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�is article introduces long short-term memory (LSTM)-enabled direct torque control (DTC) for induction motor under a wide
range of operation. Low-power applications of industrial drives are more as compared to high-power applications. �e main
objective of this paper is to address high torque, poor dynamic response, and �ux ripple problems observed in low-power
induction motor drives. �e voltage selector switching table is replaced by LSTM encoder and embedding layer with hysteresis
comparator.�is will ensure robust control against induction motor disturbances and at the same time will enhance the stator �ux
trajectory prediction for DTC. Most of the studies describe DTC at a higher speed. In this article, the DTC has been applied to
lower speed IM, typically in the range of 100 RPM. Di�erent LSTMmodels have also been presented in terms of response time. A
detailed comparative analysis between LSTM and fuzzy and ANFIS-based DTC has been carried out using MATLAB/Simulink
model. �e performance has been evaluated under steady and transient conditions as well.

1. Introduction

Variable electric drive is an integral part of industry drive
system. �e use of electric drives makes the industrial
process more robust and reliable and reduces the cost of
operation [1, 2]. �is is because the industrial drive requires
less electronic components while providing greater �exi-
bility, which makes the system more reliable and adaptable
to the adverse situation that occurs in industrial drives [3, 4].

Over the last four decades, DC machines were used to
achieve speed control in industrial drives due to the
decoupled nature of torque and �ux control. �is can be
achieved by armature control and �eld control, respectively.
�e DC machines can provide better performance in terms
of starting torque and non-linear performance during heavy
load conditions. However, the presence of mechanical
conversion systems such as commutators and brushes has

made it di�cult to control under variable speed operation
conditions [5]. A squirrel cage induction motor provides the
same torque speed characteristics against a DC motor with
more e�ciency, and this is due to absence of slip ring and
brush maintenance. �erefore, squirrel cage induction
motors nowadays �nd applications in starting, speed
changing, and speed reversal [6, 7].

To achieve better speed control in industrial drive,
particularly in induction motors, many controlling methods
have been developed in the past few years. With the ad-
vancement of power electronic converter techniques, many
multilevel converters were invented, where variation in
phase, frequency, and magnitude can be achieved while
giving AC input to the induction motor for achieving
variable speed and torque control [8]. Control of variable
speed can also be achieved by integrating power electronics
with numerical electronics. Apart from the abovementioned
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points, the dynamic characteristic of an induction motor
plays an important role in improving the overall system
performance [9, 10].

Zhang et al. proposed a new control technique based on
limit cycle control of torque and flop as a function of pulse
width modulation and input DC voltage [11–13]. However,
the model shows some drift at the low-frequency region.
Here problem formulation is based on the efficiency opti-
mization algorithm. 'e drift at extremely low-frequency
operation can be compensated with the machine constant
[14].

A predictive control based on simulated annealing
controller has been proposed by Hete et al. for direct torque
control of the induction motor [15, 16]. Here synchronous
speed and voltage behind transient reactance have been used
to evaluate the change in flux and torque over the transient
switching period. 'is in turn makes the flux and torque
equal to their reference value. Space vector pulse width
modulation has been used for deciding the switching state of
inverters [17].

Depending on the quality of system controller archi-
tecture, the speed control can be either scalar control or
vector control [18]. Generally, speed of the motor depends
on stator frequency and that of torque depends on the stator
current. 'erefore, under transient disturbances, the fre-
quency and amplitude of stator voltage and current have to
be adjusted for achieving fundamental performances [19].

'e vector control method was proposed by Patel et al.
According to the authors, the common form of the vector
control method is the field oriented control [20, 21]. 'e
major points which establish the vector control method are
effective pulse width modulation and machine current and
voltage space vector. 'ey transformed the three-phase
torque-speed quantity into a DQ coordinate time variant
quantity [22]. 'e transformation reduces the complexity
and treats the three-phase induction motor as a DCmotor in
achieving required data speed characteristics [23].

Single current control-based direct torque predictive
control has been developed by Yang and Lu [24]. 'e model
has been developed and tested without any coordinate
transformation method as required in field oriented control.
However, at zero speed conditions, it requires an additional
carrier signal for the torque control method. Direct torque
control uses a switching table and hysteresis band controller
for controlling torque and flux. 'is makes the direct torque
control more stable and robust. It also produces more torque
and flux ripples as well.

Duty ratio control has been proposed by Kushwaha and
Sharma based on field programmable gate array and digital
signal processing to produce less ripple in torque and flux
[25]. Huang et al. proposed a microcomputer-based con-
troller, where both torque and flux can be controlled sep-
arately using the zero and non-zero space vectors,
respectively [26]. Here the authors have checked the closed-
loop stability of the proposed controller by using Lyapunov
stability criteria on the parameter variations. 'e dynamic
characteristics are evaluated with respect to the proposed
controller and proposed observer under external parameter
variations.

Sung et al. investigated research-based optimization tech-
niques to increase motor efficiency by simultaneously detecting
rotor flux, motor speed, and time constant [27]. Compensation
with rotational back EMF by using a deadbeat controller has
been presented by Muduli et al. 'ey have also proposed a
unified flux algorithmwhich can eliminate status flux ripple and
rotor torque ripple [28]. Compensation against rotor torque and
flux performance has been investigated with a low-pass filter
under steady-state condition by Hadla and Santos [29]. 'ey
investigated the ripple of flux and torque under constant time
series with higher sampling frequency rate.

Optimized switching strategies under inverter switches
have been presented by Kennel et al. [30]. According to
them, the new strategy reduces the torque ripple and in-
creases the dynamic response against the traditional direct
torque control method which uses a hysteresis controller in
conjunction with PID controller. Switching between direct
and indirect voltage source converter using a sliding mode
controller based on direct torque control architecture has
been presented by the authors. 'e proposed algorithm has
reduced the execution time, thereby achieving better torque
performance under steady and dynamic load conditions. A
fuzzy logic-enabled PID controller for direct torque control
has been presented by Mei et al. [31]. 'e authors presented
a new single sensor-based direct torque control method,
where the model predicts ETA current and then adjusts the
predicted value based on reference to the actual current
signal. Multilevel switching states for direct torque control
have been proposed by the authors to reduce the torque
speed ripples with the help of constant switching ripples.
Discrete space vector modulation has been presented by
Geyer et al. which partially compensated torque and flux
ripples to improve the static and dynamic characteristics of
induction motor [32].

Optimum stator flux control by reducing the reactive
power drawn from the main supply system using fuzzy logic
control has been presented by Papafotiou et al. [33]. A two-
state modulation has been introduced between active and
zero states. Adaptive fuzzy logic has been applied to evaluate
the optimum duty cycle with less execution time interval.
Type 1 fuzzy logic and type 2 fuzzy logic with direct torque
control have also been developed and applied for evaluating
the efficiency and stability of direct torque control under
variable loading condition [34].

In order to enhance the performance of permanent
magnet synchronous hub motor (PMSHM), a new tech-
nique based on duty cycle finite control set based on model
predictive current control has been proposed by Sun et al.
[35]. 'e advantage of the proposed model is that it can
improve the characteristics of voltage vector without
modulated switching pattern. Here, 12 virtual voltage vec-
tors are generated from available six voltage vectors. 'is
process ultimately increases the voltage selection process,
thereby enhancing the steady-state performance of FCS-
MPCC. 'e proposed new control algorithm also reduces
the computation burden from 18 times to 4 times. Again, for
duty cycle management, they have introduced the zero
vector in one control cycle. 'e model has been validated
using both hardware and software.
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A fault-tolerant operation for PMSHM based on MPCC
has been proposed by Sun et al. [36]. In the proposed to-
pology, decomposition occurs for normal vector space
transformation matrix. 'e operation can be achieved
without the knowledge of controller in vector space. 'e
change in vector space from α − β to x − y subspace has been
obtained based on the phase difference between normal
operating condition and open circuit phase voltage. Unlike
[35], here 24 virtual vectors from 6-phase, two-level inverter
have been obtained by decomposing 64 voltage vectors. 'is
reduces the weight function required for each node to
balance the vector space.

A deadbeat predictive stator flux control (DPSFC)
method for an in-wheel PMSM drive is proposed [37], which
can lower steady-state tracking error and improve drive’s
robustness. A comparative study of traditional deadbeat
control and proposed deadbeat control with respect to stator
flux variation, inductance, and resistance of stator is pre-
sented. Usually, deadbeat controls are best suited for non-
linear systems. When there is a parameter mismatch, the
system experiences disturbances, and to calculate the same, a
reduced-order observer is embraced. Also, these estimated
disturbances are applied as feedforward compensations for
stator voltage to reduce tracking error of actual and refer-
ence values. 'e conventional deadbeat current controls will
not emphasize the effect of delay compensation, whereas in
the proposed model, one-step delay compensation is applied
to revamp the control accuracy. 'e current flux values are
replaced by the predicted values of flux linkage in the next
step. 'e simulation and hardware results (prototype) are
presented in terms of flux linkage error rate. 'e results
showcase that the proposed model has less error rate when
compared to the traditional control. Sun et al. [38] proposed
a FPS-PLL (finite position set-phase locked loop)-based
MPCC (model predictive current control) scheme to control
permanent magnet synchronous hub motor (PMSHM). In
this method, addition of FPS-PLL makes the control sensor
control less. 'e appreciable feature of MPCC is that we can
directly measure the control variable, current, whereas in
DTC, we need to calculate the stator flux and torque from
the measured values of stator voltage and currents. Also, in
the speed loop, PI controllers are replaced by sliding mode
controller which has the virtue of suppressing disturbances
in the speed. 'e MPCC constitutes (i) EMF equation
formation: in which an equation is formed to calculate back
EMF with inherited quality of improved tolerance range of
50%; (ii) delay compensation: to compensate the delay and
increase the accuracy, the Kriging model is used; and (iii)
optimal vector selection and vector duration: the optimal
non-zero vector can be obtained by calculating the reference
voltage (using deadbeat principle) and its positioning sector.
In the next step, the optimum vector duration is calculated
by deriving cost function and making it equal to 0 so that
results are obtained with least possible errors. To make the
system more robust and to be independent of machine
parameter changes, FPS-based PLL algorithm is incorpo-
rated in the proposed model. A comparative study of ex-
perimental results for conventional and proposed MPCC is
presented by the authors which shows that the proposed

model offers less torque ripples and speed distortions and
lower current THD. 'ese results are achieved by the au-
thors without compromising the dynamic performance of
the drive. 'e advantages of this work includes reduced in
weight coefficient evaluation time and inductor fault
tolerance.

'e literature review presented over here reveals that a
number of research studies have been carried out globally to
reduce total harmonic distortion and improve the quality of
drive output. In this research work, three machine learning
algorithms have been compared to find the best performance
of the controller. Adaptive neuro fuzzy inference system,
neural network, and long short-term memory along with
PID controller and hysteresis band have been used to find
the performance of the proposed controller in reducing
ripple of flux and torque. 'e contribution made in the
research article can be categorized into the following points.

(i) LSTM-DTC trajectory is modeled for best tuning of
the parameter.

(ii) Hysteresis comparator is modeled to effectively
compute the 8-state variables.

(iii) 3× 9 encoder has been modeled to evaluate the
boundary condition leading to trajectory evaluation
for LSTM-DTC.

2. Problem Formulation

'e use of hysteresis controller in the frequency sampling
techniques produces pseudo-random overshoot, hence
making the system response sluggish. 'us, the operation
can be made efficient by making the system dynamic instead
of stationary. Time series prediction can be used in pre-
dicting the future values based on their data distribution,
mean variance, and skewness.

Again from the stationary reference frame, the stator and
rotor flux can be written as

Ψsa �  Vsα − Rsαisα( dt,

Ψsb �  Vsβ − Rsβisβ dt,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where ψsa represents stator flux in α−reference frame and
ψsb represents stator flux in β−reference frame. Vsα and Vsβ
represent the stator voltage in α, β coordinate. isα and isβ
represent the stator current in α β coordinate. Rsα and Rsβ
represent the resistance in α, β coordinate.

Ψra � Vrα − Rrαirα( dt

Ψrb � Vrβ − Rrβirβ dt,

⎧⎨

⎩ (2)

where ψra and ψrb represent rotor reference flux in Rsα and
Rsβ coordinates and Vsα and Vsβ represent the rotor voltage
in α, β coordinate. Similarly, irα and irβ represent the rotor
current in α β coordinate. Rrα and Rrβ represent the resis-
tance in α, β coordinate.

Mathematical Problems in Engineering 3



Considering (1) and (2), the torque equation can be
written as

T � P Ψsαisβ − Ψsβisα . (3)

Equations (1) and (2) can be used as a statistical model
for short time forecasting. However, due to multivariate
regression analysis, evaluating the control flux becomes a
tedious task. 'erefore, the computational intelligence-
based approach can be used to find the best solution. 'e
main objective is to find optimization coefficient for the
mathematical function. Some of the assumptions required
for parametric analysis are

(i) Drift parameter.
(ii) Vertical curve.
(iii) Bounded hysteresis time series interval.

Mathematically, the estimated torque can be written as

Tp(t) � Tp(t) + T0(t) + Ts(t), (4)

where Tp(t) represents the available present torque at the
machine shaft at time tn−1 as measured by tachogenerator.
T0(t) represents the influenced torque as developed from
variation in stator flux and Ts(t) is the complex variable
adopted by rotor due to interaction of stator and rotor flux.
Here α, β equivalent of rotating DC components have been
used as the temporal influential agents in profile modeling.
'e stochastic time variant differential equation for equation
(4) can be represented as

dTt � μ Tt, t( dt + σ Tt, t0( dWt + dq Tt, t( , (5)

where Tt represents the instantaneous torque in the torque
series data defined over a time interval of dt. dTt represents
theWiener process. So, according to theWiener process, the
instantaneous torque can either be changed to 0 or 1
depending on the random walk in discrete time interval. 'e
objective here is to make the system continuous everywhere
but not differentiable anywhere. 'is results in a zero mean
distribution and unit variance which results in a Gaussian
surface. In order to achieve this condition, a non-linear
system with drift parameter as shown in equation (6) has
been considered.

μp Tt, t(  � α − βTt( . (6)

Among different types of available transformation
methods, for transferring non-normal variables into normal
variable, the Box–Cox [39, 40] transformation can be used.
'erefore,

f pt(  �

α1 + β1dTt for dTt ≤ z − s,

α + βbdTt + cdT
2
t for dTt ≤ (z − s, z + s),

α2 + β2dTt for dTt ≥ z + s,

⎧⎪⎪⎨

⎪⎪⎩
(7)

where α1, α2 and β1, β2 represent the intercepts and slope,
respectively. Similarly, the leading demand slope becomes

dTt � α − βTt( dt + σ dwt, (8)

where β represents the mean reversion. 'erefore, equation
(5) can be written as d/dt instead of dt variables.

dTt

dt
� μp Tt, t( dt + σ Tt, t( dwt, (9)

and that of initial reversible torque:

Tt(0) � T0. (10)

For validating the effectiveness of continuous time series
data of a non-differentiable quantity, the following condi-
tions must be satisfied.

(i) Condition 1: boundary condition must be valid
under time series interval.

(ii) Condition 2: [0, T] interval needs to be effectively
considered.

(iii) Condition 3: the equation needs to be partitionable
at each point.

'e perfect stochastic differential equation using equa-
tions (9) and (10) can be written as

Tt � T0 + 
t

0
βT(s)ds + 

t

0
αT(s)dw + 

t

0
σT(s)dq. (11)

By considering condition 2, the expanded time series
data become

[0, T]ϵt � 0⟶∞, (12)

Tp(t) � 0 � t0 < t1 · · · · · · <Tmax � T. (13)

On fixing the value of μp in equation (9) to μpϵ[0, 1], the
partition set of equation becomes

μK � (1 − μ)tK + μϵK+1 . . . . . . . . . (K � 0, 1, 2, . . . . . . . . . m − 1).

(14)

'erefore, the differentiable partition equation becomes

R � R(T(p), μ) � 
m−1

K�0
w μk(  w μK+1(  − wk NK( ( . (15)

Derived equation (15) is a close approximation variable
of Riemann sum approximation. It calculates the area under
the curve, and in this paper it is hysteresis band. 'e sub-
interval approximation can be increased by decreasing the
width of “Δ” value as per the following equation:

ΔT �
Tn − Tn−1

n
. (16)

Equation (15) can be realized in terms of pollination
algorithm; accordingly, let us consider two sets of flower
interval of [x0, y0], which is again in the range of [0,∞).
Here “0” represents the bounded and “∞” is the unbounded
region. Hence, the specific set of equation becomes

TP(t)
n

� x0 � t
n
0 < t

n
1 · · · · · · < t

n
max � T0 . (17)

Equation (17) becomes valid when |TP(t)n|⟶ 0 and
n⟶∞. 'erefore, equation (17) can be simplified into
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Q � μP Tt, t(  � 

mn−1

K�0
w t

n
K+1( (  − w t

n
K(  

2
. (18)

Again simplifying equation (15) by varying “Q” in
equation (18), it becomes

Qn − y0 − x0(  � 

mn−1

K�0
w t

n
K+1( (  − w t

n
K(  

2
− t

n
K+1 − t − K( .

(19)

Now the energy content of equation (19) becomes

E Qn − y0 − x0( 
2

   � 

mn−1

K�0


mn−1

j�0
E w t

n
K�1(  − w t

n
K( 

2
− t

n
K+1 − TK(   w t

n
j+1  − w t

n
j 

2
  − t

n
j+1 − t

n
j  . (20)

On cancelling the non-linearity variable and finding
mathematical solution to equation (20), it can be further
reduced into

E Qn − x0 − y0( 
2

 ≤CK 

mn−1

K�0
t
n
K+1 − t

n
K( 

2
, (21)

or

E Qn − x0 − y0( 
2

 ≤CK T
n
P(t, h)


 y0 − x0( ⟶ 0. (22)

'e derived optimization equation becomes

E Qn − x0 − y0( 
2

  � 

mn−1

K�0
w μn

K(  w μn+1
K − μm+1

K  , s.t �

limn⟶∞E Qn − x0 − y0( 
2

 

�
w(T)

2

2
+ μ −

1
2

 T;

t
n
K ≤ z

n
K ≤ t

n
n+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

3. Benchmarking Model

3.1. Fuzzy + PID Controller. Hysteresis band-based PID
controller generates high torque and ripple in the flux.'is is
because of the continuous operation of switching vector over
the sample for entire period of operation. Fuzzy logic-based
switching pattern generation will provide smooth switching
sequence with less ripple in flux and torque. As discussed in
the preceding section, the non-linear behaviour of switching
pattern is a function of two errors such as flux error and
torque error along with stator flux angle. 'erefore, rule-
based fuzzy logic supported by PID controller can be
designed. Figure 1 shows the basic building diagram of
fuzzy-enabled DTC.

Here torque error has been evaluated using PID con-
troller supplied from speed error as a crisp variable to fuzzy
logic controller. Similarly, another stator flux error and
another stator flux angle will serve as crisp variables 2 and 3,
respectively. 'e fuzzy rule-based controller will work on
these crisp variables only after fuzzification using seven
membership functions.

Here seven membership functions from negative large
(NL) to positive large (PL) have been used. Here two types of
waveform such as trapezoidal type for NL and PL algorithm
triangular type waveform for all other membership functions
have been used. Six sectored stator flux trajectories from Q1
–Q6 comprising each 300 in each half have been used.

A threshold error torque level of 5N-m has been used so
that the crisp variable PL becomes “1” and it will change to
next transition state of “0” as soon as the threshold level
decreases to 0. Trivectored error of mean deviation of 0.02
has been used from NS to PS. So, when torque error falls
under 0.02, the PS will be set to 1 and NS will be set to 0. 'e
stator flux error has been assigned to three variables such as
1, 0, and −1. 'erefore, the variable for crossover area was
determined using min-max concept. Figure 2 shows the
voltage distribution pattern with respect to Membership
function (MF).

A total of 147 rules have been framed to establish the
AND and OR segmentation. 'e operating section will be
evaluated after cross overlapping of stator flux error and
torque error.

Figure 3 shows the torque produced by motor under two
different conditions such as normal and abnormal condi-
tions. As observed, with increase in speed, the torque is
reduced to 1.2N-m. A zoomed version of the torque curve is
also shown in Figure 3. At about 0.295 seconds, a sudden
change in the curve has been observed, and this is due to
change in the membership function in the Sugeno fuzzy
controller. Similarly, at about 0.5 seconds, again torque
increases due to decrease in motor speed because of voltage
change. At about 0.795 seconds, for sample-9, the state
variables are the same and hence no changes in the torque
state are observed.

Mathematical Problems in Engineering 5
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Figures 4 and 5 show the current and voltage curve of
fuzzy-enabled DTC at motor input terminal. As mentioned
earlier, a state change transition occurs at 0.5 seconds;
therefore, an increase in current has been noticed. Here only
one phase is shown for simplicity and analysis point of view.
Similarly, in voltage wave, the changes have been observed.
Another observation regarding the voltage waveform is that
a lot of noise is present. 'e voltage harmonic analysis
presented in Figure 6 shows that the total harmonic dis-
tortion is about 14.32% which is little higher.

Stator flux trajectory is shown in Figure 7. It is observed that
a slope deviation of 0.377 occurs in each transition. Again, the
statistical analysis for flux trajectory under fuzzy-DTC controller
is shown in Table 1. A RMSE of 0.24 has been observed for
cluster-3, and state change occurs for sample-2 and sample-4.
Similarly R2 − error for one sample was found to be 1.0. 'is
enables the authors to think forANFIS-DTC. In the next section,
ANFIS-DTC has been presented as 2nd benchmarking model.

3.2. ANFIS. Generally, an induction motor poses two
control techniques for direct torque control. In torque
control mode, reference torque and actual torque act as an
input to ANFIS, whereas in speed control mode, actual speed
and reference speed would act as an input to the ANFIS
control. Speed control mode requires a PI controller for
amplification shoot overshoot improvement.

ANFIS is a hybrid controller having property of both
neural network and fuzzy logic. 'e membership functions
were decided by the neural network if and only if the
mapping from input to output is available. To create a fuzzy
inference system, a five-layer structure has to be modeled
comprising fuzzy layer, product layer, normalized layer,
defuzzification layer, and final output layer. 'e detail
process diagram is shown below.

Figure 8 shows a five-layer model of ANFIS. Here, two
intermediate circular nodes represent dynamic node and
square node represents fixed node.

'e output of the first layer as a function of x and y can
be represented as

O1,i � μx(X) for i � 1, 2, . . . n

O1,i � μx(Y) for i � 1, 2, . . . n.
(24)

'e second layer in ANFIS represents about fuzzy rule
written in if-then rules. Most of the rules are of Sugeno type
of first order. 'e first two rules based on if-then are

Rule 1: if x is A1 and y is B1, then f1 � P1x + q1y + r1.
Rule 2: if x is A2 and y is B2, then f2 � P2x + q2y + r2.

In rule 1 and rule 2, x and y denote the input to the
ANFIS representing reference torque and actual torque. A

and B are the rule-based fuzzy sets and f1, f2 represent the
first-order polynomial. Applying fuzzy set error multipli-
cation to the existing variables, the output of layer-2
becomes

O2,i � μA(x)μB(x), i � 1, 2, 3, 4. (25)

'e output of layer-2 is normalized by the weight
function of layer-3. 'erefore, the normalized output
becomes

03,i �
wi


n
i�1 wi

, i � 1, 2, 3, 4. (26)

'e normalized weight output in equation (27) will be
evaluated against each fuzzy rule under interference of
external parameters. 'erefore, equation (27) can be further
modified.

O4,i � w p1x1 + p2x2 + · · · p4x4 + q1y1 + q2y2(

+ · · · q4y4 + ri, i � 1, 2, 3, 4.
(27)

Like equation (28), four sets of equations will be summed
up and their average weighted sum will be evaluated as a
numerical variable equal to non-fuzzy part. 'erefore,
output of layer-5 becomes

O5 � 

n

i�1
wfi. (28)

In order to execute the ANFIS-based DTC, an experi-
mental investigation has been carried out with DTC-based
PI controller. 'e output of DTC system has been divided
into 70% for training dataset and 30% for testing data.
Membership functions were adjusted through forward and
backward speed. During fuzzy inference, if any redundancy
was noticed, it was adjusted through backpropagation
algorithm.

Figure 9 shows the torque produced by motor under
ANFIS-DTC. As observed, with increase in speed, the torque
is reduced to 1.2N-m. A zoomed version of the torque curve
is also shown in Figure 9. At about 0.295 seconds, a sudden
change in the curve has been observed, and this is due to
change in the membership function in the Sugeno fuzzy
controller. Similarly, at about 0.5 seconds, again torque
increases due to decrease in motor speed because of voltage
change. At about 0.795 seconds, for sample-9, the state
variables are the same and hence no changes in the torque
state are observed.

Figures 10 and 11 show the current and voltage curve of
ANFIS-enabled DTC atmotor input terminal. As mentioned
earlier, a state change transition occurs at 0.5 seconds;
therefore, an increase in current has been noticed. Here only
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Figure 5: Voltage waveform at input terminal of motor under
fuzzy-DTC.
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one phase is shown for simplicity and analysis point of view.
Similarly, in voltage wave, the changes have been observed.
Another observation regarding the voltage waveform is that
a lot of noise is present. 'e voltage harmonic analysis
presented in Figure 12 shows that the total harmonic dis-
tortion is about 11.73% which is little higher.

Stator flux trajectory is shown in Figure 13. It is observed
that a slope deviation of 0.29 occurs in each transition.

Again, the statistical analysis for flux trajectory under
ANFIS-DTC controller is shown in Table 2. A RMSE of 0.21
has been observed for cluster-3, and state change occurs for
sample-2 to sample-5. Similarly R2 − error for almost all
samples was found to be 0.99 except for some samples at
clusters C-1 and C-4. 'is enables the authors to think for
LSTM-DTC. In the next section, LSTM-DTC has been
presented.

Fundamental (21Hz) = 8.542, THD = 14.32%

0
2
4
6
8

10
12

M
ag

 (%
 o

f F
un

da
m

en
ta

l)

273252231210 29418921 16842 105840 14763 126
Frequency (Hz)

Figure 6: THD of voltage under fuzzy-DTC.
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Table 1: Statistical analysis of stator flux trajectory for fuzzy-DTC.

Cluster RMSE R2-error MSE MAE Remarks
C-1 0.23 0.98 0.07 0.82 s-1
C-2 0.24 0.99 0.04 0.81 s-2
C-3 0.24 0.97 0.06 0.81 s-2
C-4 0.24 1.00 0.07 0.82 s-4
C-5 0.26 0.99 0.07 0.83 s-5
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Figure 8: Layer model of ANFIS.
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4. Result Analysis

One of the easiest methods for the DTC is using hysteresis
controller. However, the fluctuation in the steady state static
output is a problem. 'is can be avoided by adding addi-
tional damping circuitry in conjunction withmain hysteresis
controller. In order to achieve proper control, it requires
stator flux and torque for hysteresis controller along with
rotor speed. 'e typical sampling rate for hysteresis band
controller is 40 kHz which is 4 times higher than PWM
sampling rate. Table 3 represents the motor parameters used
for simulation analysis.

It can be understood that the fluctuation in the controller
signal can be limited if control action can be made de-
pendent on input data, past error, and output of controller.
All these features can be integrated to a sequence learning
process. LSTM is a type of sequence learning that falls under
the category of recurrent neutral network (RNN). Because of
its memory about the past data, it processes the trajectory
data and prepares the new predictive trajectory. Hence,
trajectory refers to the stationary flux distribution. Because
of the gradient vanishing property of RNN, it is not popular
in capturing long-termmemory. However, LSTM retains the
error values in its memory and continues the gradient flow.

Figure 14 shows the schematic structure for the flux
analysis using LSTM-DTC. As compared to RNN-DTC, in
LSTM-DTC, three extra features have been added such as
forget gate, input gate, and output gate. Two activation
functions are shown in Figures 14 and 15. 'e actual sta-
tionary flux and reference stationary flux will act as input to
the forget gate. If the actual flow deviation ΔΨ is greater than
5.2, then that particular instant flux will not be considered as
an input to LSTM gate. 'is is to only keep memory active
around the trajectory. 'is can be achieved either by mul-
tiplying the actual flux with 1 or 0. 1 is used if it is required to

maintain the data in memory or else 0. Based on the above
discussion, the LSTM network architecture becomes the
following. Activation gate input:

i
t

� g w
t
i + piy

t
qic

t− 1
+ bi . (29)

Output gate:

l
t

� σ w
t
e + ply

t
qec

t− 1
+ bl . (30)

Forget gate:

f
t

� σ w
t
f + pfy

t
c

t− 1
+ bf . (31)

Torque error and stator flux error evaluation and six-
sector evaluation of linguistic variable are shown in Algo-
rithms 1 and 2. 'ree gate functions in terms of variable and
bias from equations (31)–(33) are shown in process flow-
chart in Figure 16. Likewise, the neutral weight becomes the
following (combining all gate weights). Input weight:

wi, we, wfεR
NXD

. (32)

Output weight:

pi, pl, pfεR
NXD

. (33)

Memory weight:

qi, ql, qfεR
NXD

. (34)

Bias weight:

bi, bl, bfεR
NXD

. (35)

Now based on equations (34)–(37), the new memory
function becomes

c
t

� i
t
l
t

+ c
t− 1ft

, (36)

€Db1 � Db1fc
t
. (37)

In general, the output flux control signal becomes

y0 � f 

N

i�1e�1
R

N
i R

N
e+1 + 

j

F�1
MF

147⎛⎝ ⎞⎠. (38)
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Figure 13: Stator flux trajectory under ANFIS-DTC.

Table 2: Statistical analysis of stator flux trajectory for ANFIS-
DTC.

Cluster RMSE R2-error MSE MAE Remarks
C-1 0.19 0.98 0.032 0.41 s-3
C-2 0.21 0.99 0.041 0.57 s-4
C-3 0.21 0.99 0.044 0.56 s-4
C-4 0.21 0.98 0.042 0.56 s-4
C-5 0.22 0.99 0.042 0.56 s-1

Table 3: Motor parameters for simulation analysis.

Sr. no. Parameter Symbol Rating Unit
1 Nominal power Pn 3.2 kwatt
2 Nominal voltage V 400 Volt
3 Nominal current I 6.74 Amp.
4 Rated frequency F 50 Hz.
5 Stator flux (linkage flux) Phi 0.66 Wb
6 Rotor DC resistance Rr 1.77 ohm
7 Stator DC resistance Rs 1.24 ohm
8 Mutual inductance Lm 0.19 mH
9 Rotor inductance Lr 0.091 mH
10 Stator inductance Ls 0.091 mH
11 Rated normal speed N 1500 rpm
12 Pole pairs p 2 Nos.

10 Mathematical Problems in Engineering



Equation (38) is the output flux control signal, where
the output depends on both present input and past
memory saved error signal. As the LSTM consists of four
memory nodes, the error encountered in the LSTM nodal
evaluation must be propagated to all the nodes. Hence,
the backpropagation model for transferring the error to
all the nodes has been applied. As trajectory track is the
objective of this research work, time deviation of back-
propagation algorithm has been implemented. 'e
schematic diagram of the detailed model putting LSTM
into loop is shown in Figure 17.

Two rounds of evaluation have been carried out for
station flux trajectory and rotor flux trajectory analysis.
Station flux trajectory evaluation with mu of 0.2 and 0.27
has been conducted. 12-point evaluation of each 30° has
been examined. Each point denotes one sample space.
Table 4 represents window-1 for stator flux predictions
using LSTM with mu-0.22. Hence, it is observed that for
sample δ(P − δ) of 240 °, the root mean square is the
smallest one of 0.347, and relative error becomes 13.37%.
Similarly, highest RMSE becomes 2.254 and that of rel-
ative error becomes 17.3%. 'e lowest relative error has
been observed for sample-6 of 11.91 at an angle of 180°.

Table 5 shows the second window of stator flux pre-
diction (LSTM with mu� 0.27). Here sample-7 has RMSE of
1.29 and relative error of 15.39. In Table 5, the smallest
relative error was found to be 12.64 for sample-9 with an
angle of 270°. 'is shows that sample-8 and sample-7 from
Tables 4 and 5 exhibit highest transition in terms of
switching frequency. However, the switching frequency is
relatively small as compared to hysteresis controller and
benchmarking model.

Table 6 shows the rotor flux prediction, LSTM with
N� 0.9. Here, the RMSE between the actual flux density and
that of 1.811 for sample-3 is given. In most of the samples,
the actual and predicted flux densities are close to each other.
'is happens because of the forget gate used in LSTM
network. 'e response time becomes sluggish towards the
end of sample-12. 'is is because of the backpropagation
algorithm and sharing of output layer error among each
node. All the intermediate node weight functions are deleted
for creating memory space for integral multiple of 30°
sample.

Table 7 shows the rotor flux density, LSTM with
mu= 0.12. 'e relative error is 12.03% for sample-4. Simi-
larly, maximum RMSE has been noticed at 1.631.
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Figure 14: Schematic structure for flux analysis using LSTM-DTC.
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Require: T_er, W_er, θs

Ensure: 3 Variable state transition pattern
for PL� 1 do
for NL� −1 do
for Wer� 0 do

Evaluate Ter and θs

end for
end for

end for
Weight wi � min(δT er, δW er, θ s)

θ xV x � max(θ x − 1Vx−1, θxVx)

for PL� −1 do
for NL� 1 do
for Wer� 0 do
Evaluate the membership function, M147

f (θxVx) � M L

end for
end for

end for
if (M

t0
L−1 − M

t1
L )≤ 0.02 then break

else (M
t0
L−1 − M

t1
L )≤ 0.02

end if

ALGORITHM 1: Torque error and stator flux error evaluation.

Require: Linguistic Variable, MF
Ensure: Sector Selection

x←IFD(M147
F )

MF2←max(X1, X2, . . . XM)

MF2←max(Xt−1
1 , Xt−1

2 , . . . Xt−1
M )

P←Calculate Cluster Member
DO Until MF from ZE is Found
if eerror ≤ 0.01 then

V0 is output
else
Delete the result and RESET

end if

ALGORITHM 2: Six-sector evaluation for linguistic variable.

Table 4: Window-1: stator flux prediction (LSTM with mu� 0.22).

Cluster Response time (s) Rho
Flux density Error

Actual Pden RMSE RF%
P-1 0.029 0.58 0.46 0.47 2.331 17
P-2 0.033 0.61 0.47 0.47 2.311 15.2
P-3 0.047 0.68 0.44 0.46 2.254 17.3
P-4 0.051 0.72 0.43 0.45 2.237 17.1
P-5 0.054 0.75 0.39 0.39 1.861 14.03
P-6 0.059 0.78 0.36 0.39 1.453 11.91
P-7 0.064 0.79 0.31 0.34 1.329 21.15
P-8 0.068 0.80 0.28 0.28 0.347 13.37
P-9 0.069 0.81 0.22 0.23 1.167 15.02
P-10 0.072 0.83 0.16 0.14 1.363 13.86
P-11 0.077 0.86 0.17 0.16 1.268 16.33
P-12 0.078 0.86 0.17 0.16 1.269 16.37
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Table 8 shows the LSTMmodel evaluation with mu� 0.27.
Five different models such as Vanilla LSTM, Bidirectional
LSTM, CNN LSTM, and ConvLSTM are evaluated for training
and testing of trajectory path in DTC. It is observed that
ConvLSTM possesses lowest RMSE of 0.0018 and mean av-
erage error of 0.00112with 150000obs/s.'e block diagram for
long short-term memory (LSTM)-enabled direct torque con-
trol (DTC) for induction motor (IM) is shown in Figure 18. In
this method, the actual torque and the stator flux are calculated

in LSTM-enabled DTC control block using stator currents and
voltages. 'ese calculated torque and stator flux values are
compared with the respective reference values to get the re-
spective errors. Depending upon the values these errors, the
triggering pulses for VSI are generated and fed to the VSI to
generate the required voltage.'e position of the voltage vector
in state space can be determined in the same DTC block.
Although ConvLSTM took large time for training, prediction
accuracy is highest among all the LSTM algorithms. Residual

Table 5: Window-2: stator flux prediction (LSTM with mu� 0.27).

Cluster Response time (s) Rho
Flux density Error

Actual Pden RMSE RF%
P-1 0.030 0.59 0.31 0.32 1.8 16.68
P-2 0.034 0.73 0.32 0.32 1.78 15.76
P-3 0.046 0.74 0.37 0.38 1.80 15.58
P-4 0.053 0.75 0.34 0.36 1.75 16.06
P-5 0.057 0.76 0.36 0.37 1.80 15.04
P-6 0.061 0.77 0.34 0.36 1.62 13.47
P-7 0.047 0.72 0.33 0.37 1.29 15.39
P-8 0.057 0.76 0.30 0.32 1.58 13.77
P-9 0.065 0.80 0.26 0.275 1.595 12.64
P-10 0.068 0.81 0.23 0.21 1.811 15.48
P-11 0.071 0.79 0.29 0.31 1.542 14.53
P-12 0.071 0.82 0.23 0.22 1.391 14.92

Table 6: Rotor flux prediction (LSTM with mu� 0.9).

Cluster Response time (s) Rho
Flux density Error

Actual Pden RMSE RF%
P-1 0.0093 0.17 0.32 0.33 1.29 13.27
P-2 0.0097 0.18 0.39 0.38 1.58 14.04
P-3 0.0098 0.18 0.39 0.40 1.811 13.81
P-4 0.0103 0.23 0.45 0.43 1.43 13.47
P-5 0.0122 0.26 0.47 0.46 1.56 13.75
P-6 0.0198 0.29 0.48 0.48 1.68 13.78
P-7 0.0213 0.33 0.51 0.52 1.63 20.81
P-8 0.0236 0.35 0.56 0.57 1.46 12.35
P-9 0.0292 0.38 0.58 0.59 1.51 13.17
P-10 0.0311 0.40 0.63 0.64 1.54 12.49
P-11 0.0414 0.46 0.71 0.69 1.56 16.65
P-12 0.0446 0.49 0.68 0.70 1.40 16.22

Table 7: Rotor flux prediction (LSTM with mu� 0.8).

Cluster Response time (s) Rho
Flux density Error

Actual Pden RMSE RF%
P-1 0.016 0.27 0.26 0.25 1.223 11.09
P-2 0.014 0.28 0.28 0.28 1.467 11.17
P-3 0.016 0.305 0.31 0.33 1.631 11.32
P-4 0.023 0.31 0.316 0.32 1.033 12.03
P-5 0.020 0.35 0.34 0.35 1.216 11.91
P-6 0.027 0.38 0.37 0.36 1.314 11.37
P-7 0.028 0.38 0.41 0.41 1.617 11.61
P-8 0.037 0.39 0.40 0.41 1.491 12.09
P-9 0.044 0.41 0.62 0.57 1.223 12.11
P-10 0.045 0.42 0.63 0.61 1.206 13.43
P-11 0.049 0.46 0.64 0.63 1.191 11.07
P-12 0.052 0.49 0.67 0.67 1.227 13.29
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validation for ConvLSTM is shown in Figure 19. Four different
validation and residual models are presented for four different
samples. In Figure 19(a), maximum deviation occurs between
−0.005 and 0.005. 'erefore, the prediction level is highly
robust. Figures 19(b)–19(d) represent the validation and re-
sidual for samples 2, 3, and 4. Regression analysis for
ConvLSTM is shown in Figure 20. Two different training
models are analyzed for R� 0.99471 and R� 0.99924.
Figure 20(b) shows that the training is close to the trajectory
path, and hence the LSTM model is validated and is ready for
loop in test. Figure 21 shows the histogram for regression
analysis.

Figure 22(a) shows the gradient training operation for
induction motor torque at an epoch of 519. 'e mean
gradient variation ranged from 10− 2 to 100. About 72,369-
point-based sample training has been carried out to fit the
training and testing data. Figure 22(b) shows the validation
check for each test point with change in slope rate of −0.27. It
is observed that not a single sample failed in testing for entire
519 epochs. Figure 22(c) shows the mean squared error
performance curve for 519 epochs. 'e best training per-
formance is 0.0142 at epoch 519.

Figure 23 shows the torque graph performance for
LSTM-based DTC. Here it is found that a slight transient
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Figure 19: Training and testing of torque trajectory using LSTM: (a) model prediction with mu� 0.22; (b) model prediction with mu� 0.24;
(c) model prediction with mu� 0.25; (d) model prediction with mu� 0.27.

Table 8: LSTM model evaluation with mu� 0.27.

LSTM model RMSE R2- error MSE MAE Prediction speed Training time Prediction accuracy
Vanilla 0.0093 1.0 8.74e− 5 0.006417 150000 obs/s 17.312 s 83.82
Stacked 0.0037 1.0 1.421e− 5 0.00277 250000 obs/s 29.58 s 89.05
Bidirectional 0.0064 1.0 4.16e− 5 0.0046 160000 obs/s 31.239 s 86.99
CNN 0.0181 0.99 0.00032 0.0142 53000 obs/s 73.11 s 87.63
Conv 0.0018 1.0 3.48e− 5 0.00112 150000 obs/s 91.16 s 91.81

DC Supply Boost 
Converter DC Link VSI

Pulse 
Generator

DTC Control 
with LSTM

Reference 
Speed

IM

Figure 18: Block diagram for long short-term memory (LSTM)-enabled direct torque control (DTC) for induction motor.
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performance change occurs at 16 N-m of torque. 'is is due
to training of LSTM. At about 0.048 seconds, LSTM starts
working towards tracking of trajectories. Figure 24 shows
the performance of induction motor in terms of speed.
Initially, an overshoot of 11.21% has been observed, and
finally at 0.3 seconds, it settled down to the reference speed
of 100 RPM. A small perturb has been noticed at 0.5 seconds
to demonstrate the dynamic behaviour of controller. 'is
analysis does not consider the dynamic change in stator
resistance.

Figure 25 shows the induction motor stator flux per-
formance under dynamic condition. 'e zoomed version of
trajectory path clearly shows that a smooth stator flux has
been achieved, thereby avoiding the vibration in the system
during state change in torque.

Figure 26 represents the vibration measured at cage
surface in induction motor due to interaction of stator flux

and rotor flux. It is observed that due to interaction of two
fluxes in the DTC technique, the vibration does not affect
much as compared to fuzzy and ANFIS. 'is is because of
60-degree overlapping operation of stator voltage state.

As compared to fuzzy-DTC and ANFIS-DTC, the
LSTM-enabled DTC shows better performance in terms of
THD level. Like other controllers, here THD level has been
measured at 21Hz of fundamental frequency, which is
measured to be 6.61% and is shown in Figure 27. 'is re-
duction in THD level is due to the pretrained load-de-
pendent LSTM network which forecasts the flux density well
in advance of the actual flux density. As a result, the
switching pulses also work in proportion to the supplied
current and load.

Table 8 shows a detailed comparative analysis of com-
putation time for fuzzy-DTC, ANFIS-DTC, and LSTM-
DTC. It is observed that LSTM-DTC takes 17% extra time as
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compared to ANFIS-DTC during the training general
condition, whereas the average time of prediction has
drastically reduced from 9.3ms in fuzzy-DTC to 4.0ms in
LSTM-DTC. Similarly, the time to change the PI controller
parameter is also reduced to 47ms.

5. Conclusion

In this paper, a novel ripple minimization technique has
been presented for direct torque control of induction
motor. As compared to fuzzy and ANFIS, the proposed
ConvLSTM provides global minimal RMS torque ripple.

It is observed from Table 9 that LSTM-DTC has taken
2.15ms to control stator flux against 5.17ms and 3.94ms as
observed from fuzzy-DTC and ANFIS-DTC, respectively.
'e tuning parameters such as Proportional and Integral
gain place an important role in the system with the use of
LSTM enabled PI controller.'e time has drastically re-
duced to 47ms against 93ms in fuzzy-DTC. Similarly the
stator flux trajectory has helped the algorithm to propose
the tinning parameter well in advance before the occur-
rence of actual situation, which is not there in fuzzy-DTC.
'e additional use of hysteresis controller is an added
advantage to the LSTM controller to maintain the trajec-
tory inside the boundary while predicting the tuning pa-
rameter for PI controller.

Parameter evaluation, reference frame transformation,
and voltage sector selection can be easily achieved with
LSTM. Here the sample rate required for direct torque
control is typically in the range of 4–6 kHz. Continuously
variable switching frequency can be achieved over a wide
range of voltage distribution. Again, from Figure 19, it is
observed that with mu= 0.27, the residuals are more scat-
tered with respect to phisb.'is clearly represents that all the
data points for stator flux are independent from each other,
which also leads to the totempole in achieving the uniform
flux distribution. 60-degree voltage vector overlapping op-
eration can be handled with the proposed method up to 3
operations in every 10 cycles. Excess overlapping may in-
crease stress in the motor insulation.

'e comparative model among the different LSTM
models shows that the Stacked and Conv models are more
close to each other; however, from prediction speed point of
view, convolution techniques provide more accurate result
among other techniques.
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'e data used to support the findings of this study are
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