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Asynchronous motor system has the characteristics of high order, strong coupling, and nonlinearity. From the dynamical model,
it is the underactuated mechanical system, which means that the dimension of its input space is fewer than the degree of freedom.
Following this perspective, the energy based nonlinear control technology-CL (controlled Lagrangians) method is used to solve
the control problem in this paper. Based on the expected controlled energy and its derivative with respect to time, controlled
Lagrangians and generalized force are constructed, and they produce the controlled equations. In order to ensure the complete
matching between the controlled equation and the original equation, the gyroscopic forces containing the �rst-order term of
velocity are innovatively introduced into the generalized force, and the matching conditions are obtained. By solving the matching
conditions composed of some partial di�erential equations, the nonlinear smooth feedback control law can realize the global
asymptotic stabilization of not only velocity but also position. Finally, the controlled energy is selected as the Lyapunov function,
and the stability is proved according to the LaSalle invariant theorem.  e e�ectiveness of the designed control law is dem-
onstrated in the results of the simulation.

1. Introduction

With the advantages of low price, simple structure, con-
venient maintenance, and reliable operation, the asyn-
chronous motor has always been in a leading position in
today’s social industrial production. Under the concept of
advocating production environmental protection and low-
carbon economy, the research on the control performance of
the asynchronous motor has important theoretical signi�-
cance and practical value [1].

 e asynchronous motor is a nonlinear system. How-
ever, the traditional linear control method cannot reveal its
nonlinear nature.  erefore, the research on the control
method of nonlinear theory is of great signi�cance to im-
prove the dynamic and static performance of the AC
asynchronous motor. At present, the nonlinear control
methods applied to the asynchronous motor mainly include
feedback linearization control [2], backstepping control [3],
slidingmode control [4], active disturbance rejection control

[5, 6], and passive control theory [7, 8].  e control per-
formance of the system has been signi�cantly improved for
application of the above method.

Sun developed chopping control and energy-saving
controller of a three-phase AC asynchronous motor [2]. Yu
et al. designed the nonlinear adaptive controller of the
asynchronous motor system by using the subsystem sepa-
ration method and backstepping technology to ensure the
stability of the system [3]. Lekhchine et al. designed a re-
newable energy storage electrical system for asynchronous
motors. In this system, the motor is driven by sliding mode
control, which can overcome the chattering phenomenon
through the sliding surface based on fuzzy logic [4]. Li et al.
proposed a second-order ADRC and AC excitation control
system based on stator ¡ux oriented control to control the
active and reactive power of the variable-speed pumped
storage unit [5, 6]. Wu et al. discussed the problem of
asynchronous passive control of Markov jump systems and
obtained three equivalent su¢cient conditions to ensure the
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random passivity of hidden Markov jump systems by using
matrix inequality technology. Based on the established
conditions, an asynchronous controller is designed [7–9]. Yu
et al. studied the tracking control of the underactuated
dynamic system and proposed a six-step motion strategy of
the pendulum driven vehicle rod system [10, 11]. By
implementing feedback and other measures, the asymptotic
stability of the control Hamiltonian system can be realized.
-e literature [12–15] reports some new results about the
control of underactuated dynamic systems.

In terms of mathematical equivalence, some studies
analyze the controlled Lagrange (CL) method [16–19].
Compared with PBC, the CL method has a simpler
mathematical form and clearer physical meaning, which is
easy to understand. Usoro et al. described a Lagrangian
method for solving nonlinear constrained optimization
problems in set theory control problems. By introducing
the matrix Lagrange multiplier, the problem is simplified
to solve a set of nonlinear simultaneous matrix equations
[16]. M}uller et al. proved the possibility of maximizing the
torque without exceeding the limit value of magnetic flux
and stator current, which is independent of the number of
revolutions of an asynchronous motor [17]. Lindgren et al.
gave the exact slope distribution and other characteristic
distributions of symmetric and asymmetric Lagrangian
spatiotemporal waves at level crossings [18, 19]. In ad-
dition, some studies are extended to the general PBC
method from the perspective of robust control and op-
timal control of general PCH systems [20–26]. -ese
results have been proved to be expressed in a Lagrangian
form.

-is paper applys CL method to analyze the asyn-
chronous motor system from the perspective of an under-
drive mechanical system. We will use the electromagnetic
energy generated by the stator and rotor windings and the
mechanical energy generated by the rotor to construct a
controlled energy controller [12]. -e controlled system
maintains the Lagrangian mechanical structure in form,
obtains the smooth nonlinear feedback control law, has a
large convergence range, and helps to realize the CL method
robust control and optimal control [14]. Compared with the
port controlled dissipative Hamiltonian system, the non-
linear smooth feedback control law obtained in this paper
can realize the global asymptotic stabilization of position
and velocity at the same time.

2. Mathematical Model

For the convenience of writing, we will indicate the in-
dependent variables of the functions and matrices that
appear, which will be omitted when they appear below.
l, m, n ∈ N, and Ni � 1, · · · , i{ }, Nn means a collection
consisting of the first n quantity of natural numbers. Let
z(e) represents the function of the vector e � [e1, · · · , e5]

T,
Ykj corresponds to the element at the kth row and the jth
column of the function matrix vector Y(e), xi denotes the
ith element of function vector X(e): R5⟶ R5, where
i ∈ N5, I means the five-order identity matrix. Besides,
some notations as given below:

z,i �
zz(e)

zei

, Y,i �

Y11,i

⋮

Yl1,i

· · ·

· · ·

Y1m,i

⋮

Ylm,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zez �

z,1

⋮

z,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, zeTX �

x1,1

⋮

xm1

· · ·

· · ·

x1,n

⋮

xm,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(1)

-e generalized coordinate variables of the AC asynchro-
nous motor is q � [q1, . . . , q5]

T, where q1, q2, q3, q4 are the
components of stator inductance charge and rotor inductance
charge on d − q axis, and q5 is the angular position of motor
rotor. u � [u1, . . . , u4, 0]T is the original control input, where
u1, u2, u3, u4 are the elements of the stator voltage and rotor
voltage on the d − q axis. In addition, u � O(q)v, where the
input coupling matrix O � [I01, I02, I03, I04], and v ∈ R4.

In view of the mathematic model of a three-phase
asynchronous motor, the following assumptions are
expressed as follows [9]:

(1) -e spatial harmonic and the spatial difference be-
tween three-phase windings are ignored. Meanwhile,
it is assumed that the generated magnetomotive
force is distributed sinusoidally along the circum-
ference of the air gap.

(2) Magnetic circuit saturation and core loss are ignored.
At the same time, it is assumed that the inductance
parameters of every phase winding, not only self-
inductance but also mutual one, are constant.

(3) It is not considered of the influence of frequency and
temperature changes on the variation of winding
resistance.

According to the above assumptions for the AC asyn-
chronous motor, its mathematical model in the d − q co-
ordinate system can be obtained by

L11 0 L13 0 0

0 L11 0 L13 0

L13 0 L33 0 0

0 L13 0 L33 0

0 0 0 0 J/np

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

€q1

€q2

€q3

€q4

€q5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 L11 _q5 0 L13 _q5 −npψsq

−L11 _q5 0 −L13 _q5 0 npψsd

0 L13 _q5 0 L33 _q5 0

−L13 _q5 0 −L33 _q5 0 0

npψsq −npψsd 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_q1

_q2

_q3

_q4

_q5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

R1 −ω1L11 0 −ω1L13 0

ω1L11 R1 ω1L13 0 0

0 −ω1L13 R2 −ω1L33 0

ω1L13 0 ω1L33 R2 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_q1

_q2

_q3

_q4

_q5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0

0

0

0

TL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

u1

u2

u3

u4

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)
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In (2), ψsd � L11 _q1 + L13 _q3, ψsq � L11 _q2 + L13 _q4, L11, and
L33 denote the equivalent self-inductance of the stator and
rotor phase windings, respectively. And L13 is the equivalent
mutual inductance of the stator and rotor phase windings.
-e load torque is denoted by TL, and TL � T1 + T

′

L, where
T1 includes no-load torque and the external one, and TL

′ �
Hq5 denotes the torsional torque generated when the motor
and the mechanical load are connected with a relatively long
shaft, where H is the deformation coefficient. -e equation
(2) is abbreviated as

M€q + C(q, _q) _q + C0 _q + zqEp � u, (3)

where (qT, _qT) � (qtd, 0T) is the equilibrium point, and its
input must satisfy Ou � 0, where O ∈ (O⊥)T and
(O⊥)TO � 0, so O � [0, 0, 0, 0, 1].

3. Design of Asynchronous Motor Controller
Based on CL Method

3.1. Construction of Controlled Energy and Generalized Force.
According to (3), the controlled kinetic energy of the
controlled system is Ek(q, _q) � (1/2) _qTM _q. -e controlled
kinetic energy matrix satisfies M: R5⟶ R5×5, M � M

T

and |M|≠ 0.
Take the controlled potential energy as Ep: R5⟶ R,

and generalized force u∈ R5, then controlled Lagrangian
function L(q, _q) and controlled energy E(q, _q) of the system
are as follows:

L � Ek − Ep,

E � Ek + Ep.

⎧⎨

⎩ (4)

Sometimes, the controlled energy has physical meaning,
such as controlled kinetic energy or controlled potential
energy, and maybe it has only a mathematical meaning
which is sufficient and necessary. According to L and u, we
obtain the controlled equations of the system as follows:

u � M€q + zqT(M _q) _q −
1
2
zq _q

T
M _q􏼐 􏼑 + zqEp. (5)

Using (4) and (5), we get

_E � _q
T d

dt
z _qL − zqL􏼢 􏼣 � _q

T
u. (6)

-e generalized force of the system consists of two parts,
namely gyroscopic forces G(q, _q) _q and dissipation force
−D(q) _q, where gyroscopic forces matrix is
G � −GT � 􏽐i∈N5

IoiGio � 􏽐i,j∈N5
Ioi _qTgio(q) + G0.

Furthermore, g
(k)
ij (q) represents the element at the kth

row and jth column of function matrix gio, and for
i, j, k ∈ N5, g

(k)
ij is the kth component function of the ele-

ment Gij of the gyroscopic forces matrix.
Since the gyroscopic forces matrix is an anti-symmetric

one, there is g
(k)
ij � −g

(k)
ji . Similarly, the constant elements of

the gyroscopic forces matrix G also satisfy G0
ij � −G0

ji.

Remark 1. Since there is C0 _q term in the original system,
constant term G0 is introduced into the matrix G to

construct the gyroscopic forces consisting of the first term of
the velocity, which matches C0 _q of the original system.
Maybe these forces do not exist in real world, and only
mathematical meaning is necessary for them. As we know,
this introduction is for the first time.

When generalized force u � (G − D) _q, we obtain from
(5) that

_E � _q
T
(G − D) _q≤ 0, (7)

which indicates that the energy of the closed system is
decreasing. MultiplyingMM � Ν(q) −N(q) at the two sides
of (4) at the same time, we obtain

Nu � M€q + N zqT(M _q) _q −
1
2
zq _q

T
M _q􏼐 􏼑 + zqEp􏼔 􏼕. (8)

According to (2) and (7), the original control input u and
the control input u of the controlled system are obtained.
-e relationship between them can be given as

u � C + C0( 􏼁 _q − NzqEp + zqEp + Nu

−N zqT(M _q) _q −
1
2
zq _q

T
M _q􏼐 􏼑􏼔 􏼕

. (9)

According to (9)–(14) in [14] and (8) in this article, we
obtain

u � C + C0( 􏼁 _q + zqEp − NzqEp

− 􏽘
i∈N5

1
2

NIoi _q
T
T

(i)
_q + N(u − G _q).

(10)

-e deduction of (9) is tedious, so we borrow the similar
process in literature [12] for abbreviation.

3.2. Determination of the Matching Conditions. If the con-
trolled equation (5) matches the original (3), the control
input determined by (9) is true; that is, u5 � 0 is true for any
point (q, _q).

In the same form as gyroscopic forces matrix G, matrix
G
⌢

(q, _q) is given as follows:

G
⌢

(q, _q) � G(q, _q) − G(q, _q), (11)

where G
⌢

gives out functions g
⌢(k)

ji (q) and g
⌢

ij similar to
g

(k)
ji (q) and gij. Substituting u � (G − D) _q and (11) into

(10), we get

u � − 􏽘
i∈N5

1
2

NIoi _q
T
T

(i)
_q + C + C0( 􏼁 _q

+ N(􏽢G − D) _q − NzqEp + zqEp.

(12)

Let N � ON, multiplying the line vector O from the
left to (12) and taking the obtained left side zero con-
stantly, we acquire the matching conditions as follows
(13)–(16):

Mathematical Problems in Engineering 3



0 � 􏽘
i∈N5

NiT
(i)
jj + 􏽘

i≠j
2Nig

(i)
ji , (13)

where j ∈ N5 and each j represents an equation, and

0 � 􏽘
i∈N5

Ni T
(i)
fj + g

(f)
ji + g

(j)

fi􏼒 􏼓 + hnpL13. (14)

In equation (14), each pair of (j, f ) corresponds to an
equation. Otherwise, j, f ∈ N5 and j> f, When f+ j≠ 5,
h� 0; then h� (−1)f.

0 � 􏽘
i∈N5

NiDij + 􏽘
i≠j

Nig
⌢

ji, (15)

where j ∈ N5, and each j corresponds to an equation.

0 � 􏽘
i∈N5

NiEp,i − Ep,5. (16)

Multiplying (13) by N
2
1, · · · , N

2
5, and multiplying (14) by

2N1N2, 2N1N3, 2N1N4, 2N1N5, 2N2N3, 2N2N4, 2N2N5,
2N3N4, 2N3N5, and 2N4N5 , then the sum to obtain a
equation has nothing to do with gyroscopic forces:

2npL13 N2N3 − N1N4( 􏼁 � 􏽘
i∈N5

ONiW
−1
,i O

T
. (17)

Remark 2. Equation (17) is obtained without gyroscopic
forces terms due to anti-symmetric property of gyroscopic
forces matrix, which indicates that the quadratic form of the
anti-symmetric matrix is equal to zero.

LetW− 1 � K(q), then (17) can be concisely expressed as

2npL13 N2N3 − N1N4( 􏼁 � 􏽘
i∈N5

ONiK,iO
T
. (18)

For the controlled kinetic energy matrix, its regular
condition is |K|≠ 0. According to literature [12], W(q) �

M− 1MM− 1 is known, so N � KM− 1 can be obtained from
the definition of matrixes N,W, and K. If N1, · · · , N5 are
zero, then |K| � 0 is available. -erefore, N1, · · · , N5 cannot
be zero at the same time. In order to facilitate the subsequent
calculations, suppose N5 ≠ 0. Multiplying (15) by N1, · · · , N5
and summing them, we get

NDN
T

� 0. (19)

In summary, the combination of (16), (18), and (19) and
|K|≠ 0 is the condition under which the controlled system
matches the original one.

Remark 3. Equations (16) and (18) are partial differential
equations, and equations (13)–(15) related to gyroscopic
forces terms are linear algebraic equations. -ey are
cascaded. PDEs are resolved at first to decrease difficulty,
and then there are only linear algebraic equations which
could be solved explicitly with introducing the previous
solution.

Except algebraic equations, there are only two PDEs
contained in the matching condition for the underactuation

degree one system. -ey could be solved with involving
enough independent variables according to some examples
applied in CL methods.

3.3. Determination of the Matching Controller. For conve-
nience, some notations can be expressed as follows:

O
⌢

� O
T
O􏼐 􏼑

−1
O

T
, N

⌢
� O

⌢
N. (20)

Multiplying O
⌢
from the left to (12), the matching control

of the system is

v � −
1
2

N
⌢

􏽘
i∈N5

Ioi _q
T
T

(i)
_q + O

⌢
C + C0( 􏼁 _q

+ N
⌢

(G
⌢

− D) _q − N
⌢

zqEp + O
⌢

zqEp.

(21)

4. Matching Conditions Solution

For the asynchronous motors model, there is no control
input (u5 � 0) at the fifth degree of freedom except the ath
degree of freedom, where a ∈ N4, at the same time, the
following notations are defined as

O
⌢

� OT
, N � N50,OaoN

⌢
� Nao. (22)

Introduce the function vector ΓT � −N5a/N55 from the
definition of matrixes N, W, and K, we get
K50 � −N55Φ(q)T, where ΦT � [Φ1, · · · ,Φ5]� ΓTM, and
thus the element in the fifth row of matrix K is
K5a � K55Φa/Φ5. To ensure K> 0, we choose
Kaa � K55[kaΦ2a/Φ

2
5 + k(a+n)], where ka and k(a+n) are

constants. -e system matching conditions expressed by Γ,
K55, and Ep are

􏽘
i∈N5

ΓiK55,i �
2npL13 Γ2Γ3 − Γ1Γ4( 􏼁K55

ΓTM05􏼐 􏼑
, (23)

􏽘
i∈N5

ΓiEp,i �
ΓTM05

K55Ep,5
, (24)

ΓTDΓ � 0. (25)

Assume Γ1 � 0, · · · , Γ4 � 0, Γ5 � −1, and find a special
solution to (23) as follows:

K55 � k5. (26)

In the above (23), k5 is a constant.
-e K matrix of the system is

K � k5

k6 0 0 0 0

0 k7 0 0 0

0 0 k8 0 0

0 0 0 k9 0

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)
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It can be seen from the K matrix that its determinant is
|K| � k5

5k6k7k8k9, so a sufficient condition for K> 0 is

k5, k6, k7, k8, k9 > 0. (28)

From (24), the positive definite solution to the controlled
potential energy Ep and the satisfied conditions are

Ep � 􏽘
i∈N5

qi − ai( 􏼁
2
;

k5 �
JH

2np

,

a5 � −
JT1

2npk5
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where a1, · · · , a5 are constants. After some calculations, the
Hessian matrix of Ep is

z
2
Ep

zqzqT
�

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

It is clear that the Hessianmatrix is positive definite. And
from Ep,1(a1), · · · , Ep,5(a5) � 0, we know that (a1, · · · , a5) is
the minimum point of the controlled potential energy.

Remark 4. -e controlled energy consists of controlled
kinetic energy and potential energy. On the one hand, the
controlled kinetic energy is in quadratic form of velocity and
achieves positive definiteness with supplied condition. On
the other hand, the controlled potential energy is con-
structed in the form to be positive definite conveniently.

According to (30), the dissipation matrix is chosen in
diagonal form as follows:

D �

d1

d2

d3

d4

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where d1, · · · , d4 can be any value greater than zero.

5. Matching Control Law and Stability Analysis

Based on the above analysis, N � KM− 1 is known, so the
matrix N of the system is

N � β1

k6L33 0 −k6L13 0 0

0 k7L33 0 −k7L13 0

−k8L13 0 k8L11 0 0

0 −k9L13 0 k9L11 0

0 0 0 0 β2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

In equation (32), β1 � k5/(L11L33 − L2
13) and

β2 � np(L11L33 − L2
13)/J, because T(i) � MK−1

,i M, where
i ∈ N5, so we get

T(i)
� 0, i ∈ N5. (33)

From (13)–(15) and from (30)–(32), we have the gyro-
scopic forces component function g

⌢(k)

ij as follows:

g
⌢(k)

ij � c
(k)
ij , g

⌢

ij � cij, i, j, k ∈ N5. (34)

In equation (33), one part of the value of gyroscopic
forces component function c

(k)
ij needs to satisfy

c
(2)
15 � −c

(1)
25 , c

(3)
15 � −c

(1)
35 , c

(4)
25 � −c

(2)
45 , c

(4)
35 � −c

(3)
45 and be

arbitrary values, the other part needs to be taken according
to the following (35), and the rest can be arbitrary values.

c
(1)
15 � 0, c

(4)
15 � 2JL13/k5,

c
(5)
15 � 0, c

(2)
25 � 0,

c
(3)
25 � −2JL13/k5, c

(5)
25 � 0,

c
(2)
35 � JL13/k5, c

(3)
35 � 0,

c
(5)
35 � 0, c

(1)
45 � −JL13/k5

c
(4)
45 � 0, c

(5)
45 � 0,

c15 � 0, c25 � 0,

c35 � 0, c45 � 0.

(35)

To keep the control law simple, take the value of
c

(5)
12 , c

(3)
15 , c

(4)
25 , c

(4)
35 , c12, c13, c14, c23, c24, c34 to be one and the

rest to be zero.

Remark 5. A large part of variables, g
⌢(k)

ij and g
⌢

ij in equation
(34), take the value zero for convenience to get the simpler
control law. -e different evaluation for them could still
assure stability of the system and maybe affect the con-
vergence rate of the system. Further, there is a room to
search control law for better performance in some respects.
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Substituting (20), (27)–(35) into (21), the obtained
matching control law of the motor system is described as

u1 � R1 _q1 + _q5 − ω1( 􏼁 L11 _q2 + L13 _q4( 􏼁 − npψsq _q5 +
k5k6

L11L33 − L
2
13􏼐 􏼑

L33 _q2 + _q3 + _q4 + _q3 _q5 + _q2 _q5( 􏼁􏼂􏼈

+ L13 _q1 + _q2 − _q4 − _q4 _q5( 􏼁􏼃 + L13J _q5 ∗ 2L33 _q4 − L13 _q2( 􏼁/k5 + L13d3 _q3 − L33d1 _q1( 􏼁 − 2 L33 q1 − a1( 􏼁 − L13 q3 − a3( 􏼁􏼂 􏼃􏼉,

(36)

u2 � R1 _q2 + ω1 − _q5( 􏼁 L11 _q1 + L13 _q3( 􏼁 + npψsd _q5 +
k5k7

L11L33 − L
2
13􏼐 􏼑

L33 _q3 + _q4 − _q1 − _q1 _q5 + _q4 _q5( 􏼁 + L13 _q1 + _q2 + _q3( 􏼁􏼂 􏼃􏼈

+
L13J _q5

k5
∗ L13 _q1 − 2L33 _q3( 􏼁 + L13d4 _q4 − L33d2 _q2( 􏼁 − 2 L33 q2 − a2( 􏼁 − L13 q4 − a4( 􏼁􏼂 􏼃􏼩,

(37)

u3 � _q5 − ω1( 􏼁 L13 _q2 + L33 _q4( 􏼁 + R2 _q3 +
k5k8

L11L33 − L
2
13􏼐 􏼑

L11 _q4 − _q1 − _q2 + _q4 _q5( 􏼁 − L13 _q2 + _q3 + _q2 _q5 + _q3 _q5( 􏼁􏼂 􏼃􏼈

+ L13J _q5 L11 _q2 − 2L13 _q4( 􏼁/k5 + L13d1 _q1 − L11d3 _q3( 􏼁 − 2 L11 q3 − a3( 􏼁 − L13 q1 − a1( 􏼁􏼂 􏼃􏼉

(38)

u4 � ω1 − _q5( 􏼁 L13 _q1 + L33 _q3( 􏼁 + R2 _q4 +
k5k9

L11L33 − L
2
13􏼐 􏼑

L13 _q1 − _q3 − _q4 + _q1 _q5 − _q4 _q5( 􏼁 − L11 _q1 + _q2 + _q3( 􏼁􏼂 􏼃􏼈

+ L13J _q5 2L13 _q3 − L11 _q1( 􏼁/k5 + L13d2 _q2 − L11d4 _q4( 􏼁 − 2 L11 q4 − a4( 􏼁 − L13 q2 − a2( 􏼁􏼂 􏼃􏼉.

(39)

In summary, the conclusion is listed as follows:.

Proposition 1. For AC asynchronous motor systems, if the
parameters of controller meet the following conditions:

k5, · · · , k9 > 0,

d1, · · · , d4 > 0,
􏼨 (40)

then the smooth feedback control law expressed by equations
(35)–(38) can stabilize the motor globally asymptotically at
(dT
q , 0T). It is the desired equilibrium point at which the

controlled potential energy achieves the minimum.

Proof. Let Lyapunov candidate functionV � E. If the system
controller parameters are selected according to (39), then the
function is positive definite. From equation (6), there is
_V≤ 0. -erefore, the control law given by equations
(35)–(38) enables the induction motor to achieve global
asymptotic stabilization at (dT

q , 0T).
For the asymptotic stability, it can be proved that there is

no trajectory of isolated points other than equilibrium points
in the set of _V � 0.

Assuming that there is such a trajectory in the set, it can
be obtained as

_qi ≡ 0, i ∈ N4. (41)

-ere is a certain point q0 on this trajectory, and at the
same time, (39) also holds in a certain area δ0 of this point q0.

Differentiating and integrating (40) along the trajectory, we
get

€qi ≡ 0,

qi � αi, i ∈ N4,
􏼨 (42)

where α1, · · · , α4 are constant.
Substituting (35)–(38), (40), and (41) into the first four

equations of (1), we get
2k5k6

L11L33 − L
2
13

L33 α1 − a1( 􏼁 − L13 α3 − a3( 􏼁􏼂 􏼃 � 0

2k5k7

L11L33 − L
2
13

L33 α2 − a2( 􏼁 − L13 α4 − a4( 􏼁􏼂 􏼃 � 0

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2k5k8

L11L33 − L
2
13

L11 α3 − a3( 􏼁 − L13 α1 − a1( 􏼁􏼂 􏼃 � 0

2k5k9

L11L33 − L
2
13

L11 α4 − a4( 􏼁 − L13 α2 − a2( 􏼁􏼂 􏼃 � 0

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.

(43)

It can be seen from observation that (43) is true if and
only if α1 � a1, · · · , α4 � a4, and vice versa. -erefore, the
assumption that there are isolated points belonging to the
point group of _V � 0 does not hold.

From (4) and (41), we obtain zqEp � 0. -is shows that
the trajectory in the set _V � 0 can only be the equilibrium
point, and the Hessian matrix of Ep is positive definite, so
point qd is the sole extreme point of Ep(q). According to the
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LaSalle principle, the system can achieve global asymptotic
stabilization by the proposed control law. □

6. Simulation Result Analysis

-e simulation parameters of the system are selected as
L11 � 0.45H, L13 � 0.42H, L33 � 0.45H, J� 0.2 kg m2H, ω1 �

10 rad/s, T1 � 8Nm, H� 8Nm, np � 8, and R1 �R2 � 0.97Ω.
-e parameters of the controller that satisfy the positive
definite of the controlled energy are k5 � 0.1, k6 � 4, k7 � 6,
k8 � 0.5, and k9 � 0.4.

When d1 � 7, d2 � 7, d3 � 5, and d4 � 5, the simulation
results are as follows:

-e desired equilibrium point of the system is (qtd, 0T) ,
where dT

q � [1, 1, 1, 1, −0.5]. It can be seen from Figures 1–3
that when the AC asynchronous motor is disturbed by some
uncertain factors, the control target of the system deviates
from the expected balance point. Under the control input of
Figure 4, the control target of the system can return to the
desired equilibrium point as soon as possible. In this process,
the change of electromagnetic torque, original, and con-
trolled energy are showed in Figures 5 and 6.

Remark 6. Parameters k5, k6, k7, k8, and k9 in controller are
connected with the controlled kinetic energy, and their
evaluation should ensure controlled kinetic energy positive

0 5 10 15
t (s)

0 5 10 15
t (s)

-0.5

0

0.5

1

1.5

q 1
, q

2/
C

-0.5

0

0.5

1

1.5

q̇ 1
, ˙ q

2/
A

q̇1
q̇2

q1
q2

Figure 1: Stator inductive charge and current.
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definite. Furthermore, they will affect primarily the ampli-
tude of inputs.

Remark 7. Parameters d1, d2, d3, and d4 are related only to
the dissipated forces, and thus the changing of them could be
able to improve the convergence rate.

Compared with other control methods [8, 9], the
nonlinear smooth feedback control law obtained in this
article has a larger convergence range for its global as-
ymptotic stabilization.

7. Conclusion

-e control of an asynchronous motor is studied in this
paper. By applying the controlled Lagrange function method
to high-order, strongly coupled, and time-varying nonlinear
systems, the controlled equation matching the original
equation of the system is derived by using the expected
controlled energy and its time derivative. Because the

primary term of velocity exists in the original equation, the
gyroscopic forces of the generalized primary term of velocity
is innovatively introduced into the controlled equation, and
the condition of complete matching between the original
equation and the controlled equation can be obtained. By
solving the matching condition composed of some partial
differential equations, the specific matching control law of
the system is obtained, and the global asymptotic stabili-
zation of not only velocity but also position can be realized at
the desired equilibrium point at the same time. Finally, the
controlled energy of the system is chosen as the Lyapunov
function for its property, which facilitates the proof of
stability.

In the research process, we can see that the CL method
analyzes the asynchronous motor system from the per-
spective of underactuated mechanical system, so that the
controlled system maintains the Lagrangian mechanical
structure in form, and the nonlinear smooth feedback
control law can be obtained, which has a large convergence
range and is helpful to realize robust control and optimal
control. On the basis of the work in this paper, the nonlinear
CL method will be improved by the introducing observer
and be intended to solve tracking problem in following
work.
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