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Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization.
�erefore, it is di�cult for evolutionary algorithms to �nd the best-�tting candidate solutions for the �nal Pareto optimal front
representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we
propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III).�is
evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and
Euclidean distance to maintain selection pressure and integrity of the �nal Pareto optimal front. E-dyNSGA-III proposes a
strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with
changing time. �is strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly
chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated
candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases
with respect to time.�e improved algorithm is tested on RPOOTproblems and a real-world hydrothermal model, and the results
show that the approach is promising.

1. Introduction

Handling an increasing number of objectives over time is
one of the challenges of evolutionary algorithms (EAs). In
particular, handling problems with many objectives and
complicated Pareto optimal front can impact the perfor-
mance of EAs negatively.�e idea of Pareto dominance with
respect to any two solutions a and b of a many-objective
optimization problem is guided by the following (where
solution a dominates solution b): (i) solution a completely
dominates solution b after the natural selection process; (ii)
both solutions are infeasible, but solution a has a smaller
constraint violation than solution b with respect to the
objective function; and (iii) solution a is feasible, while
solution b is infeasible [1]. Pareto dominance is straight-
forward to implement when the number of objectives is not
greater than 3. However, with more than 3 objectives, it

becomes di�cult to select the �nal set of solutions that
satisfy all objectives describing the problem.

When we consider Pareto optimality in the presence of
changing time, there is an additional uncertainty that is
introduced since a given solution selected at instant t1 may
not satisfy the problem at instant t2. Also, there is a pos-
sibility that a given solution at t1 will still be e�ective at t2.
However, the changing solution space over time might cause
these �t solutions to be lost because of loss of selection
pressure at high dimensions. �erefore, improving the
performance of EAs to e�ectively handle Pareto optimality
over time in the presence of many con�icting objectives is
imperative. In this study, we present a multi-objective op-
timization algorithm called enhanced dynamic non-domi-
nated sorting genetic algorithm III (E-dyNSGA-III). It is
originally based on the NSGA-III algorithm [2] and is an
improvement on an earlier proposed dynamic multi-
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objective evolutionary algorithm (DMOEA) called
dyNSGA-III [3]. ,e aim of the proposed improvement is to
enhance the performance of dyNSGA-III on the optimi-
zation of robust Pareto optimality over time (RPOOT)
problems and a multi-objective real-world power scheduling
problem. RPOOT problems consist of dynamic Pareto set
(PS) and Pareto front (PF) with respect to time [4]. ,e
proposed E-dyNSGA-III algorithm uses a strategy to select
and maintain a group of top-performing, mutated, and
randomly chosen candidate solutions in the population in
the presence of multiple objectives. In particular, these
mutated solutions help to maintain the diversity of the
Pareto front when there is a frequent change in objective
function(s), constraint functions, and/or variable bound-
aries representing a given dynamic many-objective opti-
mization problem (DMOP). ,ese candidate solutions help
to maintain the selection pressure of the EA as much as
possible even in high dimensionality.

,e main contribution of this study is to use randomly
generated mutated solutions from a reference point-based
search strategy to improve the selection pressure of
dyNSGA-III when the number of objectives is 3 or greater
and/or when the DMOP has several dynamic parameters
and constraints.

,e rest of the study is organized as follows: Section 2
describes the use of evolutionary algorithms in multi-ob-
jective optimization. Section 3 outlines the proposed
methodology for implementing E-dyNSGA-III for dynamic
multi-objective optimization and discusses the test results
obtained from using E-dyNSGA-III to optimize 4 selected
instances of 3-objective, dynamic many-objective optimi-
zation problems (DMOPs). Obtained results are compared
with an earlier proposed dyNSGA-III algorithm. We then
compare the performance of E-dyNSGA-III with 2 other
well-performing DMOEAs for dimensionality reduction in
the presence of many objectives. We also present a multi-
objective model of a power generation scheduling problem
and optimize it using both E-dyNSGA-III and dyNSGA-III.
,e results are also discussed. Section 4 concludes the study.

2. Many-Objective Optimization Using
Evolutionary Algorithms

Several real-world problems are best modelled as many-
objective optimization problems such as power system
stability [5], induction motor design [6], radar-absorbing
material design [7], and job-shop scheduling [8]. ,erefore,
several researchers have proposed various methods of im-
proving the performance of EAs to effectively balance
convergence and diversity in the presence of many con-
flicting objectives with rapidly changing Pareto fronts. In [9],
the robust ranking and selection approach for handling
intractable complex optimization considering randomness
was reformulated as a multi-objective ranking and selection
problem. In this case, a single ranking and selection problem
is decomposed into several objectives. In [10], a cache ap-
proach was proposed to improve the balance between
convergence and diversity in the presence of high dimen-
sionality, thus improving selection pressure, while [11]

proposed a two-stage strategy and parallel cell coordinate
system (PCCS) to remedy the same problem.

In [12], the test case generation problem was modelled as
a dynamic many-objective optimization problem instead of
the popular single-objective problem. A dynamic many-
objective sorting algorithm (DynaMOSA) was proposed to
solve the proposed optimization problem, and it was ob-
served that this approach outperformed single-objective
optimizers by 28%. Further research has focused on im-
proving evolutionary and nature-inspired algorithms to
tackle challenges of many objectives characterizing real-
world problems [13], minimizing impact of expensive fea-
ture evaluations [14], and improving selection pressure [15].
A hybridized minimal cost evolutionary deterministic al-
gorithm (HMCEDA) was one of the first evolutionary al-
gorithms used to solve DMOPs [16].,e algorithm was used
to optimize 5 DMOPs with slowly changing environments.
Dynamic particle swarm optimization (DPSO) algorithm
has also been proposed in [17] to solve DMOPs using Pareto
dominance with hyperplane distribution. DPSO handles
changes in the search environment by adjusting the velocity
parameter of PSO for previous non-dominated candidates.

,e immune optimization approach has been used in
recent years as a solution to DMOPs. In particular, the
interaction between B and T cells was used to create an
artificial immune system (AIS) approach for tracking
DMOPs [18]. Also, an immune surveillance approach was
proposed for solving such problems in [19]. A recent ap-
proach combined AIS-based clonal selection with general-
ized differential evolution 3 (GDE3) algorithm to solve
DMOPs. In [20], a distributed population evolution strategy
based on the message passing interface (MPI) approach was
used to optimize several DMOPs of the generalized dynamic
benchmark generator (GDBG).,e proposed algorithm was
based on a multi-population, cloud-based variant of the
differential evolution algorithm called Cloudde. It is clear to
see that more real-world problems are modelled as many-
objective optimization problems. ,erefore, it is important
to improve the capability of EAs to effectively solve this
problem. ,e next section details the proposed approach to
preserve the quality of selected solutions and pull selected
solutions as close as possible to the Pareto front.

3. Proposed Methodology

In this section, we will discuss the elite archive approach that
we apply to improve the capability of dyNSGA-III to handle
dynamic search spaces involving 3 or more objectives. In
dyNSGA-III, we used adaptive principal component analysis
(PCA) mutation with n-point crossover to improve the
ability of NSGA-III to track the PF in dynamic environments
[3]. Adaptive PCA selects features with the highest co-
variance in high-dimensional environments, while n-point
crossover increases the degree of randomness of selection of
offspring of successive generations. ,erefore, this results in
a sustained balance of convergence and diversity in a search
space involving up to 3 objectives. For up to 2 objectives with
few parameter and constraint variations, the selection
strategy by dyNSGA-III is maintained. However, for 3 or
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more objectives, a selection strategy similar to the elite
NSGA-III approach is used. However, in our proposed al-
gorithm (Algorithm 1), we increase the number of reference
points and elite solutions to compensate for the effects of
both changing space and time as the number of objectives
increases. In particular, we consider two situations: when
there is a small change in the problem with respect to time
and when there is a large change. In both situations, we
would examine the effect of introducing varying proportions
of mutated solutions into the OF space on the ability of the
DMOEA to arrive at the best possible solution to the DMOP.
It is important to consider these two scenarios with respect
to time because while frequent changes in small magnitude
can result in not enough time to find a suitable solution or set
of solutions to the problem, less frequent changes in
comparatively larger magnitude can result in the best so-
lutions being traded for less fit candidates. ,erefore, it is
important to ensure the best possible trade-off between both
cases.

For Algorithm 1, we use the maximum Euclidean dis-
tance with respect to initial population and the final co-
variance matrix to evaluate the fitness of the elite population
representing the non-dominated PF. ,e covariance matrix
Γcov is obtained according to

Γcov � α (σ − α(σ)) σ − α(σ)
T

  , (1)

where σ is matrix of points within n-dimensional Euclidean
space and α(σ) is mean value.

,e solution space from which the set of elites is selected
is centered with respect to selected reference points using
PCA according to

R � (σ − α(σ))Δϑ, (2)

where ϑ is the matrix of eigenvectors.
,is approach maintains the elite population effectively

for problems that have 2 objectives. However, for more than
3 objectives, we modify the number of reference points by
2M − 1, where M is the number of objectives. To determine
the rate of change in the given problem solution space, we
consider the Minkowski distance DM(x, y) of solution a

from its associated reference point at time tn and tn+1, re-
spectively. If the change in DM(x, y) is large, then rate of
change is large for solution a. Otherwise, the rate of change is
considered to be small. For a small rate of change in the
presence of 3 or more objectives, we infer that more
competition is required to obtain the fittest candidates.
,erefore, we introduce a larger proportion of mutated
solutions according to the number of reference points. For
instance, if a small change is detected, we introduce 2M

mutated solutions for every reference point. Otherwise, if the
change is large, we increase the number of reference points
by 2M − 1 to guide the population to Pareto optimality. ,e
assumption here is that for large changes in the solution
space, premature convergence is unlikely.

When the objectives are more than 2, the number of
reference points and elite solutions is increased by a factor of
2M − 1, where M is the number of objectives. We recognize
that parent selection can result in loss of selection pressure

and diversity among the solutions. However, the archived
approach has demonstrated improved performance [21, 22].

From steps 5 and 6 of Algorithm 1, we attempt to cater
for changes in both space and time as the number of ob-
jectives and dimensions increases. ,is is because NSGA-III
typically loses selection pressure as the number of objectives
increases. Steps 5 and 6 of the algorithm are the main
contribution of this research to improve the performance of
earlier proposed dyNSGA-III algorithm.We believe that this
modified selection and orientation of reference points in the
objective function space would push fit and relevant solu-
tions towards the Pareto optimal front. ,e Minkowski
distance is used as the metric to ensure the proper spread of
candidate solutions. ,e Minkowski distance between two
points x and y is obtained as follows:

DM(x, y) � 
n

i�1
xi − yi



m⎛⎝ ⎞⎠

1/m

, (3)

where m is the order of the norm.
,e Minkowski distance metric ensures that the elite

population Pe contains not only the candidates closest to the
ideal point but also those close to these ideal candidates. It is
a generalized form of the Euclidean distance and Manhattan
distance metrics.,is would ensure that the archive not only
contains the best candidates, but also a number of “second”
best candidates. ,us, the fitness of the archive is main-
tained. ,e purpose of such a strategy is to ensure that
solutions that may have been discarded are preserved until
later generations till the stopping criterion (max_gen) is
reached. ,e suitability and durability period of candidate
solutions are described according to the following equations.

fa(x, t) �
1
T



T−1

j�0
fa,b+j(x), (4)

ts(x, t) �

Δ0 iff (a, t)(x)<F,

Δ1 + max p, ∀j ∈ t, t + 1, . . . ., (t + p) 

Δ if fa,t(x)≥F.

⎧⎪⎪⎨

⎪⎪⎩
,

(5)

Equations (4) and (5) are additional indices, which
ensure that the elite solution archive remains fit with the
increasing number of objectives under conditions of
changing space and time.

Table 1 details the simulation parameters and settings for
the dynamic environment. Table 2 gives details of the test
cases used for determining the capability of E-dyNSGA-III
to obtain robust solutions over time.

From Table 1, parameter settings are selected to be the
same as those used for the original dyNSGA-III. We want to
ensure that the simulation environment is maintained to get
the best performance from the EA.

3.1. E-dyNSGA-III Optimization of RPOOTProblems. In this
section, we discuss the performance of our proposed al-
gorithm on selected RPOOT problems. ,e selected prob-
lems are multi-objective with complicated PF.
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From Table 2, test instances F7, F8, F10, and F11 are robust
Pareto optimality over time (RPOOT) test problems from
[4]. ,ey all consist of 3 time-dependent objective functions
with dynamic Pareto set and Pareto front, respectively.
Complexities of selected test problems are meant to test the
ability of DMOEA to handle changing characteristics of the
problems in the presence of changing time.

According to [16], F7 is a type I DMOP with non-convex
Pareto optimal front (POF), and F8 is a type II DMOP with
non-convex POF. Both DMOPs represent a continuous
search space for the DMOEAwith the rate of change in these
problems being either gradual or sudden with time. From
[23], F10 and F11 are described as unconstrained dynamic
functions (UDFs). F10 has a simple trigonometric Pareto set,
which is horizontal shifting with time. Its Pareto front is
continuous with curvature change from convex to concave
with angular shift with time. ,e search space has a di-
mension of [0, 1] × [−1, 1]n− 1, where n is the number of
dimensions of the search space. F11 is characterized by a
trigonometric Pareto set with no associated dynamicity. ,e
Pareto front is 3-dimensional and concave with time-
shifting center and radius of the concave front. ,e search
space has dimension of [θ]2 × [−2, 2]n− 2. ,e Pareto front is
discontinuous over the entire search space.

Indices for measuring the performance of E-dyNSGA-III
include the duration of candidate survival (tr), IGD (dr), and
spacing between non-dominated solutions (sr). tr is used to

estimate how long fit solutions can remain relevant after
successive generations. ,erefore, the greater the survival
time, the more likely ideal solutions are to be part of the final
Pareto front. dr indicates the spread of potential solutions of
the given dynamic multi-objective optimization problem
(DMOP). ,e smaller the magnitude of dr, the better the
spread of solutions in the objective function space. sr
measures the spacing between the final non-dominated set
of solutions of the DMOP. ,is will ensure that the Pareto
front is covered as much as possible by the final solution set.
Mathematically, the indices are expressed as follows:

tr �
1
T



T

i�1
ti, (6)

where T is the period for which selected candidates remain
suitable solutions for the DMOP and ti is the period for
which the ith Pareto solution is feasible.

dr �
1
N



N

i�1
maxk�ki1,........,ki1+Nki

IGD(k), (7)

where N is the number of Pareto solutions and
maxk�ki1 ,........,ki1+Nki

IGD(k) is the inverted generational distance
of the kth Pareto solution.

sr �
1
N



N

i�1

1
|Ψ(i)| − 1



Δ(i)

j�1
ρ − ρk( 

2⎛⎝ ⎞⎠

1/2

, (8)

where ρk is the least Euclidean distance between survival
indices of the kth mutated solution in non-dominated front
(Ψ(i)) and the Pareto front ρ � 

Ψ(i)
k�1 ρk.

3.2. Results on E-dyNSGA-III Optimization of RPOOT
Problems. From research done in [3], the original dyNSGA-
III performed well on RPOOT problems. However, it
struggled to find suitable solutions when the Pareto front
was complicated, and the number of objectives was 3 or
more. ,erefore, in this study, we compare the performance
of E-dyNSGA-III with dyNSGA-III for dynamic multi-

Input: reference points on normalized hyperplane Pr with specific location 1. . .. . . |Pr|, parent population npop,t, offspring
population npop,o,t, elite population Pe, distance of elite population to the ideal point Pi, max_gen� 500
Output: elite population Pe,t, updated reference point location with respect to ideal point lup ref,t

2009 while M≤ 2:

(1) Apply adaptive mutation strategy specified in (1) and (2)
(2) Obtain the set of elites Pe and current location of updated reference points

else if M≥ 3:

(3) Increase the number of reference points Pr by 2M − 1 and arrange in the normalized hyperplane by associating eachmember of
Pe,t with a reference point

(4) Execute step 1
(5) Obtain set of elites Pe and current location of updated reference points according to: [Pe,t+ 1, lup ref, t+ 1]�Update Elite(lup ref, t,

Pe,t,npop,t,npop,o,t)
(6) Compare current location of solutions with ideal Pareto front using Minkowski distance DM(x, y)

End
End

ALGORITHM 1:

Table 1: Parameter settings.

Parameter Setting
Problem dynamicity (st) 5 (initial)
Frequency of change (ft) 10 (initial)
Dimension size 50
Number of population guiding points (pt) 21

Number of search candidates (Ns)
300 (for F7 and F8)
500 (for F10 and F11)

Mutation probability (pm) 0.1
Crossover rate (cr) 0.5 (adaptive)
Crossover distribution index (ρd) 28
Mutation distribution index (ρm) 15
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objective optimization problems with 3 objectives and
changing Pareto set and Pareto front.

From Table 3, it can be seen that the improved
E-dyNSGA-III outperformed dyNSGA-III for the selected
DMOPs with complicated and discontinuous Pareto front
and Pareto set. ,e selected DMOPs also take into con-
sideration the effect of changing time. However, we observe
from tr and dr that E-dyNSGA-III is able to maintain fit
solutions with the archive approach throughout successive
generations of the search. For each algorithm, simulations
were run 20 times to ensure proper convergence. sr also
indicates that candidate solutions are well spread across the
Pareto front in the case of E-dyNSGA-III compared with
dyNSGA-III.

To further compare the performance of dyNSGA-III and
E-dyNSGA-III, we compare the percentage of runs in which
each algorithm was able to associate specified reference
points with at least one population member before the
max_gen stopping criterion is attained. ,e idea behind this
is to determine how effectively both algorithms use reference
points to guide the population towards Pareto optimality.
For M� 3, we set max_gen� 500. From the results obtained
in Table 4, it can be seen that E-dyNSGA-III is capable of
associating a higher percentage of reference points with
population candidates when the stopping criterion is sat-
isfied. Figure 1 shows the ideal concave Pareto front for the
F7 3-objective type I DMOP.

From Figure 1, it can be seen that E-dyNSGA-III has a
better approximation of the PF for F7 as seen in Figure 1(b).
,e candidate solutions provide better coverage of the PF
compared with dyNSGA-III (Figure 1(c)). ,e computa-
tional complexity of E-dyNSGA-III is O(2N2logM− 2 N),
which is approximately the same as that of dyNSGA-III.M is
the dimensionality of the objective function, and N is the
population size.

From the results obtained, we observe that the proposed
archive approach for handling DMOPs with more than 2
objectives is effective in handling up to three objectives for
problems involving time-changing Pareto set and Pareto
front. ,ese attributes characterize many real-life problems,
which are generally dynamic in nature.

3.3. Comparative Performance of E-dyNSGA-III on Selected
Many-Objective DTLZ5 (x, y) Problems. In this section, we
will compare the performance of E-dyNSGA-III with two
other DMOEAs on their ability to eliminate redundant
objectives in a case where the number of objectives is large.
We will consider the DTLZ5 (x, y) problem set [24], where x
represents the number of non-dominated objectives and y is
the total number of objectives representing the DMOP. ,is
DMOP tests the ability of E-dyNSGA-III to adapt to
complex search environments, which characterize problems
with many objectives. In particular, we test the ability of the
algorithm to select non-dominated objectives out of the total
number of objectives, thereby eliminating redundant ob-
jectives. ,is results in a simplification of the search space
while simultaneously preserving the solutions required to
solve the DMOP.

Table 2: RPOOT problem characteristics.

RPOOT problem Characteristics
F7: Farina-deb-amato 4 (FDA4) in [16] 3 time-dependent objective functions. Has dynamic non-dominated set and fixed Pareto front
F8: FDA5 in [16] 3 time-dependent objective functions. Has dynamic non-dominated set and Pareto front
F10: Unconstrained dynamic
function 4 (UDF4) in [23] 3 time-dependent objective functions. Has dynamic non-dominated set and Pareto front

F11: UDF7 in [23] Has complicated Pareto optimal solutions with dynamic non-dominated set and Pareto front

Table 3: Performance comparison of dyNSGA-III and E-dyNSGA-II for selected DMOPs.

Test problem Performance index dyNSGA-III E-dyNSGA-III

F7
tr 3.128± 0.046 3.773± 0.125
dr 1.275E-02(1.044E-01) 2.941E-03(1.742E-02)
sr 2.475E-03(2.631E-02) 2.803E-02(1.038E-01)

F8
tr 2.486± 0.312 2.941± 0.185
dr 2.165E-02(2.593E-02) 1.963E-03(2.106E-03)
sr 3.958E-02(1.128E-02) 2.851E-03(1.04E-03)

F10
tr 2.951± 0.093 3.307± 0.311
dr 3.753E-01(2.175E-01) 3.055E-03(2.951E-03)
sr 3.104E-02(1.198E-01) 2.619E-03(1.117E-02)

F11
tr 3.285± 0.175 4.042± 0.532
dr 2.952E-01(2.031E-02) 1.195E-03(2.584E-03)

Table 4: Percentage of runs for which DMOEA is able to associate
90% of reference points with at least one population member for
selected DMOP.

Test problem dyNSGA-III (%) E-dyNSGA-III (%)
F7 76 79
F8 88 90
F10 83 89
F11 80 85
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,e DTLZ5 (x, y) DMOP being considered include
DTLZ5 (3,10) and DTLZ5 (5,10). We compare the perfor-
mance of E-dyNSGA-III with two other DMOEAs: Pareto-
PCA-NSGA-II [24] and Cloudde [20]. ,ese DMOEAs were
selected based on their promising performance with di-
mensionality reduction. In particular, E-dyNSGA-III and
Pareto-PCA-NSGA-II use PCA for dimensionality
reduction.

From the results obtained in Table 5, Pareto-PCA-
NSGA-II and E-dyNSGA-III are the best performers for the
lowest normalized Minkowski distance of selected solutions
from the ideal PF (as indicated by the metrics highlighted in
dark gray).

Pareto-PCA-NSGA-II has the lowest normalized Min-
kowski distance for DTLZ5 (3,10) after 100 iterations
(0.3187) for objective F8, while E-dyNSGA-III has the lowest
overall Minkowski distance for objective F3 after 100 iter-
ations.,is is important because it is a test of the algorithm’s
ability to push solutions as close as possible to the ideal PF
despite the challenge of losing selection pressure in the
presence of many objectives. Overall, E-dyNSGA-III
achieved the lowest overall Minkowski distance for 5 ob-
jectives, while Pareto-PCA-NSGA-II achieved the lowest
Minkowski distance for 4 objectives across all instances of
DTLZ5 (x, y), for all iterations. It is important to note the
role of PCA in dimensionality reduction for E-dyNSGA-III
and Pareto-PCA-NSGA-II, which is likely the reason for
their superior performance.

We also examine the ability of the algorithms to find
non-dominated objectives as an indication of their capability
to perform effective dimensionality reduction. Here, we
consider specific instances of the DTLZ5 (x, y) test suite,
across all iterations. From the results in Tables 5 and 6, we
observe that E-dyNSGA-III achieves dimensionality re-
duction for 7 of 14 of the iterations for DTLZ5 (3, 10) and
(5, 10) DMOPs (indicated by results highlighted in lighter
shade of gray). ,e other 7 are distributed between Cloudde
and Pareto-PCA-NSGA-II. ,is makes E-dyNSGA-III the
best performer in terms of dimensionality reduction, which
indicates that it is a promising candidate for tackling the

problem of the curse of dimensionality associated with many
DMOEAs as they try to optimize problems with many
objectives. We observe that for all 3 DMOEAs, their search
capability generally improves as the number of iterations
increases.,is is demonstrated by the decreasing value of the
normalized Minkowski distance as the number of iterations
increases between 100 and 1000 for both instances of DTLZ5
(3, 10) and (5, 10) considered.

3.4. Performance of E-dyNSGA-III onMulti-Objective Hybrid
Power Generation Scheduling Model. In Section 3.1, we
examined the performance of E-dyNSGA-III on the
mathematical model of several time-varying multi-objective
problems. Preliminary results show that E-dyNSGA-III
performed better than an earlier proposed dyNSGA-III
algorithm. We will now test the capability of our proposed
algorithm to handle a multi-objective, real-world power
generation scheduling model consisting of multiple energy
sources.

,e original problem was formulated as a hydrothermal
power generation scheduling problem in [25]. ,e objective
was to generate enough electricity to satisfy demand while
minimizing generation cost and environmental emissions.
,is would also involve an optimal balance between the
number of hydroelectric and thermal generating units re-
quired to satisfy these objectives and related constraints. ,e
problem formulation is dynamic in nature due to the fact
that the demand for power changes with time.,erefore, the
DMOEA is expected to track new optimal solutions
whenever problem parameters change. ,e dynamic prob-
lem formulation is detailed in (2) of [25] with a transmission
loss term specified in (9). Parameters for the hydrothermal
system are included in the appendix section of [25].

,e dynamic nature of the problem formulation is
simulated by considering an overall time window of 96 hours
(4 days). We assume here that the DMOP and its associated
parameters and constraints continually vary over time
windows of varying durations as follows: 5 minutes, 10
minutes, 15 minutes, and 30minutes.,erefore, we consider

0.2
0.4

0.6
0.80.8

0.6
0.4

0.2

0.2

0.4

0.6

f 3

f2 f1

0.8

(a)

f3

f2

f1

0.2
0.4

0.6
0.8
1

1

0.5

0 0 0.2 0.4 0.6 0.8 1

(b)

f3

f2

f1

2
4

6
8

10

5

10

00 5 10

(c)

Figure 1: (a) Pareto front (PF) of F7 DMOP. (b) E-dyNSGA-III PF approximation of F7. (c) dyNSGA-III PF approximation of F7.
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the adaptability of E-dyNSGA-III to constant changes in the
DMOP over 1,152, 576, 384, and 192 different time slots,
respectively.

In this study, we analyze the performance of
E-dyNSGA-III using the hypervolume Sharpe ratio (HSR)
indicator [26]. ,e HSR indicator is an instance of the
Sharpe ratio indicator in which the expected return and
return covariance matrix are expressed with respect to the
hypervolume (HV) indicator. ,e Sharpe ratio balances
risk by ensuring that a given EA selects an optimal PF based
on an appropriate reward-to-volatility ratio. Like all quality
indicators, used in the selection or performance assessment
of EAs, the HSR indicator is weakly monotonic. For a non-
empty set of assets A � a(1), . . . .., a(n) , the global solution

x ⊂ X, which satisfies the reward-to-volatility ratio, is
obtained according to

max
x∈[0,1]n

g(x) �
ΔT

x − Δb

√ x
T
Qx 

, (9)

where ΔϵRn is a vector representing expected returns of A, Q
is the covariance matrix of asset returns, X is the investment
vector such that Xϵ[0, 1]n, and rb is the return of baseline
riskless asset.

Desirable properties of the HSR indicator compared with
the conventional HV indicator include monotonicity, non-
degeneracy, and optimal investment and placement of

Table 5: Minkowski distance values for DTLZ5(x,y) DMOPs.

Algorithm Iterations
Objectives

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Pareto-PCA-NSGA-II

100 (DTLZ5(3,10)) 0.9547 0.7652 0.6383 0.7295 0.4873 0.5084 0.6215 0.3187 0.8540 0.3694
DTLZ5(5,10) 0.8032 0.9173 0.7492 0.7916 0.5826 0.5919 0.4395 0.6184 0.6831 0.5948

200 (DTLZ5(3,10)) 0.8126 0.8957 0.7316 0.6386 0.5194 0.5397 0.5817 0.6217 0.6683 0.5726
DTLZ5(5,10) 0.8316 0.9107 0.7528 0.6637 0.5859 0.6183 0.7046 0.6173 0.6974 0.6163

400 (DTLZ5(3,10)) 0.8051 0.8584 0.7437 0.5846 0.4983 0.5273 0.5428 0.6104 0.5936 0.5284
DTLZ5(5,10) 0.8104 0.8861 0.6901 0.5917 0.5620 0.6054 0.6939 0.5818 0.6411 0.5749

600 (DTLZ5(3,10)) 0.8152 0.7763 0.7195 0.5405 0.4592 0.5196 0.5097 0.5828 0.5754 0.5127
DTLZ5(5,10) 0.7973 0.8150 0.6635 0.5235 0.5229 0.5936 0.6306 0.5572 0.6049 0.5207

800 (DTLZ5(3,10)) 0.7773 0.7102 0.6936 0.5603 0.4726 0.5903 0.5761 0.5614 0.5419 0.4816
DTLZ5(5,10) 0.7618 0.7954 0.6395 0.5404 0.5190 0.6105 0.6054 0.5072 0.5810 0.5503

900 (DTLZ5(3,10)) 0.7183 0.6937 0.6294 0.6919 0.4330 0.5729 0.4609 0.5337 0.5172 0.4405
DTLZ5(5,10) 0.6641 0.7294 0.5803 0.5906 0.5021 0.6308 0.5992 0.4826 0.5319 0.4904

1000 (DTLZ5(3,10)) 0.6992 0.6407 0.6390 0.5607 0.4118 0.6517 0.4349 0.5185 0.4728 0.4239
DTLZ5(5,10) 0.6390 0.6973 0.7294 0.5621 0.5137 0.6116 0.5621 0.4319 0.5185 0.4705

Cloudde

100 (DTLZ5(3,10)) 0.8954 0.7385 0.7106 0.7216 0.7036 0.7130 0.6942 0.6284 0.7705 0.6106
DTLZ5(5,10) 0.7720 0.7251 0.7518 0.7735 0.6219 0.6142 0.5184 0.6285 0.6617 0.6169

200 (DTLZ5(3,10)) 0.8626 0.7152 0.6930 0.8215 0.6961 0.7218 0.7105 0.6170 0.7384 0.6048
DTLZ5(5,10) 0.7385 0.6943 0.7305 0.7280 0.6105 0.5992 0.6998 0.5883 0.6595 0.5972

400 (DTLZ5(3,10)) 0.8428 0.7164 0.6647 0.8006 0.6764 0.7162 0.6996 0.5964 0.7159 0.5885
DTLZ5(5,10) 0.7168 0.6979 0.7206 0.7303 0.6007 0.5730 0.6994 0.5693 0.6501 0.5726

600 (DTLZ5(3,10)) 0.8247 0.7071 0.6482 0.7836 0.6831 0.6947 0.6996 0.5817 0.6992 0.5742
DTLZ5(5,10) 0.6915 0.6385 0.7115 0.6931 0.5980 0.5594 0.6999 0.5884 0.6372 0.5638

800 (DTLZ5(3,10)) 0.7193 0.7002 0.6298 0.7528 0.6406 0.7274 0.6986 0.5717 0.6850 0.5318
DTLZ5(5,10) 0.7753 0.6273 0.7096 0.6429 0.6005 0.5496 0.6958 0.5796 0.6674 0.5490

900 (DTLZ5(3,10)) 0.6974 0.6996 0.6499 0.7327 0.6217 0.7106 0.6983 0.5596 0.6969 0.5642
DTLZ5(5,10) 0.7514 0.6151 0.6941 0.6140 0.5555 0.5165 0.6989 0.6063 0.6486 0.5276

1000 (DTLZ5(3,10)) 0.6736 0.6721 0.6295 0.7164 0.6003 0.6637 0.6973 0.5496 0.6741 0.5412
DTLZ5(5,10) 0.6990 0.5973 0.6686 0.5976 0.5374 0.5326 0.6984 0.5995 0.6271 0.5184

E-dyNSGA-III

100 (DTLZ5(3,10)) 0.8991 0.6383 0.6283 0.7548 0.4552 0.4996 0.6385 0.5135 0.7954 0.3419
DTLZ5(5,10) 0.9063 0.7396 0.7126 0.6076 0.6021 0.5591 0.4417 0.4157 0.6519 0.4886

200 (DTLZ5(3,10)) 0.6503 0.7292 0.7614 0.6166 0.4962 0.5288 0.6995 0.4007 0.6524 0.4527
DTLZ5(5,10) 0.7294 0.6149 0.6337 0.6004 0.5916 0.5184 0.4406 0.5535 0.7642 0.5001

400 (DTLZ5(3,10)) 0.6638 0.7247 0.7308 0.6280 0.6135 0.5429 0.6735 0.4931 0.6384 0.4961
DTLZ5(5,10) 0.7186 0.6846 0.6368 0.5908 0.5584 0.5230 0.5250 0.5409 0.6246 0.5814

600 (DTLZ5(3,10)) 0.6863 0.7164 0.7285 0.6008 0.6147 0.5226 0.6510 0.5037 0.6105 0.5010
DTLZ5(5,10) 0.6930 0.6201 0.6365 0.7071 0.5527 0.5251 0.5307 0.5915 0.6025 0.5793

800 (DTLZ5(3,10)) 0.6681 0.6840 0.6810 0.5904 0.6003 0.5136 0.5509 0.5025 0.7205 0.4947
DTLZ5(5,10) 0.6885 0.6380 0.6380 0.6912 0.5175 0.5248 0.5288 0.5841 0.5936 0.5375

900 (DTLZ5(3,10)) 0.6992 0.7003 0.6337 0.5604 0.5942 0.5287 0.5482 0.5698 0.4428 0.4719
DTLZ5(5,10) 0.6127 0.6515 0.6447 0.6530 0.5114 0.5189 0.5995 0.5659 0.5730 0.5213

1000 (DTLZ5(3,10)) 0.6825 0.6990 0.6295 0.5561 0.5883 0.5162 0.5214 0.5378 0.4516 0.4436
DTLZ5(5,10) 0.6295 0.6521 0.6417 0.6174 0.5119 0.5173 0.5583 0.5530 0.5682 0.4632
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Figure 2: Surface plots for cost and emission objectives for E-dyNSGA-III for (a) 500 feature evaluations, (b) 1,000 feature evaluations, (c)
5,000 feature evaluations, and (d) 10,000 feature evaluations.

Table 6: HSR indicator values for the power generation model considering 4 di�erent time windows (standard deviation in parentheses).

Time window (Tw) (mins) Feature evaluation (FE) dyNSGA-III E-dyNSGA-III

5

500 1.135E-02(1.121E-01) 1.478E-03(4.217E-02)
1000 2.459E-02(1.882E-02) 3.387E-03(2.217E-02)
5000 2.617E-01(2.239E-01) 3.214E-02(3.215E-01)
10000 3.698E-02(3.294E-01) 2.483E-03(2.783E-02)

10

500 2.350E-02(3.583E-02) 3.618E-03(3.297E-02)
1000 1.884E-01(1.487E-02) 3.506E-02(3.218E-02)
5000 4.205E-01(3.502E-01) 2.515E-03(2.474E-02)
10000 3.294E-03(4.215E-02) 2.612E-02(3.217E-02)

15

500 3.195E-02(2.386E-02) 3.598E-02(3.218E-01)
1000 2.504E-01(3.508E00) 2.579E-02(5.215E-01)
5000 3.582E-01(2.712E-01) 2.191E-02(2.575E-02)
10000 2.698E-01(3.583E-02) 1.578E-03(3.215E-02)

30

500 3.195E-01(2.386E-01) 2.185E-03(2.356E-01)
1000 4.217E-01(3.206E00) 3.219E-02(3.570E-01)
5000 3.905E-02(2.496E-01) 2.123E-01(4.129E-02)
10000 2.217E-01(2.486E-01) 4.213E-03(3.298E-02)
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reference points [26]. Consequently, the HSR indicator
requires less parameter settings than the HV indicator. Also,
since it assigns zero investment to dominated solutions and
strictly positive investment to non-dominated solutions, the
possibility of a strictly non-dominated front is more likely.
Further details on the formulation and performance of the
HSR indicator can be found in [26].

3.5. Results on Performance of E-dyNSGA-III on Multi-Ob-
jective Hybrid Power Generation Scheduling Model. In this
section, we will analyze the performance of the proposed
algorithm on the optimization of the dynamic, hybrid power
generation scheduling model introduced in Section 3.4. �e
purpose of this analysis is twofold. First, we want to observe
how E-dyNSGA-III selects non-dominated solutions using
the reference point-based HSR indicator. �e dynamic
nature of the DMOP will enable us to examine how the PF
changes with corresponding changes in the time window of
the DMOP. Second, we want to observe the capability of the
proposed DMOEA to be used in real-time decision-making
based on how quickly it responds to changes in the problem
objectives and constraints. �is is important because EAs
generally perform better on static problems compared with
time-varying problems. However, many real-world prob-
lems are dynamic, and the robustness of DMOEAs is greatly
dependent on their capability to track time-varying PFs.

Figures 2 and 3 show surface plots for normalized values
representing the cost and emission objectives of the DMOP.
We compare the performance of E-dyNSGA-III with
dyNSGA-III for 4 instances of feature evaluations (FEs): 500,
1,000, 5,000, and 10,000. �e aim is to observe the capability
of the DMOEAs to settle on the least expensive compromise
between the cost and emission objectives for the generation
model. From the �gures, normalized values between 0 and
0.2 represent the best compromise between the two objec-
tives. From the surface plots, we observe that dyNSGA-III
exhibits higher peaks in the OF space compared with
E-dyNSGA, particularly as the number of feature evaluations
increases. �is means that dyNSGA-III is likely to �nd it
di�cult to settle on the least expensive compromise between
the two objectives. We also observe that E-dyNSGA-III
concentrates the least expensive solutions in the center of the
OF space, which is not the case with dyNSGA-III. �e
E-dyNSGA-III algorithm has a relaxed landscape at the
center of the OF space compared with dyNSGA-III. �e
latter is characterized by peaks, which shows that dyNSGA-
III �nds it

challenging to settle on the least expensive set of solu-
tions particularly when the number of feature evaluations is
high. For 500 feature evaluations, dyNSGA-III is able to �nd
a set of suitable solutions near the center of the OF space.
However, as the number of feature evaluations increases, it
becomes di�cult for the algorithm to converge on a suitable
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Figure 3: Surface plots for cost and emission objectives for dyNSGA-III for (a) 500 feature evaluations, (b) 1,000 feature evaluations, (c)
5,000 feature evaluations, and (d) 10,000 feature evaluations.
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set of reference points. It is important for DMOEAs to have
the capability to track changes in the dynamic OF space since
this is the basis for the real-world application of these al-
gorithms. In this study, we consider two objectives with
time-varying parameters and constraints. However, many
real-world problems have more than two objectives.
�erefore, satisfying the �rst aim of this analysis as detailed
at the beginning of this section is vital.

In Figure 4, we analyze the ability of E-dyNSGA-III to be
used in real-time decision-making by �nding a feasible
compromise between the cost and emission objectives. In
Figures 4(a) and 4(b), we see the contour plots of
E-dyNSGA-III for 500 and 10,000 feature evaluations, re-
spectively. For both FE settings, we see that E-dyNSGA-III is
able to settle on cheap solutions as seen by the concentration
in the center of the plot. It can be seen that

more expensive solutions are concentrated at the edges
of the plot. �is is seen less in the plots of dyNSGA-III,
particularly in the case of 10,000 FEs (Figure 4(d)). In this
plot, there are almost no cheap solutions, which e�ectively
balance cost and emission objectives of the DMOP. �is
di�culty to arrive at suitable solutions in the face of rapidly
changing objectives, parameters, and constraints is one key
reason why DMOEAs are limited in their application to
optimization of real-world problems.

E-dyNSGA-III attempts to remedy this problem by the
use of a niche of mutated solutions introduced into the
candidate space. �e e�ect of this approach is further in-
vestigated by comparing the performance of E-dyNSGA-III
with dyNSGA-III using the HSR performance indicator.
From Table 5, we see that E-dyNSGA-III is the best per-
former for 4 settings of the feature evaluations. We observe
that the inclusion of mutated solutions causes more e�cient
placement of reference points, and consequently, a non-
dominated PF is selected based on an appropriate reward-to-
volatility ratio.

4. Conclusions

�is study has proposed an archive approach using mu-
tated solutions for assigning reference points based on an
earlier proposed method for improving the capability of
NSGA-II and NSGA-III to handle MOPs. We extend this
approach to dynamic multi-objective optimization prob-
lems by improving the capability of earlier proposed
dyNSGA-III to keep track of �t solutions in changing space
and time.

When the number of objectives describing a DMOP is 3
or more, the dimensionality of the objective function space
becomes complicated.�is poses a challenge to the DMOEA
as it struggles to maintain suitable candidate solutions
throughout the search period. In particular, NSGA-III ex-
periences a loss of selection pressure when the number of
objectives and consequently the number of dimensions
increase. We also observed this behavior with dyNSGA-III.

�erefore, in this study, we use an archive to preserve �t
solutions when the number of objectives is 3 or more. �is
approach of using an archive of elite solutions in cases where
the number of objectives is 3 or more is the attribute that
distinguishes E-dyNSGA-III from the earlier proposed
dyNSGA-III. To determine the rate of change in the given
problem solution space, we consider theMinkowski distance
DM (x, y) of solution a from its associated reference point at
time tn and tn+1, respectively. If the change in DM (x, y) is
large, then rate of change is large for solution a. Otherwise,
the rate of change is considered to be small. For a small rate
of change in the presence of 3 or more objectives, we infer
that more competition is required to obtain the �ttest
candidates. �erefore, we introduce a larger proportion of
mutated solutions according to the number of reference
points. For instance, if a small change is detected, we in-
troduce 2M mutated solutions for every reference point.
Otherwise, if the change is large, we increase the number of
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Figure 4: Contour plots for cost and emission objectives for (a) E-dyNSGA-III for 500 feature evaluations, (b) 10,000 feature evaluations, (c)
dyNSGA-III for 500 feature evaluations, and (d) 10,000 feature evaluations.
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reference points by 2M − 1 to guide the population to Pareto
optimality.,is strategy is what differentiates E-dyNSGA-III
from dyNSGA-III. We tested the performance of the im-
proved E-dyNSGA-III on four DMOPs with a complicated
Pareto front. Preliminary results show that the proposed
approach outperforms the original dyNSGA-III. Also,
E-dyNSGA-III was able to associate a larger percentage of
final candidate solutions with at least one reference point
compared with dyNSGA-III, which indicates that the search
strategy uses reference points to guide the solution space
towards Pareto optimality. We also compared the perfor-
mance of dyNSGA-III and E-dyNSGA-III on a real-world
power generation scheduling model. We recognize the need
to apply our DMOEA to optimize real-world problems.
,ese algorithms are limited in practical applicability due to
their inability to adapt to real-time changes in problem
objectives, parameters, and constraints. Consequently, these
algorithms get trapped in dynamic environments, which
makes their performance unreliable. From the results ob-
tained, the performance of E-dyNSGA-III is promising.
However, we observe that for a large number of feature
evaluations (5,000–10,000), there is a tendency for our
proposed algorithm to get trapped in local optima. ,e real-
world problem considered here has two objectives. ,ere-
fore, we ask ourselves the question: what happens when the
number of objectives is more than two in the presence of
many FEs?

Future work would focus on testing the performance of
E-dyNSGA-III on DMOPs with more than 3 objectives with
many dynamic feature evaluations. We observe that the pro-
posed DMOEA optimizes multimodal, many-objective
RPOOT problems satisfactorily. However, adapting it to per-
form satisfactorily on dynamic, real-world problems is still a
work in progress. Particularly, when the number of objectives is
10 or greater, the number of reference points increases sig-
nificantly, which can result in an increase in the processing time
of the proposed algorithm. We are currently working to find a
trade-off between accuracy and speed of the algorithm. Section
3.3 discusses the performance of E-dyNSGA-III on dimen-
sionality reduction DMOPs, which is a test of its ability to
reduce the number of redundant objectives in many-objective
scenarios. However, more research is required to be able to
train the algorithm to effectively handle such complex search
environments. Satisfactory performance would demonstrate
that E-dyNSGA-III can be used to effectively optimize a variety
of real-world problems.
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