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Bipartite graph is widely used to model the complex relationships among two types of entities. Community detection (CD) is a
fundamental tool for graph analysis, which aims to �nd all or top-k densely connected subgraphs. However, the existing studies
about the CD problem usually focus on structure cohesiveness, such as (α, β)-core, but ignore the attributes within the rela-
tionships, which can be modeled as attribute bipartite graphs. Moreover, the returned results usually su�er from rationality issues.
To overcome the limitations, in this paper, we introduce a novel metric, named rational score, which takes both preference
consistency and community size into consideration to evaluate the community. Based on the proposed rational score and the
widely used (α, β)-core model, we propose and investigate the rational (α, β)-core detection in attribute bipartite graphs (RCD-
ABG), which aims to retrieve the connected (α, β)-core with the largest rational score. We prove that the problem is NP-hard and
the object function is nonmonotonic and non-submodular. To tackle RCD-ABG problem, a basic greedy framework is �rst
proposed. To further improve the quality of returned results, two optimized strategies are further developed. Finally, extensive
experiments are conducted on 6 real-world bipartite networks to evaluate the performance of the proposed model and techniques.
As shown in experiments, the returned community is signi�cantly better than the result returned by the traditional
(α, β)-core model.

1. Introduction

A bipartite graph is composed of two disjoint vertex sets, and
there are only edges connecting vertices from di�erent sets.
Due to its proliferation applications like fraudsters detection
[1] and collaboration group maintenance [2], many fun-
damental problems have been investigated to analyze the
bipartite graphs. Among these problems, community de-
tection (CD) aims to �nd all or top-k communities by
leveraging di�erent models like (α, β)-core [3], bitruss [4],
and so on. Due to its unique feature, the (α, β)-core model is
widely adopted in di�erent domains. Given a bipartite
graph, the (α, β)-core is the maximal subgraph where the
degree of each vertex in the upper layer is at least α and the
degree of each vertex in the lower layer is at least β.
Nonetheless, previous models mainly focus on the

cohesiveness structure of the graphs but neglect the attribute
properties with community.

In real applications, the relationships between di�erent
entities often have certain characteristics, which can be
modeled as attribute bipartite graphs. For example, in the
user-movie network of Figure 1, the upper layer denotes a set
of users and the lower layer are the set of movies. Each edge
is associated with a number denoting the score assigned
from a user to a movie. For a discussion group in the
platform, it will have amore harmonious atmosphere if users
have high consistency of preference (e.g., rating the same
score or tag for the same movie). Besides, small discussion
group is more conducive to frequent communication among
users. However, the existing research cannot capture those
properties. Motivated by this, in this paper, we introduce a
novel metric, named rational score, which takes both
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preference consistency and community size into consider-
ation to evaluate a community. Furthermore, we formally
define the problem of rational community detection over
attribute bipartite graphs (RCD-ABG), which attempts to
find the connected (α, β)-core with the largest rational score.
+e following is a motivation example.

Example 1. Reconsider the user-movie network in Figure 1,
where the number on the edge denotes the corresponding
rating for the movie. Note that the scoring mechanism
adopts a five-point system, so the score varies from 1 to 5 in
the network. Suppose α� 2 and β� 2 here. Based on the
definition, the subgraph induced by vertex set
u2, u3, . . . , u8, v2, v3, . . . , v8  is a (2, 2)-core, where the de-
gree of each vertex is at least 2. However, in the (2, 2)-core,
many users have distinct scoring schemes for the same
movie. For example, users u6, u7, and u8 gave three different
scores to the movie v7. Moreover, the community size is too
large to facilitate communication between users. For in-
stance, users u2 and u6 even have not watched the same
movie ever. Given α� 2 and β� 2, the vertices in the orange
rectangle are our identified rational (α, β)-core community.
Note that, due to the complex equation involved, the detailed
definition of rational (α, β)-core community can be found in
preliminaries section. As we can observe, in this community,
most users share the same movie taste and the number of
people in the group is more reasonable.

1.1. Applications. +e RCD-ABG problem can find many
real-world applications. We list some examples as follows.

(i) Discussion Group Mining. In some real-world bi-
partite graphs such as BookCrossing, edges denote
rating relationships between users and books. +ere
are many discussion groups with these platforms.
For users, they are more likely to stay active in a
discussion group if the users inside share the same
taste. Besides, users will prefer to discuss different
topics in a group with appropriate size. +is is be-
cause too many users can make them uncomfortable
and too few will make the discussion difficult to carry
on. Hence, by retrieving the rational group, the
platform can provide group recommendation more
precisely, which is helpful for better user experience.

(ii) Personalized Product Recommendation. In customer-
movie bipartite networks, the customers will rate the
movies based on their personal preference and

movie performance. By retrieving the rational
(α, β)-core, the personalized movie recommenda-
tion can be provided to customers in the rational
community. For instance, in the community found
in the orange rectangle in Figure 1, the platform can
recommendmovie v4 for user u2.+is is because v4 is
given the common score from other customers (i.e.,
u3 and u4). Similarly, movie v2 can be recommended
for user u4.

1.2. Challenges. To our best knowledge, we are the first to
investigate the rational (α, β)-core detection problem in
attribute bipartite graphs. We prove the problem is NP-hard
and we adopt the greedy framework to remove the best
vertex iteratively. However, removing a vertex from the
graph may make many other vertices drop from the result,
which limits the effectiveness of the algorithm. Hence, it is
necessary to develop optimized techniques to address these
challenges.

1.3. Our Solution. Due to the NP-hardness of the problem, a
basic greedy framework is proposed by adopting the greedy
framework. In general, we remove the vertex with the
smallest marginal gain at each iteration and calculate the
remaining (α, β)-core with its rational score. We stop this
process until there is no (α, β)-core and return the
(α, β)-core with the largest rational score as the result. To
address the discussed drawbacks of our basic greedy
framework, we further develop two improved strategies,
namely, 2-hop neighbors-based optimization and followers-
based optimization. Specifically, in 2-hop neighbors-based
optimization, we approximate the marginal score by con-
sidering the 2-hop neighbors of the removed vertex in the
same layer. In our followers-based optimization, we consider
the followers of the removed vertex and modify the marginal
rational score.

1.4. Contributions. +e contributions of this paper are
summarized as follows.

(i) To better capture the properties within bipartite
graph community, we conduct the first research to
propose and investigate the rational community
detection problem over attribute bipartite graphs by
leveraging the novel rational score metric
developed.
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Figure 1: A user-movie network.
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(ii) +eoretically, we prove that the problem is NP-
hard, and the rational score function is non-
monotonic and non-submodular.

(iii) +e basic greedy framework is first presented. To
further improve the quality of returned results, two
optimized strategies are proposed, namely, 2-hop
neighbors-based optimization and followers-based
optimization.

(iv) Experiments over 6 real-world bipartite graphs are
conducted to show the superiority of proposed
techniques. Compared with the traditional
(α, β)-core model, our model is much more
effective.

1.5. Roadmap. We organize the rest of this paper as follows.
We first review the related work. +en, we introduce the
problem investigated and the corresponding problem
properties. Next, we will present the basic greedy framework
and two optimized strategies. Finally, we report the per-
formance of our algorithms over real datasets and conclude
the paper.

2. Related Work

In this paper, we conduct the first attempt to propose and
investigate the rational (α, β)-core problem. +us, we will
present the related work from the following two aspects.

Cohesive Subgraphs Mining. In different domains,
graphs are widely used to model the complex rela-
tionships among different entities. As a key problem in
graph analysis, community search has been widely
studied in the literature and different models have been
proposed to measure the cohesiveness of community,
such as k-core, k-truss, and clique. In many real-world
applications, both graph structures and attribute in-
formation are considered. For attribute graph pro-
cessing, community search problem used both link
relationship and attributes because the attributes
usually can make communities more meaningful and
easy to interpret [5]. In [5], Fang et al. proposed at-
tributed community query (or ACQ) problem, which
returned an attributed community (AC) for an at-
tributed graph. +e returned community should satisfy
both structure cohesiveness constraint and keyword
cohesiveness constraint. In [6], Huang and Laksh-
manan considered communities based on topics of
interest and proposed attributed truss communities
(ATC) search problem. +ey aimed to find connected
k-truss subgraphs that contained query vertices with
the largest attribute relevance score. In [7], Zhang et al.
proposed a keyword-centric community search
(KCCS) problem over attribute graphs. +ey tried to
find a community, where the degree of each vertex
should be at least k, and the distance between the vertex
and all query keywords is minimized. Influential
community search has also been studied in [8], where
each vertex is associated with a number denoting its

influence. Its goal was to find communities with the
largest influence.
Bipartite Graph Analysis. Recently, the bipartite graph
has attracted much attention due to its proliferate
applications like online group recommendation and
fraudsters’ detection [2]. In [9], Borgatti and Everett
were the first to investigate the cohesive communities
in bipartite graphs for network analysis. To analyze the
properties of bipartite networks, numerous models
have been investigated, such as (α, β)-core [10], bitruss
[11], and biclique [12]. In [13], the significant
(α, β)-community search problem was proposed and
studied on weighted bipartite graphs, where each edge
is associated with a weight. +ey aimed to find the
significant (α, β)-community that contained query
vertex and maximized the minimum edge weight
within community. In [4], Wang et al. studied the
bitruss model in bipartite graphs. Given a bipartite
graph, the bitruss is the maximal subgraph where each
edge is contained in at least k butterflies. In the liter-
ature, considering the fairness constraints, the fair
clustering problems [14–16] were investigated to find
communities on bipartite graphs. However, none of the
previous studies take the rationality of communities
into consideration.

3. Preliminaries

In this section, we first introduce some necessary concepts
and present the formal definition of the rational community
detection problem over attribute bipartite graphs. Table 1
summarizes the notations that are frequently used in this
paper.

3.1. Problem Definition. We consider an attribute bipartite
graph G � (U, L, E,A) as an undirected graph without
multiple edges and self-loops. U and L are the two disjoint
and independent vertex sets in G; that is, U∩L � ∅. E is the
edge set and each edge e � (u, v) ∈ E connects one vertex
u ∈ U and one vertex v ∈ L; that is, E ⊆ U × L.
A � a1, a2, . . . , at  is the attribute set. Each edge e ∈ E is

Table 1: Summary of notations.

Notation Definition
G � (U, L, E,A) An attribute bipartite graph
U/L +e vertex set
E +e edge set
A � a1, . . . , at  +e attribute set of edges
S � (US, LS, ES,AS) An induced subgraph of G

n Number of vertices in G

m Number of edges in G

u, v Vertex in G

NS(u) +e set of u’s neighbors in S

dS(u) +e degree of u in S

α, β +e degree constraint
xG(v) Consensus score of vertex v ∈ L

xS Consensus score of subgraph S

f(S) Rational score of subgraph S
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associated with an attribute (e.g., number/tag) a(e) ∈ A. We
use n and m to denote the number of vertices and edges in G,
respectively. Given an attribute bipartite graph G, a sub-
graph S � (US, LS, ES,AS) is an induced subgraph of G; if
US ⊆ U, LS ⊆ L, ES � E∩ (US × LS) andAS ⊆ A. For a vertex
u ∈ S, the set of u’s neighbors is denoted by NS(u) (i.e., the
adjacent vertices of u). dS(u) � |NS(u)| denotes the degree
of u in S (i.e., the number of u’s neighbor vertices).

Definition 1 ((α, β)-core). Given a bipartite graph G, a
subgraph S is the (α, β)-core of G, denoted by Cα,β, if it
satisfies the following: (1) degree constraint (i.e., dS(u)≥ α
for each vertex u ∈ US and dS(v)≥ β for each vertex v ∈ LS);
(2 ) S is maximal; that is, any supergraph S′S is not a
(α, β)-core.

To compute the (α, β)-core, in our paper, we iteratively
remove the vertices in two layers violating the corresponding
degree constraint until there are no unsatisfied vertices in the
graph, the details of which are shown in Algorithm 1. +e
time complexity is O(m) [17]. As discussed before, the
people in a rational discussion group are cohesive and have
consistent preference. In the following, we first introduce the
consensus score of vertex and community, respectively. Note
that we only consider the consensus score of the vertex in
lower (e.g., movie) layer. +e rational (α, β)-core model is
further developed based on the rational score consisting of
the consensus score and community size. +en, we present
the formal definition of our problem.

Definition 2 (Consensus score). Given an attribute bipartite
graph G, the consensus score of each vertex v ∈ L, denoted
by xG(v)/dG(v), where xG(v) is the maximum number of its
adjacent edges in G with the same attribute number. For a
subgraph S of G, its consensus score is defined as
xS � v∈LS

xS(v)/dS(v)/|LS|, where v∈LS
xS(v)/dS(v) is the

sum of consensus score of all vertices in LS and |LS| is the
number of vertices in the lower layer of S.

Example 2. Considering the vertices in the orange line of the
bipartite graph in Figure 1, the consensus score of v3 is 2/3.
+e consensus score of community in the orange line is 8/9.

To judge a community, we not only want to consider the
consensus but also want to consider the size constraint of it.
+is is because that the traditional study group with not very
large size can facilitate people there to discuss and analyze
problem. So, we also combine the size constraint into our
rational score function, which is expressed as follows:

f(S) � λ
v∈LS

xS(v)/dS(v)

LS




+(1 − λ)
1

US


 LS



, (1)

where λ is a parameter to make the trade-off between the
consensus score and the community size. Based on this
rational score function, we give the definition of rational
community.

Definition 3 (rational (α, β)-core). Given an attribute bi-
partite graph G and two positive integers α and β, a subgraph

S is a attribute (α, β)-core of G, denoted by RCα,β, if it meets
the following three criteria:

(i) Connectivity: S is connected
(ii) Cohesiveness: S is a (α, β)-core
(iii) Rationality: S has the largest rational score f(S)

among subgraphs satisfying the above criteria

3.1.1. Problem Statement. Given an attribute bipartite graph
G and two positive integers α and β, we aim to develop
efficient algorithms to find the rational (α, β)-core (i.e., the
(α, β)-core with the largest rational score).

3.2. Problem Properties. As shown in +eorem 1, the
problem studied is NP-hard. Besides, the rational score
function is nonmonotonic and non-submodular, whose
details are in +eorem 2.

Theorem 1. Given an attribute bipartite graph G, the
problem of computing the rational (α, β)-core is NP-hard.

Proof. When α> 0 and β> 0, we reduce the biclique problem
[17] to RCD-ABG problem. Given an attribute bipartite graph
G � (V � (U∪ L), E,A), where for each vertex in lower layer
L, its adjacent edges have distinct attribute. +is means that
given a subgraph S ofG, the consensus score of each vertex v in
LS is 1/dS(v). Hence, our score function is converted tof(S) �

λv∈LS
1/dS(v)/ |LS| + (1 − λ)1/|US||LS|. In order to make the

rational score large, for the first term of function, namely,
λv∈LS

1/dS(v)/|LS|, we need to make the numerator be largest
and the denominator be smallest. Due to the degree constraint
of lower layer, the lower bound of dS(v) is β. So, the rational
score function is f � λ|LS|1/β/|LS| + (1 − λ)1/|US||LS|

� λ1/β + (1 − λ)1/|US||LS|. Given the parameter α, β, and λ, to
find rational (α, β)-core with largestf, |US| and |LS| need to be
minimized, which means that |US| and |LS| should be equal to
β and α, respectively. As discussed, each vertex u ∈ US (resp.
u ∈ LS) should satisfy dS(u)≥ α (resp. dS(u)≥ β). +is is a
biclique that each vertex in different layers is connect, which is
NP-hard [17]. +erefore, our problem is NP-hard. □ □

Theorem 2. 6e objective score function f(S) is non-
monotonic and non-submodular.

Proof. Nonmonotonic. By considering the example in
Figure 1, we first prove its nonmonotonicity. Note that we
only keep two decimal places in the following. Suppose
λ � 0.5; we can see that in subgraph denoted by solid line,
that is, S � u2, u3, u4, v2, v3, v4 , f(S) � 0.5. After deleting
vertex u2, f(S/ u2 ) � 0.53. While, by further deleting vertex
u4, the present score is f(S\ u2 \ v2 ) � 0.5. +erefore, the
function is nonmonotonic.

Non-Submodular. Given two sets A and B, f(x) is sub-
modular if f(A∪B) + f(A∩B)≤f(A) + f(B). We show
the inequality does not hold by a counterexample in Fig-
ure 1. Suppose A � (u2, u3, v2, v3)  and B � (u3, u4, v3, v4) .
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We have f(A) � 0.5, f(B) � 0.5, f(A∪B) � 0.5, and
f(A∩B) � 0.75. +us, the equation does not hold and f is
not submodular. □

4. Solution

In this section, a greedy framework is firstly developed to
find the result, which is based on the concept of score
function and marginal gain that we define. Considering the
limitations of the basic method, we further propose two
novel strategies with better quality.

4.1. A Basic Greedy Framework (BGF). Intuitively, to find
the (α, β)-core with largest score, we can delete those vertices
whose deletion will increase the score. Based on this, we
present our basic greedy framework by introducing the
rational marginal gain as follows.

Definition 4. (rational marginal score). Given an attribute
bipartite graph G and a vertex u ∈ G, the rational marginal
gain is defined as

△G(u) �

f(G) − f
G

NG
′(u)∪ u{ }( 

 u ∈ U.

f(G) − f
G

u{ }
 u ∈ L,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where NG
′(u) is the set of u’s neighbors in L that violate the

degree constraint after removing vertex u.

4.1.1. 6e Basic Greedy Framework (BGF). +e details of
BGF are illustrated in Algorithm 2, which includes three
main steps. We use G to denote the set of all connected
(α, β)-cores. Step 1. We find all (α, β)-cores of G and store
them into G in Line 2. We use Gi to denote the current
processing (α, β)-core. Step 2. At each iteration, we greedily

peel the vertex v in graphGi providing the smallest marginal
gain △Gi

(v) � f(Gi) − f(Gi/ v{ }) (Line 5), which is called
the best vertex. After removing best vertex, we calculate the
(α, β)-core in the remaining graph. If there are many
connected (α, β)-cores, we push back them into G (Lines
6–8). We continue this process until there is no (α, β)-core
in the graph. Note that the rational marginal gain may be a
negative number, which means the score of function in-
crease. Step 3. We output the result with the largest score
among obtained attribute (α, β)-cores (Line 9).

Example 3. Considering the user-movie network in Fig-
ure 1. Suppose α � 2, β � 2. According the BGF, vertex v6 is
removed firstly and the rational score of the remained
(2, 2)-core is 0.415476. Similarly, we remove vertices v7, v4,
and v3, iteratively. +e corresponding rational score is
0.481667, 0.6, and 0. +erefore, the returned result is
u2, u3, v2, v3  with rational score of 0.6.

4.2. Optimized Strategies. +e basic greedy framework is
simple but suffers from the following drawback. When re-
moving a vertex v from the subgraph S, it may make the
support of some other vertices decrease and lead them to
drop from the community in succession. Note that these
vertices are called the followers of v including v itself,
denoted as FS(v). If the removal vertex has a large number
of followers, it can severely limit the effectiveness of the
algorithm. Hence, we need to consider the effect of each
removal vertex. In the following section, we propose two
improved strategies to handle the limitation.

4.2.1. 2-Hop Neighbors Optimization (OS-I). As observed, if
the removal vertex is in the lower layer, its 2-hop neighbors
in the same layer may violate the degree constraint and be
deleted, which significantly affect the rational score. Based
on this, we use the following equation to approximate
marginal score function △G(u) by △G(u),

△G(u) � f(G) − f
G

NG
′(u)∪ u{ }( 

 u ∈ U, f(G) − f
G

H2G(u)∪ u{ }( 
 , (3)

where H2G(v) is the 2-hop neighbors of v in the lower
layer. +erefore, the best vertex is adjusted as
u⟵ argminv∈Gi

△Gi
(v) in Line 5 of algorithm 1 and other

steps are the same.

Example 4. Reconsider the user-movie network in Figure 1.
Suppose α� 2, β� 2. According to the OS-I, we remove
vertex v7 firstly and obtain the rational score of the remained
(2, 2)-core. +en, we remove u6 and obtain the corre-
sponding score of 0.6556. After removing u3, the obtained
score is 0. So, we return the result by u2, u3, u4, v2, v3, v4 

with a score of 0.6556.

4.2.2. Followers-Based Optimization (OS-II). +e second
idea is motivated by the followers of each removal vertex.
Generally, instead of removing one vertex and calculating
the rational marginal gain, we remove a vertex with its all
followers from the current candidate graph that have the
smallest attribute marginal gain. Hence, the marginal score
is modified as the following equation:

△ G(u) � f(G) − f
G

FG(u)
 , (4)

and the other steps are the same as BGF.
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Example 5. Reconsider the example in Figure 1. Suppose
α� 2, β� 2. According to the OS-II, vertex u7 is removed
firstly and the obtained score is 0.455333. +en, we remove
v5 and calculate the score with 0.65556. After deleting u2, the
score is 0. +erefore, we return the result u2, u3, u4, v2,

v3, v4} with a score of 0.65556.

4.2.3. Analysis. +e main difference between BGF and
optimized algorithm is the best vertex. In BGF, calculating
themarginal score of a vertex is O(1) time. In OS-II, the time
complexity of identifying the followers of the vertex is O(m),
which may significantly increase the running time.

5. Experiments

5.1. Algorithms. To the best of our knowledge, there is no
existing work for RCD-ABG problem. In the experiments,
we implement and evaluate the following algorithms.

(i) BGF. +e baseline greedy framework is presented in
Algorithm 2, which iteratively peels the graph and
returns the best result during the search

(ii) OS-I. OS-I leverages the baseline framework BGF
and further integrates the proposed 2-hop neigh-
bor-based optimization

(iii) OS-II. OS-II leverages the baseline framework BGF
and further integrates the proposed follower-based
optimization

(iv) ORI. To evaluate the advantage of proposed model,
we also implement the traditional (α, β)-core search
method [10], which iteratively removes the vertex

that violates the degree constraints and returns the
final subgraph

5.2. Datasets and Workloads. We employ 6 real-world bi-
partite graphs. Among these datasets, CiaoDVD and Tri-
pAdvisor can be obtained on KONECT (https://konect.uni-
koblenz.de). Other datasets are publicly available on
GroupLens (https://grouplens.org/datasets/). +e statistics
of datasets are shown in Table 2, where |A| is the number of
attributes in bipartite graphs. HetRec (HR) [18] is a user-
artists network, where the attribute of edges denotes the
number of time that user listens to the music by the artist.
CiaoDVD (CD) and MovieLens (ML) [18] are user-movie
networks of which the attributes of relationships represent
the ratings for movie. TripAdvisor is a user-hotel bipartite
graphs and the attribute of its edges denotes the rating taken
by users.+e BookCrossing (BC) is a user-book network and
the edges of it denote the book-rating taken by user. Due to
the density of graphs, α � β vary from 5 to 25 in HetRec,
CiaoDVD, and TripAdvisor, vary from 15 to 35 in Book-
Crossing and vary from 50 to 250 in MovieLens and Per-
sonality. λ is set as 0.7 because the density of community will

Input: G: a bipartite graph, α, β: degree constraints
Output: +e (α, β)-core of G

(1) While exists u ∈ U with d(u)< α or u ∈ V with d(u)< β do
(2) G⟵G/ u{ }

(3) return G

ALGORITHM 1: Compute (α, β)-core.

Input: G: attribute bipartite graph, α: degree constraint in upper layer, β: degree constraint in lower layer
Output: H: the connected (α, β)-core with the largest rational score
(1) i⟵ 1
(2) G⟵ an empty vector

//Step 1
(3) G⟵ all connected Cα,β(G)

//Step 2
(4) While: G≠∅ do
(5) u⟵ argminv∈Gi

△Gi
(v)

(6) for each connected Cα,β(Gi/u) in Gi\u do
(7) push back Cα,β(Gi/u) into G

(8) i⟵ i + 1;

//Step 3
(9) H⟵ argG′G′∈G

f(G′);

ALGORITHM 2: A basic greedy framework (BGF).

Table 2: Statistics of datasets.

Dataset |U| |L| |E| |A|

HetRec (HR) 2,101 18,746 92,835 5
CiaoDVD (CD) 17,615 16,121 72,345 5
TripAdvisor (TA) 145,316 1,759 175,655 5
MovieLens (ML) 71,535 65,134 855,598 5
BookCrossing (BC) 278,855 270,981 941,148 10
Personality (PY) 1,822 198,118 1,028,751 5
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Figure 3: Effectiveness evaluation by varying parameters α and β. (a) HetRec. (b) CiaoDVD. (c) TripAdvisor. (d) MovieLens.
(e) BookCrossing. (f ) Personality.
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strengthen with the continuous deletion of vertices; thus, we
focus on consensus score. All the programs are implemented
in standard C++. All the experiments are performed on a
server with an Intel Xeon 2.4GHz CPU and 128GB main
memory.

5.3. Efficiency Evaluation. To evaluate the efficiency, we
report the response time of algorithms by varying α and β in
Figures 2(a)–2(f). As observed, the time cost of OS-I and
OS-II is more than BGF. +is is because OS-I needs to
calculate 2-hop neighbors of vertex in the lower layer and
OS-II needs to calculate followers of vertex. Although the
time complexity of OS-I and OS-II is more complex than
BGF, there is not much difference of response time between
them. We can observe that when α and β increase, the re-
sponse time decreases for all methods. +is is because the
community size decreases.

5.4. Effectiveness Evaluation. To evaluate the effectiveness,
we compare BGF, OS-I, and OS-II with ORI and report the
rational score of the returned community. ORI is based on
the traditional (α, β)-core model. It first computes the
(α, β)-core of the graph and then directly returns the
connected component with the largest rational score. +e
results are shown in Figures 3(a)–3(f). We can observe that
original (α, β)-core has very small rational score. OS-I and
OS-II significantly outperform BGF over all the datasets,
namely, find community with higher score than BGF. +e
score returned by OS-I is at least 0.01 higher than the one
returned by BGF in all datasets. Due to the feature of the
consensus score, the improvement of OS-I is already sig-
nificant for the overall performance. +e rational score
decreases when α and β increase because of tighter degree
constraint.

5.5. Case Study. To further evaluate the advantage of the
proposed model, we conduct a case study on HetRec dataset.

+e results are shown in Figure 4. As shown, the movie and
user are marked with different colors. +e different-color
edges denote different scores. +e community in the solid
line that consists of enlarged vertices and bold edges is the
returned result. As we can see, it can find a more rational
community with a high preference and density structure.

6. Conclusion and Future Work

In this paper, we propose and investigate the rational
(α, β)-core detection problem in attribute bipartite graphs.
We formally define the problem and prove its NP-hardness.
To solve this problem, a basic greedy framework is first
presented, which iteratively removes the best vertex with the
smallest marginal gain and calculate the remaining
(α, β)-core. Two optimized strategies, namely, 2-hop
neighbor-based optimization and follower-based optimi-
zation, are proposed to improve the performance. Experi-
ments are conducted on real bipartite graphs to demonstrate
the advantages of proposedmodel and techniques. As shown
in the experience, the proposed model significantly out-
performs the traditional (α, β)-core model. In real-world
applications, there are also attributes within the vertices of
the graphs. In the further work, we will consider more
complex scenario to design themodel and the corresponding
approaches.
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