏽧[β + 1, q]

􏽧[mk + 1 + β, q]
. (63)

Remark 3. If we take q⟶ 1− and m � 1, in (61), then we
obtain Bernardi integral operator introduced by Bernardi in
[49].

Theorem 3. For b ∈ C\ 0{ }, let fm ∈ 􏽥Rb(φ, m, q) be given by
(8); if amj+1 � 0, 1≤ j≤ k − 1, and

􏽥B
q

β,mfm(z) � z + 􏽘
∞

k�1

􏽥Bmk+1amk+1z
mk+1

, (64)

where Bq

β,mfm is the integral operator given by (61), then

amk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2|b|

􏽥Bmk+1
􏽧[mk + 1, q]

, for k≥ 2. (65)

Proof. )e proof of )eorem 3 follows by using (62) and
)eorem 1. □

Theorem 4. For b ∈ C\ 0{ }, let fm ∈ 􏽥Rb(φ, m, q) be given by
(8); in addition, 􏽥B

q

β,m is defined by (61) and of form (62); then,

am+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

2|b|

􏽥Bm+1
􏽧[m + 1, q]

, if |b|<
8

􏽧[m + 1, q] 􏽧[2m + 1, q] 􏽥B2m+1
,

����������������������
8|b|

􏽥B2m+1
􏽧[m + 1, q] 􏽧[2m + 1, q]

􏽳

, if |b|≥
8

􏽧[m + 1, q] 􏽧[2m + 1, q] 􏽥B2m+1
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a2m+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

2|b|

􏽧[2m + 1, q] 􏽥B2m+1
+

2|b|
2

􏽥Bm+1
􏽧[m + 1, q]

, if |b|<
2

􏽧[2m + 1, q] 􏽥B2m+1
,

4|b|

􏽥B2m+1
􏽧[2m + 1, q]

, if |b|≥
2

􏽥B2m+1
􏽧[2m + 1, q]

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a2m+1 − 􏽥Bm+1
􏽧[m + 1, q]a

2
m+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
4|b|

􏽥B2m+1
􏽧[2m + 1, q]

,

a2m+1 −
􏽥Bm+1

􏽧[m + 1, q]

2
a
2
m+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

2|b|

􏽥B2m+1
􏽧[2m + 1, q]

.

(66)

Proof. )e proof of )eorem 4 follows by using (62) and
)eorem 2. □

4. Conclusion

)e applications of operators in geometric function theory
are quite significant. Many new subclasses of analytic
functions have been defined with the help of operators. In
our present investigations, we were motivated by the recent
research on operator theory and have defined a new
q-symmetric derivative (difference) operator for m-fold
symmetric functions. With the help of this newly defined
operator, we have systematically defined a new subclass
􏽥Rb(φ, m, q) of m-fold symmetric bi-univalent functions. We

have then successfully used the Faber polynomial expansion
technique to find general coefficient |amk+1| for n≥ 4,
Fekete–Szegő problems, and initial coefficients |am+1| and
|a2m+1| for the function f ∈ 􏽥Rb(φ, m, q) in the open unit
disk U. Also, we have defined a q-symmetric Bernardi in-
tegral operator for m-fold symmetric functions and have
used it to discuss some applications of our main results. In
future, researchers can define certain new
subclasses related to m-fold symmetric functions associated
with (17).
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