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Due to people’s increasing dependence on software, the emergence of software defects will lead to serious consequences. And the
essential cause of software defects is the increasing complexity of software. �e premise of reducing software defects is to
understand the software topology to ensure software quality. �e software topology refers to the connection between the internal
elements of the software, and it has become an important factor a�ecting the quality of the software. In this paper, we use complex
network theory as a tool to analyze the software topology. Firstly, we extract the software structural information from the source
code of the software system and abstract the extracted software structural information with software network theory. Secondly, the
metrics widely used in complex networks are introduced to analyze the built software network. When tracking the values of these
metrics in the software system, we have a deeper understanding of the software topology. �ese results provide a di�erent
dimension to understanding the software topology, which has important guiding signi�cance for the subsequent understanding of
the software and is also very useful for reducing software defects and ensuring software quality.

1. Introduction

Large-scale software systems are composed of countless small
elements (class, process, method, etc.), and every tiny error
may lead to catastrophic consequences, especially for projects
with extremely high software reliability requirements. When
the software system becomesmore andmore complex, how to
recognize and measure the software system has become a
matter of constant concern and urgent solution.

Some researchers have proposed to study existing
software systems from the perspective of software structure.
Software structure analysis [1–4] can help us understand the
speci�c situation of the software system to carry out cor-
responding maintenance and upgrades according to the
characteristics. At present, many achievements in the �eld of
software structure analysis have been published. �e main
software structure analysis approaches are divided into
traditional software structure measurement approaches
and software structure measurement approaches based on
complex networks.

Traditional software structure analysis focuses on
analysis from a single module. For example, the McCabe
method [5], the Halstead method, the C&K metrics pro-
posed by Chidanber and Kemerer and the MOOD method
proposed by Brito all describe the complexity of the software
structure from di�erent aspects but focus on the analysis of
the local structure and properties of functional individuals of
the software system. �erefore, traditional analysis ap-
proaches lack the measurement of the overall software
structure. As a kind of complex system, the overall structure
of the computer software system has a huge impact on its
function, performance, and quality [6].

However, some researchers have introduced the theory
of complex networks into software research [7–10]. By
constructing software networks from software source code,
they can use complex networks to understand, analyze, and
control the system from a global perspective, rather than
from a local perspective. Complex network theory provides
us with a new way to understand the structure of software
systems.
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Based on a weighted network, Wang and Xiao [11] used
the theory and technology of complex networks to explore
the execution process of Linux. Trindade et al. [3] repre-
sented class-level software as Little House.

At present, there is still little research on software net-
works, and the existing research still has the following
shortcomings: (1) Existing research is not accurate enough
for the construction of a software network model. (2) In the
existing research, the metrics used in the software network
analysis and the data sets used in the experiments are not
comprehensive enough. In this paper, we adopt the idea of
interdisciplinary and propose the software topology analysis
approach. Firstly, we extract the software structural infor-
mation from the source code of the software system and
abstract the extracted software structural information with
software network theory. Secondly, the metrics widely used
in complex networks are introduced to analyze the built
software network. By analyzing a series of metrics widely
used in complex networks, we can discover the underlying
laws that, in the software system, only a few classes contain
more important information and have a strong influence,
while most other nodes have little influence. )at is, de-
velopers can quickly locate software defects by finding key
classes in the software system.

)e rest of this paper is organized as follows. Section 2
introduces some preliminary knowledge with a focus on the
framework of the proposed software topology analysis ap-
proach and the formal definition of the software network
model. Section 3 illustrates our approach by analyzing the
experimental results of 6 subject software systems. And we
conclude this paper in Section 4.

2. Related Work

Many results of software system research have been reported
in the past few years. )ese studies can be roughly classified
into two groups, that is, approaches based on traditional
software metrics and approaches based on complex net-
works. For the approaches based on traditional software
metrics, they pay more attention to analyzing software from
a single module. )ere are mainly the following approaches.
)e McCabe method [5] is mainly based on graph theory
and program structure control theory and uses directed
graphs to represent program control flow, thereby repre-
senting the complexity of the network according to the cyclic
complexity in the graph. )e programming complexity
measured using McCabe’s method mainly depends on the
complexity of the structural control flow. )e Halstead
method measures the complexity of the software system by
counting the number of operators and operands in the
program. However, this method only considers the program
data flow but does not consider the control flow, so it can not
reflect the complexity of the program fundamentally. )e
C&K metric proposed by Chidanber and Kemerer is based
on object-oriented metric theory, including six metrics: (1)
the number of subclasses (the number of direct subclasses of
a class); the number of weighted methods of the class; (2) the
depth of the inheritance tree (if it is multiple inheritances,
calculate the maximum depth from the node to the root of

the tree); (3) the number of weighted methods of the class;
(4) the degree of coupling between objects (when a class uses
member variables or methods of other classes, the two
classes are said to be coupled); (5) the number of responses
of the class (the total number of out-of-class methods called
by all methods in the class); (6) the lack of cohesion in the
class method. )e MOOD method proposed by Brito in-
directly measures the inheritance, encapsulation, poly-
morphism, and coupling of object-oriented software
systems. )e traditional software structure measurement
method describes the complexity of the software structure
from different aspects, but it focuses on analyzing the local
structure and properties of functional individuals (classes,
procedures, methods, etc.) in the software system. )ere-
fore, the traditional analysis methods lack the overall
software structure measurement. However, the measure-
ment method based on a single module cannot understand
the software system from the perspective of the overall
structure.

As a kind of complex software system, the overall
structure of the system has a great impact on its function,
performance, and quality. )erefore, compared with ap-
proaches based on traditional software metrics, approaches
based on complex networks have great application potential.
In this work, we mainly discuss research based on complex
network analysis. Based on a weighted network, Wang and
Xiao [11] used the theory and technology of complex net-
works to explore the execution process of Linux. )ey found
that the weight distribution obeys the power-law distribu-
tion, and the process management component of Linux
plays the most important role. Trindade et al. [3] represented
class-level software as Little House. Based on Little House,
they analyzed 81 versions of 6 software systems and found
some software evolution patterns. Šubelj and Bajec [12] used
an Associative Software Graph (ASG) to represent a class-
level software system, where nodes represent classes and
edges represent “inheritance,” “composition,” and “depen-
dency” relationships between classes. Based on ASG, they
calculated the number of communities, the modularity of the
software network, and other network metrics such as
clustering coefficient, average path length, and average de-
gree. )ey then analyzed the correlation between these in-
dicators and the number of defects in the software. )ey
found that medium-sized systems with a community
structure tended to have a greater probability of defects.
Yang et al. [10] proposed an internal class network of the
software system to represent class-level software systems. In
a software network, a class is a node, and the calling rela-
tionship between the methods contained in each pair of
classes constitutes an edge. Based on the software network,
they propose a set of metrics to characterize the software
network structure and use some machine learning algo-
rithms to build a defect prediction model, and their final
results are encouraging. Zakari et al. [13] proposed a soft-
ware network at the statement level, where statements are
nodes and execution trajectories between statements are
edges. )ey calculated two centrality metrics (i.e., degree
centrality and closeness centrality) for defect diagnosis based
on a software network.
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3. Preliminaries

In this section, we show the framework of our software
topology analysis approach (see Figure 1). It mainly consists
of four parts, ① to ④. )e first two parts ① to ② are
detailed in Sections 3.1 and 3.2, and the two parts ③ to④
will be explained in Section 3.

3.1. Data Collection. Data collection is the first step in our
approach. For the reliability of the results, we will select
software that is widely used in software structure-related
research. )us, we conducted our study on 6 well-known
open-source software written in Java from different fields
and different scales: Ant https://ant.apache.org/, GWT
Portlets http://code.google.com/p/gwtportlets/, jEdit http://
jedit.org/index.php, JHotDraw https://sourceforge.net/
projects/jhotdraw/, Maze https://sourceforge.net/projects/
maze/, and Wro4j https://github.com/wro4j/wro4j. Ant is
a tool that provides software automation construction
functions; GWT Portlets is an open-source web framework
for developing GWT (Google Web Toolkit) applications;
jEdit is an open-source text editor written in Java; JHotDraw
is an open-source drawing program developed based on
Java; Maze is an open-source network file system; Wro4j is a
web resource optimization tool.

Table 1 shows the description of the relevant metrics of
the subject software system, such as the number of lines of
code (LOC), the number of packages (#P), the number of
classes (#C), the number of methods (#M), and the number
of attributes (#A). )ese values are calculated based on the
Java code listed in the “Directory” column, not the entire
distribution of the corresponding software.

3.2. Software NetworkModel. After data collection, software
structure extraction [14–16] is the next step in the con-
struction of software network models. )is step aims to
extract various software elements (classes, interfaces, attri-
butes, methods, local variables, etc.) and interactions (class
inheritance, interface implementation, method calls, etc.).

Based on the results of software structure extraction, this
paper introduces the Unweighted Directed Class Coupling
Network (UDCCN). In this network, nodes represent class-
level elements (classes, interfaces, etc.) in the software
system, edges represent the coupling relationship between
elements, and the direction of the edges represents the
coupling direction between elements. In UDCCN, we
considered 7 coupling types:

(i) Inheritance relationship (INR): if class A inherits
from another class B by using the keyword
“extends.”

(ii) Implementation relationship (IMR): if class A
implements interface B by using the keyword
“implements.”

(iii) Parameter relationship (PAR): if one of the
methods of class A has at least one parameter of
class B type.

(iv) Global variable relation (GVR): if class A has at least
one attribute with the type of class B.

(v) Local variable relationship (LVR): if a local variable
with the type of class B is declared in a method of
class A.

(vi) Method call relationship (MCR): if one of the
methods of class A calls a method on an object of
class B.

(vii) Return type relationship (RTR): if one of the
methods of class A has a return type of class B.

If the above seven relationships exist between elements,
we will generate a directed edge in the UDCCN network to
describe this coupling relationship. UDCCN is an un-
weighted directed graph, which is defined as follows:

UDCCD � (V, L), n ∈ V, l ∈ L, l �〈ni, nj〉, (1)

where n represents the class or interface in the software system
and l represents the coupling between the node (class i) and the
node (class j). And the adjacency matrix ψij of UDCCN en-
codes the coupling between every pair of classes:

ψij �
1, 〈ni, nj〉 ∈ L,

0, otherwise.
 (2)

)at is a |V|× |V| matrix, where |V| returns the number
of classes. ψij is the weight assigned to the link
〈ni, nj〉〈ni, nj〉; if 〈ni, nj〉 ∈ L, then ψij � 1ψij � 1; otherwise
ψij � 0.

To explain UDCCN more clearly, Figure 2(a) shows an
exemplary Java code snippet. For this code segment,
Figure 2(b) shows its corresponding UDCCN. As shown in
Figure 2(b), the coupling relationship between classes in the
Java code fragment in Figure 2(a) includes inheritance re-
lationship, implementation relationship, parameter rela-
tionship, global variable relation, return type relationship,
and method call relationship.

3.3. Complex Network Statistical Metrics. We use a software
network model to abstract the relationships between el-
ements in the software system, which provides a new
perspective for the research of software engineering.
Complex networks have gradually become one of the
focuses of research. Particularly with the discovery of
features such as “small world” and “scale-free,” scientists
have set off an upsurge in studying complex networks
[17–19], covering many fields such as physics, mathe-
matics, and biology. )erefore, we can draw on the above-
mentioned complex network statistical metrics to reveal
the knowledge related to the topology of the software
network [20, 21].

3.3.1. Network Centrality. )e metrics of network centrality
are mainly to find nodes that have important roles in
complex networks and reflect the importance of node lo-
cations. )ese metrics include betweenness centrality, de-
gree centrality, and closeness centrality.
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Figure 1: )e basic framework of the software topology analysis approach.

Table 1: )e description of the subject software system.

System Version Directory LOC #P #C(#E) #M/#A
Ant 1.6.1 Src/main 81515 67 900 7691/4167
GWT Portlets 0.9.5beta Src 8501 10 145 1145/424
jEdit 5.1.0 Src 112492 41 1082 (9) 7601/4085
JHotDraw 6.0b.1 Src 28330 30 544 5205/865
Maze 1 Src 8881 6 63 (6) 563/284
Wro4j 1.6.3 Src 33736 30 567 (9) 3256/1274
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Figure 2: An illustrative exemplary Java code snippet and corresponding UDCCN.
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(1) Betweenness Centrality. )e betweenness is a parameter
that cannot be bypassed when studying complex networks.
)is parameter reflects the influence and importance of
nodes. To understand the definition more intuitively, the
following formula is given:

g(v) � 
s≠v≠t

ϕst(v)

ϕst

, (3)

where ϕst represents the number of shortest paths from node
s to node t and ϕst(v) represents the number of all paths from
node s to node t and through node v in the network. Be-
tweenness centrality [22] reflects the dependence between
class nodes. )e higher the betweenness centrality of class
nodes, the stronger the importance to the software network.

(2) Degree Centrality. In complex network analysis, degree
centrality is the most direct metric to describe the impor-
tance of nodes. )e higher the degree centrality of a node is,
the more important the node is in the network. Conversely,
if the degree centrality of a node in the network is closer to 0,
it means that the node has less contact with other nodes.

(3) Closeness Centrality. In complex network metrics,
closeness centrality refers to how close a node in the network
is to other nodes. If a node’s closeness centrality is higher,
then it is closer to other nodes. )e closeness centrality of a
node is the reciprocal of the average value of the shortest
path length between the node and all other nodes in the
network, which can be defined as

C(i) �
n

jd(j, i)
, (4)

where d(j, i) represents the distance from node i to node j
and n represents the number of nodes.

3.3.2. Clustering Coefficient. In graph theory, the clustering
coefficient is used to measure the degree of clustering of
nodes in the graph. It is often used to describe the clustering
characteristics of the network, indicating the closeness of a
node with surrounding nodes [23].)e clustering coefficient
of nodes in the network mainly refers to the ratio of the
number of connections between the node and adjacent
nodes to the maximum number of edges that can be con-
nected between these adjacent nodes. )e clustering coef-
ficient Ci of the node i can be defined as

Ci �
2ei

ki ki − 1( 
�

j,maijaimamj

ki ki − 1( 
, (5)

where ei indicates that the value of the clustering coefficient
Ci of the node i is equal to the number of edges connected by
the neighbor node and ki(ki − 1)/2 represents the maximum
number of edges that may exist. )e clustering coefficient of
the network is the average of the clustering coefficients of all
nodes in the network, which is

C �〈Ci〉 �
1
N


i∈V

Ci, (6)

where N is the number of nodes in the network, which
indicates the aggregation trend of nodes in the network and
reflects the local characteristics of the network.

3.3.3. Degree Distribution. )e degree distribution reflects
the most basic characteristics of the complex network to-
pology. )e degree of a node in the network refers to the
number of nodes adjacent to the node, that is, the number of
edges connecting the node. )e greater the degree of the
node, the more the connections between the nodes and the
more important the node in the network. )e degree dis-
tribution P(k) refers to the probability that the degree of an
arbitrarily selected node in the network is exactly k. When
the degree distribution of the network satisfies the power
rate distribution, it can be defined as P(k) ∼ k−r, and then
the network is a scale-free network.

3.3.4. Average Shortest Path Length. )eaverage shortest path
length of the network [24] is defined as the average of the
shortest path length between any two nodes in the network.)e
average shortest path length of the network can be defined as

L �
2

(N(N − 1))

i≠j

dij, (7)

where dij represents the number of edges on the shortest
path connecting two nodes i and j in the network and N
represents the number of nodes in the network.

3.3.5. Assortativity Coefficient. It is found that many ob-
servable networks have mixing patterns in degree, that is,
assortative mixing or disassortative mixing. )e so-called
assortative mixing means that nodes with high degrees are
often connected with other nodes with high degrees, and
nodes with low degrees are likely to be connected with other
nodes with low degrees. Disassortative mixing means that
low-degree vertices are more likely to be connected to high-
degree vertices, and vice versa.

)e assortativity coefficient is often used to quantify the
degree of assortative mixing, it is a degree-based Pearson
correlation coefficient, and the calculation formula can be
expressed as

ac �
y,zyz eyz � mynz 

σyσz

, (8)

where eyz represents the ratio of the node with a degree
value of y in the network and the number of its edges to
the total number of all edges, my � yexy, nz � zeyz,
σy �

������������
E(y2) − E2(y)


, and σz �

������������
E(z2) − E2(z)


. If ac is

less than 0, it means that the network is disassortative,
while ac being greater than 0 denotes an assortative
mixing network.

3.3.6. Structural Holes. Structural hole theory [25] is a new
theory in interpersonal network theory, which mainly de-
scribes the gaps in social networks. In the social network, an
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individual directly finds contact with some individuals but
does not have direct contact with other individuals. )at is,
there are holes in this social network.

If there is no direct connection between the two and the
connection can only be formed through a third party, then
the acting third party occupies a structural hole in the re-
lationship network. )e structural hole is for the third party.
If there are structural holes in the network, the third party
that connects two actors that are not directly connected has
an information advantage and control advantage.

Generally, the effective size metric in structural hole
theory is used to measure the network. )is metric mainly
describes the effectiveness of the node’s self-network. For-
mally, the effective size of a node, expressed as e(u), is
defined as follows:

e(u) � 
v∈N(u)/ u{ }

1 − 
w∈N(v)

Puwmvw,⎛⎝ (9)

where N(u) is the set of neighbor nodes of u, Puw is the
normalized mutual weight of the (directed or undirected)
edge connecting u and v, and mvw is the mutual weight of the
connecting node v to the node w divided by the v node’s
maximum connection edge weight with its neighbor nodes.
Mutual weight refers to the sum of edge weights connecting
node u and node v (in the case of a weightless network, the
default edge weight is 1).

4. Topological Structure Analysis

In this section, for the illustration purpose, complex network
statistical metrics mentioned above are used to study the
software network topology of the subject software.

4.1. Topological Structure Analysis of Network Centrality

4.1.1. Betweenness Centrality. Betweenness centrality is a
measure of graph centrality based on the shortest path,
generally used to check whether a node is in an important
position in the graph. As shown in Figure 3, we found that,
in the software network of almost all subject software sys-
tems, the betweenness centrality of nearly 90% of the classes
is distributed below 0.05, indicating that only 5% of the
classes are in an important position in the software system,
which has a strong impact on the realization of the software
system function, and most other nodes have little influence.

In the actual development process, the calls between
classes are usually a call chain, and important classes fre-
quently call other classes or are frequently called by other
classes. For example, the key class is usually called frequently
by other classes in the software system to complete the
corresponding function. )erefore, analyzing the between-
ness centrality can provide greater help in identifying the key
classes of the software system.

4.1.2. Degree Centrality. In complex network analysis, de-
gree centrality is the most direct metric to describe the
importance of nodes. )e higher the degree centrality of a

node is, the more important the node is in the network.
Conversely, if the degree centrality of a node in the network
is closer to 0, it means that the node has less contact with
other nodes.

As shown in Figure 4, the degree centrality of the class
nodes in the software network of the six subject software
systems is mostly close to 0, while a few are between 0.01 and
0.05. It shows that only a small number of classes are closely
connected with other classes and have a relatively strong
influence, while most of the classes are not very influential.

In the actual software system, only a few classes will
frequently call other classes or be frequently called by other
classes. Usually in software development, if this class fre-
quently calls other classes or is frequently called by other
classes, it means that this class has a higher status in the
software system, that is, the key class. How to find the key
classes is of great importance to software cost prediction. If
we ignore the importance of key classes, we will underes-
timate the complexity and cost of the software system to be
developed, which may cause great losses to the company.

4.1.3. Closeness Centrality. Closeness centrality reflects the
closeness between a node and other nodes in the network. If
a node is very close to other nodes, then it does not need to
rely on other nodes when transmitting information, indi-
cating that this node is very important. When we calculated
the closeness centrality of the six subject software systems,
we found that, in the four software systems of Ant, jEdit,
JHotDraw, andWro4j, the closeness centrality of most nodes
is close to 0. In the software systems of GWT Portlets, the
closeness centrality of nodes is almost evenly distributed
between 0 and 0.25. And in the software system Maze, the
closeness centrality of most nodes is between 0.1 and 0.2 (see
Figure 5).

If the closeness centrality of the node is 0, it means that
there are a few isolated nodes in the software system, and
these isolated nodes do not have any connection with other
nodes. And the closer the value is to 1.0, the higher the
closeness of the node is. )erefore, the greater the closeness
centrality of a class node is, the closer the node is likely to be
connected with all other class nodes. It also shows that the
location of these class nodes has the best view of the network
and can perceive the dynamics of the entire software net-
work and the direction of information circulation. From the
perspective of the structure of the software network, in
general, the key classes are closely related to other class
nodes; that is, the key class can usually get a higher value of
closeness centrality.

4.2. Topological Structure Analysis of Clustering Coefficient.
)e clustering coefficient of a node indicates how inter-
connected its adjacent nodes are. )e clustering coefficient
distribution of each node in the software network of the six
subject software systems is shown in Figure 6. )e clustering
coefficients of most class nodes in Ant, jEdit, JHotDraw, and
Wro4j are less than 0.5, and only a few nodes have high
clustering coefficients, which are nodes with high clustering
degrees in the software network. For the software GWT
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Portlets and Maze, although the nodes are relatively evenly
distributed in the graph, for the part of the graph with high
clustering coefficients, the number of class nodes is still
relatively small. )e larger the clustering coefficient of a
node, the higher the degree of relationship between the
nodes around the node and the higher the clustering degree
of the group, and the highest value is 1, indicating that all the
points around a node are related.

For the actual software system, only a few class nodes will
have a relatively high clustering coefficient; that is, only a few
classes will use other classes more or are used more by other
classes.)is is in line with the characteristics of key classes of
software systems. In other words, analyzing the clustering
coefficient of a software network is also helpful to identify
key classes in the software system.

4.3. Topological Structure Analysis of Degree Distribution.
In the study of graphs and networks, the degree of a node in
a network is the number of connections it has to other
nodes, and the degree distribution is the probability dis-
tribution of these degrees over the whole network. )e
degree distribution of nodes in the software network of the
six subject software systems is shown in Figure 7. )e
horizontal axis in the figure is degrees, and the vertical axis
is the number of nodes. It can be seen from the figure that as
the degree becomes larger, the number of nodes declines.
And when the software network has more nodes, this trend
becomes more obvious. In software Ant, jEdit, JHotDraw,
and Wro4j, this trend is more obvious than in software
networks with fewer nodes. It can be observed from the
figure that the number of nodes with a degree less than 10
accounts for almost 90% of the nodes in the software
network, and the number of nodes with a degree greater
than 50 is almost zero.

In a software network, most nodes are only connected to
a few nodes, while a few nodes are connected to most of the
nodes, which is in line with the typical characteristics of a
scale-free network.)erefore, in the software system, we can
find that most of the classes only call a few classes or are

called by a few classes, and only a few classes call other
classes or are called by a large number of classes.

4.4. Topological Structure Analysis of Average Shortest Path
Length. )e average shortest path length is a concept in the
network topology that is defined as the average number of
steps along the shortest paths for all possible pairs of net-
work nodes. It is a measure of the efficiency of information
or mass transport on a network. It can be seen from Table 2
that although the size of the subject software is different, the
distance between nodes is stable at about 3. When calcu-
lating the average shortest path length, we found that the
maximum value is 3.379 and the minimum value is 2.806.
)erefore, the software network conforms to the “small
world” effect in the complex network. Research shows that,
in reality, the number of nodes in many networks is very
large, but the average shortest path length of the entire
network is relatively small, such as the World Wide Web, so
formal networks generally have the characteristics of “small
world” in complex networks.

4.5. Topological Structure Analysis of Assortativity Coefficient.
Assortative mixing is a preference for a network’s nodes to
attach to others that are similar in some way. According to
the calculation formula (8), it can be found from Table 3 that
the calculated assortativity coefficients of 6 subject software
systems are all negative, indicating that these software
systems have a disassortative mixing network. )at is to say,
in the software network, nodes with high degrees and nodes
with low degrees have a relatively high connection proba-
bility. And it means that key classes with a high frequency of
use are usually related to classes with a low frequency of use,
instead of being related to each other.

4.6. Topological Structure Analysis of Structural Holes. In the
structural hole theory, the larger the effective size, the greater
the effectiveness of the node. As shown in Figure 8, we can
find that, in the software system, the effective size of most
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nodes is between 0 and 20, while only a few nodes are above
20. )erefore, for the software network, only a few nodes are
very important in the software system. Compared with other
nodes, these nodes have information advantages and control
advantages.

From the perspective of structural hole theory, some key
classes in software systems usually act as a bridge in class
calls. For example, functional aggregation classes are usually
shown as a bridge of some single tool classes in a software
network, and there is no direct connection between tool

classes.)erefore, in the effective size metric, the value of the
key class is larger than that of other common classes.

5. Threats to Validity

In this study, we obtained several important results about the
software topology from our experiments. However, potential
threats to our jobs remain. In our empirical research, we use
6 software systems of different scales as the research objects,
all of which are widely used in the research of software
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Table 2: Average shortest path length of software network.

Software system Ant GWT Portlets jEdit Maze JHotDraw Wro4j
Average shortest path length 3.178 3.072 3.290 2.806 3.235 3.379

Table 3: Assortativity coefficient of software network.

Software system Ant GWT Portlets jEdit Maze JHotDraw Wro4j
Assortativity coefficient −0.126 −0.098 −0.152 −0.174 −0.165 −0.055

jhotdraw maze wro4j

jeditgwtportletsant
0

20

10

30

40

0

100

200

300

150

50

250

0

100

200

300

150

50

250

0

40

80

120

60

20

100

0

40

80

120

60

20

100

0.0

5.0

10.0

15.0
17.5
20.0

7.5

2.5

12.5

350

Figure 8: )e distribution of effective size in structural hole theory.
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engineering. However, since the results obtained by these 6
software systems may not be so common, we hope to
continue to do empirical research on more software systems
to further evaluate their effectiveness.

)e software systems we use for empirical research are all
developed based on Java. Java is one of the most widely used
programming languages. )e software developed in Java has
a clear structure, and the components in the software system
are easier to extract. However, since there is no empirical
research on software systems developed in other languages,
this may affect the final results. We hope to continue em-
pirical research on software systems developed in other
languages for further evaluation of their validity, which will
be important work for us in the future.

6. Conclusions and Future Work

In this paper, we proposed an approach to study the to-
pological structure of software using the tool of complex
network theory. For illustration, we conducted case studies
on 6 software systems. Firstly, the software structure in-
formation is extracted from the source code of the software
system, and the Unweighted Directed Class Coupling
Network model is constructed based on this structure in-
formation. Secondly, several aspects of these software net-
works are studied by using the parameters widely used in
complex network theory.

)rough the analysis of software structure, we concluded
that software network has significant characteristics of
“small world” and “scale-free.” )e important structural
features in software network topology help us to provide
valuable insights and different dimensions for our under-
standing of software systems. )rough the analysis of the
experimental results, we found that only a few classes in the
software are key classes, which play a great role in the
function realization of the software. After finding the key
classes, we can make a series of optimizations, such as the
prediction and positioning of software defects.

)ere are a few areas that could be explored in future
research: (1) investigating more software networks to vali-
date the proposed approach, (2) investigating systems
written in other languages to validate the proposed ap-
proach, and (3) using the parameters in other theories to
study the software from different angles.

Data Availability

All data used during the study are available from the cor-
responding author upon request.
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[12] L. Šubelj and M. Bajec, “Software systems through complex
networks science: review, analysis and applications,” in
Proceedings of the International Workshop on Software
Mining, pp. 9–16, Singapore, September 2012.

[13] A. Zakari, S. P. Lee, and C. Y. Chong, “Simultaneous local-
ization of software faults based on complex network theory,”
IEEE Access, vol. 6, p. 1, 2018.

[14] W. Pan, H. Ming, Z. Yang, and T. Wang, “Comments on
“using k-core decomposition on class dependency net-
works to improve bug prediction model’s practical per-
formance”,” IEEE Transactions on Software Engineering,
vol. 1, 2022.

[15] L. Hao,W. Tian, P.Weifeng, C. Pengyu, andW. Jiale, “Mining
key classes in java projects by examining a very small number
of classes: a complex network-based approach,” IEEE Access,
vol. 9, pp. 28076–28088, 2021.

[16] X. Du, T. Wang, L. Wang et al., “CoreBug: improving effort-
aware bug prediction in software systems using generalized k-
core decomposition in class dependency networks,” Axioms,
vol. 11, no. 5, 205 pages, 2022.

[17] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442,
1998.

10 Mathematical Problems in Engineering



[18] D. Hylandwood, “Scale-free nature of java software
package, class and method collaboration graphs,” 2006,
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.73.2085&rep=rep1&type=pdf.

[19] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free
geometry in OO programs,” Communications of the ACM,
vol. 48, no. 5, pp. 99–103, 2005.

[20] S. H. Strogatz, “Exploring complex networks,” Nature,
vol. 410, no. 6825, pp. 268–276, 2001.

[21] J. Xu, “Topological structure and analysis of interconnection
networks[J],” Springer Berlin, vol. 7, no. 2-3, pp. 969-970,
2001.

[22] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–177,
2001.

[23] G. Sabidussi, “)e centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[24] G. Mao and N. Zhang, “Analysis of average shortest-path
length of scale-free network,” Journal of Applied Mathematics,
vol. 2013, Article ID 865643, 5 pages, 2013.

[25] S. Goyal and F. Vega-Redondo, “Structural holes in social
networks,” Journal of Economic Ceory, vol. 137, no. 1,
pp. 460–492, 2007.

Mathematical Problems in Engineering 11

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.2085&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.2085&rep=rep1&type=pdf

