
Research Article
Clustering Ensemble Technology Based on Granular Computing
to Extract Cervical Cancer Predictors

Ye-Cheng Wang,1 Xu-Qing Tang ,1 and Honglin Xu2

1School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
2Wuxi Vocational Institute of Commerce, Wuxi 214122, Jiangsu, China

Correspondence should be addressed to Xu-Qing Tang; txq5139@jiangnan.edu.cn

Received 7 January 2022; Revised 25 March 2022; Accepted 8 April 2022; Published 26 May 2022

Academic Editor: Ali Ahmadian

Copyright © 2022 Ye-Cheng Wang et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Background. Cervical cancer is the most common gynecological malignancy, and its incidence has tended to be younger in recent
years.�rough the analysis of high-throughput expression data, the identi�cation of key genes in cancer and healthy individuals as
predictors of cervical cancer is of great signi�cance for the early detection and early treatment of cervical cancer.Method. Granular
computing is a concept and computing paradigm to deal with problems through information granulation, and the process of
granulation can be realized by means of clustering. Based on this, this paper proposes an AB method to obtain representative
elements in a multiattribute data system. First, the evaluation index FHEI of the clustering structure is introduced, and Algorithm
1 is designed to obtain the optimal clustering structure of each attribute of the data system and use it as the base cluster. Secondly,
based on the clustering ensemble technology of granular computing, Algorithm 2 is designed with the help of the concept of
information entropy.�e algorithm takes the base cluster as the input to obtain the optimal ensemble clustering structure. Finally,
using the nearest center principle, the representative elements of each class in the optimal ensemble clustering structure are
obtained. Results. In this paper, the di�erentially expressed genes (DEGs) are screened out by using the gene expression data of
cervical cancer, and the scores of the four interaction relationships among the DEGs are used as a multiattribute data system and
input into the AB method. �e �ve representative elements obtained are RTTN, SAMD10, ZNF207, WAC, and METTL14, which
are the predictors of cervical cancer.�e classi�cation accuracy of these predictors is as high as 98.82%.�is paper also conducts a
comparative study between the AB method and other classical methods on six independent gene expression datasets. �e results
show that the number of predictors obtained by the AB method is small but has a high classi�cation accuracy in the classi�cation
of patient samples.

1. Introduction

In recent years, with the rapid development of high-
throughput sequencing technology and the gradual reduc-
tion of costs, massive amounts of data have been accu-
mulated in the �eld of biomedicine. Using machine learning,
neural network, and other data analysis methods to apply
biological data to disease research has become a research
hotspot in recent years [1–4]. However, the rapid growth of
data volume and data dimension makes it di§cult for tra-
ditional tools and experimental methods to solve problems
in complex biological systems. �erefore, simplifying the
system and extracting key information in the data has

become one of the means to solve this problem. Granular
computing (GrC) is a computing paradigm that achieves
dimensionality reduction through granular structures and is
widely used in many �elds [5, 6]. �is paper uses the
granularity point of view to study cervical cancer gene ex-
pression data in a coarse-grained and modularized manner,
to �nd key genes that can be used for disease expression, and
to provide support for the clinical diagnosis of cervical
cancer.

Human beings have a recognized feature of problem
solving; that is, people can observe and analyze the same
problem from di�erent levels and di�erent angles, which is
consistent with the inner thinking of granular computing.
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Granular computing is an information processing concept
and computing paradigm. Since Zadeh published the paper
“Fuzzy Sets and Information Granularity” in 1979 [7],
people have begun to pay attention to the research on in-
formation granularity. Zadeh believes that the concept of
information granules exists in many fields in different forms,
and it is an abstraction of reality. Information granulation is
a way for humans to process and store information. In 1985,
Hobss [8] published an article directly using “Granularity” as
the title of the paper, discussing the decomposition and
merging of particles, how to obtain particles of different
sizes, and the models for generating particles of different
sizes. Lin formally proposed the concept of granular com-
puting in 1997 [9]. 0e earliest research granularity in our
country is “Problem Solving 0eory and Application,”
published by Zhang Bo and Zhang Ling [5] in 1990. 0e
monograph extends the theory and method of quotient
space to nonequivalent division, fuzzy equivalence rela-
tionship, and so on, studies the relationship between quo-
tient space theory and rough set and fuzzy set theory, applies
quotient space theory to the field of uncertainty, and further
develops it into a granular computing theory based on
quotient space theory, covering problems in many fields
such as artificial intelligence. At present, the main theories of
granular computing include quotient space, rough set, and
fuzzy set and have been introduced into artificial intelli-
gence, data mining, machine discovery, and other applica-
tion fields [10–12].0e basic idea of granular computing is to
use the basic principles, methods, techniques, and tools of
granular computing on the basis of coarse-grained infor-
mation so that computers can more effectively process
uncertain, inaccurate, and incomplete massive data so as to
solve complex problems. 0e basic principles and mecha-
nisms of the problem are analyzed and solved.

In granular computing, the selection of granularity is
closely related to research objectives and expert experi-
ence, but in practical engineering applications, the
common method for obtaining granularity is clustering
technology [13, 14]. Clustering is one of the most im-
portant tools in the field of pattern recognition and
machine learning. Its purpose is to discover hidden and
intrinsic relationships between patterns without super-
vision. In the clustering process, the Clustering Validity
Index (CVI) is an important tool to measure the clus-
tering effect and determine the optimal number of
clusters [15]. CVIs mainly use mathematical knowledge
to model and evaluate the effectiveness of clustering
results. When the optimal value of the index is obtained,
the corresponding clustering result is the optimal clus-
tering of the dataset.

Some scholars have combined the idea of granular
computing with clustering methods to carry out various
researches. For example, in 2002, Bu Dongbo et al. [16]
analyzed clustering and classification technology from the
perspective of information granularity and tried to use the
framework of information granularity principle to unify
clustering and classifications. 0ey point out that, from the
point of view of information granularity, clustering is
calculated under a unified granularity, while classification

is calculated under different granularities, and a new
classification algorithm is designed according to the
principle of granularity. 0e application practice of large-
scale Chinese text classification shows that this classifica-
tion algorithm has a strong generalization ability. In recent
years, Tang Xu-Qing and his team have also done a lot of
work in the direction of granular computing and clustering.
In 2013, Tang Xu-Qing et al. proposed several hierarchical
clustering problems and analysis of fuzzy proximity rela-
tions based on granular space using strict mathematical
descriptions [17]. On this basis, Li Yang et al. [18] proposed
a method for constructing a coarse-grained viral protein
evolutionary tree using influenza virus protein data. And
on the basis of the granularity space theory, the research on
the optimal clustering model is carried out [19]. In 2020,
Tang Xu-Qing introduced the basic theory and model of
granular space in detail in his book “Grain Size Space
0eory and Its Application” and presented the application
research of the basic theory, method, and model related to
granular calculation in the analysis of ecosystem and bi-
ological network. 0is research is the work carried out on
the basis of this book.

In the past few decades, scholars have used various
technologies to develop a large number of clustering algo-
rithms. Given a dataset, choosing different clustering al-
gorithms and different parameters or even using different
characteristics of the dataset may get different clustering
results. In order to make full use of the complementarity and
rich information in multiple clustering results, clustering
ensembles technology as a powerful clustering tool has
received more and more attention in recent years [20].
Clustering ensembles can obtain a more stable, accurate, and
robust optimal clustering by combining multiple clustering
results.

At present, scholars have developed a large number of
successful clustering ensemble algorithms. For example,
Dong Huang et al. proposed algorithms such as U-SPEC
and U-SENC for high-dimensional data. Aiming at some
limitations of the existing clustering ensemble methods,
such as ignoring the problem of uncertain connections and
lack of the ability to integrate global information to im-
prove local links, the algorithm is more inclined to the
integrated information at the object level and lacks the
exploration ability at the high granularity level. Using the
structural information of graphs, the team proposed a
variety of clustering ensemble methods [21–24]. 0ere are
also many classic clustering ensemble algorithms as fol-
lows: (1)0emethod based on the coincidence matrix (CA)
[25], which uses the CA matrix to measure the similarity
between data points. (2) Voting method (Voting) [26], by
considering the data partitions generated by different
clusters, which conducts associated voting on samples in
each independent run and compares standardized voting
with fixed thresholds. (3) 0e method of information
theory (InT) [27] that considers the cluster labels in the
entire ensemble through the entropy criterion to estimate
the uncertainty of each cluster, introduces a new ensemble-
driven cluster validity measurement method, and proposes
a locally weighted coincidence matrix to summarize the
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integration of different clusters. Using the local diversity in
the integration, two new consistency functions are further
proposed. (4) Hypergraph method. A. Strehl and J. Ghosh
proposed three hypergraph-based methods in the literature
[13]: CSPA, HGPA, and MCLA. (5) 0e method of mixed
model [14].

In this paper, our purpose is to design two algorithms
to obtain the optimal clustering structure based on the
idea of clustering ensemble technology in granular
computing: Algorithm 1 and Algorithm 2. 0e new
method obtained by combining the two algorithms is used
to identify predictors of cervical cancer. 0e method
includes the following three steps. In the first step, the
DEGs of cervical cancer are screened out, and four in-
teraction scores are obtained through the differential gene
interaction network. 0e score data is used as the input of
Algorithm 1, and the output structure is called the base
cluster. 0e second step is to input the base cluster into
Algorithm 2 to obtain the optimal ensemble clustering
structure that fuses the four interaction characteristics of
DEGs and then use the nearest center principle to select
and screen out the representative genes in each category in
the structure as predictors; after calculation, the classi-
fication accuracy of the six predictors is 98.82%. In the
final step, the predictive ability of the predictors is tested
by applying 6 independent datasets; and the result is that,
compared with several other classical algorithms, the
classification accuracy is still higher under the premise of
a small number of predictors.

2. Method Design

2.1. Granular Computing and Optimal Clustering Structure
Algorithm. Given a distance d on the universe of X, if it
satisfies that ∀x, y ∈ X, 0≤ d(x, y)≤ 1 and no one value in
the distance sequence d(x, y), d(y, z), d(z, x)􏼈 􏼉 exceeds the
maximum value of the other two, then d is called the
isosceles normalized distance on X[5]. ∀λ ∈ [0, 1], define the
collection

[x]λ � y|d(x, y)≤ λ, y ∈ X􏼈 􏼉,

X(λ) � [x]λ|x ∈ X􏼈 􏼉.
(1)

Call X(λ) the granularity of isosceles normalized
distance d on X with respect to λ, and [x]λ is the particle in
X(λ). For the two granularities X(λ1) and X(λ2) on X,
∀x ∈ X has [x]λ1⊆[x]λ2, then the granularity X(λ2) is said
to be no finer than X(λ1), which is recorded as
X(λ2)≤X(λ1) [6].

0e set X(λ)|λ ∈ [0, 1]{ } of all possible granularities on
the universe X, which is called the granular space of X

guided by d, is denoted as ℵd(X). In other words, if an
isosceles normalized distance on X is given, then a
granular space containing the finest granularity on X is
given (i.e., the smallest element ∀x ∈ X exists as a particle
in ℵd(X)) [17].

Clustering is the embodiment of granularity space in
practical applications, and the clustering process is the
process of changing from fine-grained to coarse-grained.

0at is to say, granular computing is an abstraction of the
idea of clustering. Granular computing can be mapped to
nouns in clustering:

particles⟷ category,

granularity⟷ clustering structure.
(2)

0erefore, the granularity of different thicknesses con-
tained in the granularity space can be regarded as including
clustering structures of different thicknesses. In order to
compare the gap between particles inside and between
particles, an index to measure the gap between particles and
objects within particles is introduced: interclass difference
Sinter and intraclass difference Sintra, which are calculated as
follows:

Sinter(X(λ)) �
1
N

􏽘

cλ

i�1
Ji ai − a
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1
N

􏽘

cλ

i�1
􏽘

Ji

j�1
xij − ai

�����

�����
2

2
.

(3)

In (3), N is the total number of elements in the universe,
X(λ) � a1, a2, . . . , acλ

􏽮 􏽯, where cλ is the number of particles

contained in the granularity X(λ), ai � xi1
, xi2

, . . . , xiJi
􏼚 􏼛

represents the i-th particle in X(λ), Ji is the number of
elements in the particle ai, ai � 1/Ji 􏽐

Jk

j�1 xij represents the
center of particle ai, a � 1/N 􏽐

cλ
i�1 􏽐

Ji

j�1 xij represents the
center of set X, and ‖ · ‖2 represents the 2-norm in K-di-
mensional space.

In the granular space ℵd(X), selecting an appropriate
clustering structure so that ℵd(X) loses the least infor-
mation and reflects the structural information of the
complex system to the greatest extent is the key issue of
granular computing. In the granulation process, as λ be-
comes larger, the particles gradually become finer, Sinter
becomes larger, and Sintra becomes smaller, but the sum is
always the same [28]. According to this property, this paper
introduces the evaluation index FHEI to measure the
clustering results:

FHEI � Sinter − Sintra
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (4)

and when the FHEI value reaches the minimum, it is the
optimal granularity.

Hierarchical clustering algorithm is a classic clustering
algorithm, which is mainly divided into two types: top-down
and bottom-up.0e top-down clustering algorithm treats all
data points as a whole and then divides them continuously
until the structure that best meets the needs is reached, just
like a big tree that keeps branching out. 0e bottom-up
clustering algorithm first regards each data point as a class
and combines different subclasses to form a new large class
until the conditions for terminating themerging are reached.
In this paper, a bottom-up hierarchical clustering algorithm
is adopted, (4) is used as the stopping criterion, and an
optimal clustering structure extraction algorithm,
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Algorithm 1, based on complex systems is proposed, which
can obtain the optimal clustering structure of a single at-
tribute of the data system. In Algorithm 1, Matrix A is the
matrix formed by the Euclidean distance between the input
particles.

Step 1. Initialize: i←0; λi←1;
Input: X(λi) � C � a1, a2, . . . , an􏼈 􏼉(ai � xi);
Calculate: Sintra(X(λi)), Sinter(X(λi)), FHEI(X(λi));

Step 2. i←i + 1; A←C; C←∅; λi←maxR(ai, aj);
Step 3. B←∅; aj ∈ A, B←B∪ aj, A←A\aj;
Step 4. ∀ak ∈ A(k≠ j),

If R(ak, aj) � λi,
�en B←B∪ ak, A←A\ak, C←C∪B;

Step 5If A≠∅
�en go to Step 3;
Else X(λi)←C;

Step 6. If X(λi)≠X(λi−1)

�en calculate: Sintra(X(λi)), Sinter(X(λi)),
FHEI(X(λi));
Step 7. If FHEI(X(λi))< FHEI(X(λi−1))

�en go to Step 2;
Step 8. Output X(λi), Sintra(X(λi)), Sinter(X(λi)),
FHEI(X(λi));
Step 9. End.

2.2. Construction of Optimal Ensemble Clustering Structure
Method. 0ere are several isosceles normalized distances
in the universe X. Based on the granular space, if two
isosceles normalized distances d1 and d2 on the universe X

are given, then two structural clusters X1 and X2 are given,
and two granularity spaces ℵd1

(X1) and ℵd2
(X2) are

further obtained. In order to synthesize the information of
the two granular spaces to obtain a more refined and
accurate ensemble granular space on the universe of X,
define

X1 ∩X2 � ai ∩ bj|ai ∈ X1, bj ∈ X2􏽮 􏽯. (5)

Define the distance d(a, b) � max d1(a1, b1), d2(a2,􏼈

b2)} on the granularity X1 ∩X2, where a, b ∈ X1 ∩X2,
a⊆ai ∈ Xi, and b⊆bi ∈ Xi, i � 1, 2. Note that the granularity
space guided by d on X1 ∩X2 is ℵd(X1 ∩X2). It can be
seen from Section 2.1 that there must also be an optimal
granularity in the granularity space ℵd(X1 ∩X2); this
granularity integrates the information of the optimal
granularity among ℵd1

(X1) and ℵd2
(X2), which can more

accurately reflect the internal structure of the universe of
discourse.

From the perspective of clustering, for a data system with
a single characteristic, Algorithm 1 can be used to obtain its
optimal clustering structure, while for a multicharacteristic
data system, it is necessary to first obtain the optimal
clustering structure corresponding to each attribute as the
base cluster, then fuse the base clusters through the ensemble

algorithm, and finally obtain the optimal ensemble clus-
tering structure, as shown in Figure 1. Next, we will design
multiple optimal clustering structure ensemble algorithms
based on Algorithm 1 to obtain the optimal ensemble
clustering structure of the multicharacteristic data system.

2.2.1. AA Method. For the dataset X � x1, x2, . . . , xn􏼈 􏼉, xi is
the i-th object in it. For the M characteristics of X, using
Algorithm 1, respectively, M optimal results can be ob-
tained, denoted as set Χ � X1, X2, . . . , XM􏼈 􏼉, and Xi is called
the i-th base cluster. Combine the cluster structures in M

base clusters according to (5) and denote it as
Ε � E1, E2, . . . , EK􏼈 􏼉, K>M.

Taking the set Ε as the initial object of the clustering and
continuing the clustering according to the validity index, the
clustering ensemble result can be obtained. If FHEI is used as
the effectiveness index and combined with Algorithm 1 for
clustering ensemble, it can be called the AA method. Olatz
Arbelaitz et al. have pointed out in the literature [15] that
different algorithms, even different configurations of the
same algorithm, have not been proven to show the best
clustering results in all situations. In order to avoid clus-
tering errors that may be caused by the same validity index, a
validity index based on information entropy is proposed,
and Algorithm 2 is designed. 0e overall algorithm that
obtains the base cluster from Algorithm 1 and the ensemble
clustering from Algorithm 2 is called the AB method.

2.2.2. AB Method. In information theory, entropy [29] is a
tool used to measure the average uncertainty of random
variables. For a set of discrete random variables X, the
calculation formula of entropy H(X) is shown in (6):

H(X) � − 􏽘
x∈X

p(x)log2p(x), (6)

where p(x) is the probability function of X.
Joint entropy is used to measure the average uncertainty

of multiple interrelated random variables. For a pair of
discrete random variables (X, Y), the calculation formula of
joint entropy H(X, Y) is shown in (7):

H(X, Y) � H(X) + H(Y|X),

� − 􏽘
x∈X

􏽘
y∈Y

p(xy)log2p(y|x). (7)

If and only if the random variables X1, X2, . . . , Xn are
independent of each other, the joint entropy of
X1, X2, . . . , Xn is equal to the sum of the respective en-
tropies, which is shown in (8):

H X1, X2, . . . , Xn( 􏼁 � 􏽘
n

i�1
H Xi( 􏼁. (8)

In clustering ensemble, without considering the original
data, in order to evaluate the reliability of each clustering
ensemble result, we use the concept of entropy to mark each
set with a cluster label.
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Given the initial cluster structure Ε � E1, E2, . . . , EK􏼈 􏼉,
for Ei ∈ Ε, Xm ∈ Χ, if Ei ∉ Xm, then the object in Ei may
belong to multiple clusters in Xm[27]. We use the concept of
entropy to measure the uncertainty of cluster Ei relative to
base cluster Xm, as shown in (9):

H
m

Ei( 􏼁 � − 􏽘

k(m)

j�1
p Ei, X

m
j􏼐 􏼑log2p Ei, X

m
j􏼐 􏼑,

p Ei, X
m
j􏼐 􏼑 �

Ei ∩X
m
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where k(m) and |Ei| represent the number of objects in Xm

and Ei, respectively.
Equation (9) gives the uncertainty of calculating cluster

Ei relative to base cluster Xm, and it is easy to know that
p(Ei, Xm

j ) ∈ [0, 1], Hm(Ei) ∈ [0, +∞). When cluster Ei

completely belongs to the base cluster Xm, |Ei ∩Xm
j | � |Ei|;

that is, p(Ei, Xm
j ) � 1, Hm(Ei) � 0; when cluster Ei belongs

to multiple clusters in the base cluster Xm, the value of
Hm(Ei) will increase, which means that, in the base cluster
Xm, cluster Ei tends to belong to different clusters.

Without loss of generality, assuming that the base
clusters in the set are independent of each other [30], then
from (8), we can see that the uncertainty of cluster Ei relative
to the entire set can be determined according to the sum of
the uncertainties of cluster Ei relative to M base clusters, as
shown in (10):

H
X

Ei( 􏼁 � 􏽘
M

m�1
H

m
Ei( 􏼁. (10)

It can be seen from (10) that the smaller the value of
HX(Ei), the greater the probability that the objects in cluster
Ei will be clustered into one category. 0erefore, theoreti-
cally, the optimal cluster structure Εopt should be the cluster
structure corresponding to the minimum HX(Ei) value, as
shown in (11):

Εopt � arg
Ε

minH(Ε, X),

� arg
Ε

min􏽘
K

i�1
H

X
Ei( 􏼁.

(11)

Take the initial cluster structure Ε0 � X1 ∩X2,􏼈

X1 ∩X3 . . . XM−1 ∩XM} as input, merge the clusters with the
largest cluster spacing, and calculate HX(Ei). As the number
of clusters is merged more and more, the value of HX(Ei)

gradually decreases. When a certain class is merged, the
HX(Ei) value increases significantly, indicating that the
merger has a greater disturbance to the cluster structure and
is not conducive to the formation of the optimal cluster
structure. 0erefore, the previous cluster structure with a
significant increase in HX(Ei) value is considered to be the
optimal cluster structure. Based on this, an optimal clus-
tering structure algorithm, Algorithm 2, is constructed,
where Matrix H(i, j) � Hj(Ei).

Step 1. Input Ε � E1, E2, . . . , EK􏼈 􏼉;
Step 2. Calculate Matrix H;
Step 3. Calculate S inter(Ei, Ej);
Step 4For all S inter(Ei, Ej) � minS inter(Ei, Ej),
Ε1 � (Ε0\Ei)\Ej, B � Ei ∪Ej, Ε1 � Ε1 ∪B;
Step 5. Update Matrix H;
Step 6. If H(Ε1, X)<H(Ε0, X)

�en go to Step 3, Ε0 � Ε1, Ε1 � ϕ;
Step 7. Output Ε0 � Εopt;
Step 8. End.

3. Applications

Cervical cancer is one of the malignant tumors that seriously
threaten women’s health, and it is the fourth most common
cancer among women in the world. According to global
tumor epidemiology research reports, there are about
570,000 newly diagnosed cases of cervical cancer each year,
of which about 311,000 cases of cervical cancer cause death
[31]. 0e occurrence and development of cancer are often
accompanied by complex interactions between genes and
changes in their products.0is complexity may be one of the
main obstacles hindering clinical diagnosis [32]. Nowadays,
with the rapid development of high-throughput sequencing
technology and the reduction of costs, the biomedical field
has accumulated massive amounts of data. Using data
analysis methods to apply biological big data to disease
research has become a research hotspot in recent years
[33–35]. For example, from gene expression data, identifying
key genes as predictors for inferring the classification of
tumors and normal samples is of great significance for
clinical diagnosis. In this paper, we use gene expression data
to find DEGs and further find out the four characteristic
scores between DEGs. Taking the score matrixes as the input
of the AA method and the AB method, the optimal clus-
tering ensemble structure is obtained, the representative of

Universe X

Characteristic 1
Algorithm A

Optimal clustering
structure 1

Optimal clustering
structure 2 Ensemble

algorithm
Optimal ensemble
clustering structure

Optimal clustering
structure M

Characteristic 2

Characteristic M

… …

Figure 1: 0e construction process of optimal ensemble clustering structure.
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each class in the clustering structure is selected as the
predictors, and the biological analysis is carried out.

3.1. Data Source and Processing. Download the DNA and
miRNA data of cervical cancer samples and normal samples
from the TCGA database. Download six independent gene
expression datasets GSE6791 [36], GSE7803 [37], GSE9750
[38], GSE63514 [39], GSE52903 [40], and GSE29570 [41] in
the GEO database to verify the final key gene expression
classification ability. 0e specific information of the data is
shown in Table 1.

Use RStudio to process and filter the analysis set data.
Firstly, the samples are filtered using the TCGAtu-
mor_purity package to screen out samples with a tumor
purity greater than 60%. Among them, 289 tumor tissue
samples and 3 normal tissue samples are obtained after
filtering the gene samples. 292 tumor tissue samples and 3
normal tissue samples are obtained after filtering miRNA
samples. Furthermore, DEG screening is performed using
the limma package. In this paper, logFC ≥ 1 and P val-
ue ≤ 0.05 are selected as the criteria, and finally, 3933
DEGs and 35 differentially expressed miRNAs (DE-
miRNAs) are obtained. Finally, in the GeneMANIA da-
tabase, 35 DE-miRNA target genes totalling 698 are
found. 0e two datasets of DEG and DE-miRNA target
genes are intersected, and finally, 4450 diff-genes are
obtained.

Use the obtained diff-gene to construct a gene inter-
action network. In this network, nodes represent diff-genes,
edges represent certain types of interactions between nodes,
and the weights of edges are represented by interaction
scores. Four interactions of 4450 differential genes are
founded in the GeneMANIA database: coexpression inter-
action (CoExp), colocation interaction (CoLoc), gene in-
teraction (GInc), and physical interaction (PhyInc).0e data
information is shown in Table 2 and Figure 2. It can be seen
from Figure 2 that the score data of the four characteristics
are evenly distributed, which is beneficial to the accuracy of
clustering.

3.2. Experimental Results and Analysis. 0e scores of the
four characteristics are brought into Algorithm 1, and four
optimal clustering structures containing 6, 6, 109, and 13
classes are obtained as base clusters, respectively. 0e
changes of Sinter, Sintra, and the evaluation index FHEI with
the clustering process are shown in Figure 3.

Mark the obtained 134 initial base clusters as set Χ, and
merge the cluster structures in Χ according to (5) to obtain
an ensemble cluster structure Ε containing 1630 objects. For
the AA method, using Ε as the initial input of Algorithm 1
again, the optimal clustering structure containing 45 cate-
gories is obtained. For the AB method, using Ε as the initial
input of Algorithm 2, draw a graph of the change of H(Ε,Χ)
with the clustering process, as shown in Figure 4(a). In order
to find the point with the largest change in H(Ε,Χ) value
more clearly, Figure 4(b) shows the absolute value change
diagram of the difference between two adjacent points of
H(Ε,Χ).

It can be seen from Figure 4 that, in the initial stage of
clustering, the entropy value remains high. As the number of
clusters increases, the cluster structure tends to the optimal
solution, and the entropy value also drops to a low level and
remains stable for a long time. However, when over-
clustering, the cluster structure is far from the optimal
solution, the entropy value increases again, and the increase
is larger. After searching, the 746th point is the point before
the entropy increase, and the corresponding cluster struc-
ture is 5 categories, which is the optimal clustering structure
of the AB method.

From the perspective of hierarchical clustering, the
particle signature can reflect the characteristics of this class
to the greatest extent.0erefore, the particle signature can be
used as a key gene extraction method. 0e particle signature
is based on the principle of nearest to the center, and the
object with the greatest similarity to other objects in each
particle is selected as the characteristic representative of the
particle. 0erefore, the particle signature corresponding to
each class in the optimal clustering structure is the predictor.
0e predictors obtained by the AA method are shown in
Figure S1 in the Supplementary Material, and the five
predictors obtained by the AB method are RTTN, SAMD10,
ZNF207, WAC, and METTL14.

In order to verify the accuracy of the particle signature
selection, on the basis of the signature set P, the particles in

Table 1: Basic information of cervical cancer dataset.

Data type Data name Genes number Cases number Primary tumor sample Normal sample

Analysis set TCGA-DNA 13125 307 304 3
TCGA-miRNA 1881 310 307 3

Validation set

GSE6791 54675 28 20 8
GSE7803 22283 31 21 10
GSE9750 22284 57 33 24
GSE63514 54675 52 28 24
GSE52903 25294 72 55 17
GSE29570 25294 62 45 17

Table 2: Basic information of GeneMANIA score dataset.

Character Number of genes
involved Minimum score Maximum score

CoExp 3230 8.4e-04 0.064
CoLoc 2623 9.7e-04 1
GInc 2036 1.2e-04 1
PhyInc 3864 1.0e-04 1
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Figure 2: Score distribution diagrams of the four characteristics, of which (a), (b), (c), and (d) are CoExp, CoLoc, GInc, and PhyInc,
respectively.
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Figure 3:0e variation of the Sinter, Sintra, and FHEI changes with clustering process of the four characteristics, of which (a), (b), (c), and (d)
are CoExp, CoLoc, GInc, and PhyInc, respectively.
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X\P are assigned to each particle signature according to the
principle of nearest relationship, so as to construct a new
granularity b1, b2, . . . b|p|􏽮 􏽯 . Compare the two particle sizes
of a1, a2, . . . a|p|􏽮 􏽯 and b1, b2, . . . b|p|􏽮 􏽯 to find the particles
with the same classification, and define the r value as the
classification accuracy. 0e calculation of r is as (12):

r �
􏽐

|P|
i�1 ai ∩ bi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|X\P|
. (12)

In (12), r ∈ [0, 1], and the larger the value of r, the more
accurate the selection of particle signatures and the higher
the accuracy of the clustering results.

Table 3 shows the r value of the particle signatures
extracted by the four initial base clusters and the optimal
ensemble clustering obtained by the AB method relative to the
4450 differential gene sets. It can be seen from the table that the
r value of a single cluster is significantly lower than that of the
ensemble cluster. 0is is because the ensemble cluster makes
full use of the information of multiple single clusters to obtain
more accurate and superior clustering results.

Among the 5 key genes extracted by the AB method,
RTTN, SAMD10, and ZNF207 are downregulated, and
WAC and METTL14 are upregulated. 0e RTTN gene
encodes a large protein. In view of the intracellular location
of the protein and the phenotypic effect of mutations, this
gene is suspected of playing a role in maintaining normal
cilia structure, which in turn affects the development of left
and right organs, axial rotation, and perhaps notochord
development [42]. Experiments have shown that ZNF207
and ILF3 are the target genes for differential expression of
miR-298 and miR-4261, and they are also transcription
factors for the core gene EZH2 of the Polycomb family
protein (PcG protein). 0e PcG protein participates in the
regulation of embryonic development, has the ability to
maintain cell self-renewal, participates in multiple cellular
processes such as tumor occurrence and development and
cell cycle regulation, and is abnormally expressed in a variety
of tumor tissues [43]. Studies have found that the ubiq-
uitination of histone H2B is very important for the assembly
of chromatin during gene transcription, and the reduction of
WAC expression level will destroy the ubiquitination level of
H2B [44]. Epstein–Barr virus (EBV) is a ubiquitous
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Figure 4: (a) Changes of H(Ε,Χ) with the clustering process. (b) Changes in the absolute value of difference between two adjacent points of
H(Ε,Χ).

Table 3: Particle signature verification based on single clustering and ensemble clustering.

Cluster structure
Single clustering

Ensemble clustering
CoExp CoLnc GInc PhyInc

Optimal number of clusters 6 6 109 13 5
r 72.8% 59.12% 18.69% 87.04% 98.82%
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carcinogenic virus that can induce a variety of cancers. And
METTL14 can significantly induce EBV-positive tumors and
promote the growth of EBV-transformed cells and tumors in
xenograft animal models [45].

4. Method Comparison

In order to test the superiority and robustness of themethod,
compare the classification accuracy of the AA method and
AB method proposed in this paper with the following two
classic methods: (1) CA method: perform the K-means al-
gorithm 10 times on the initial dataset, use the result as the
base cluster, calculate the corresponding CA matrix, take 0.5
as the threshold, and the point pairs greater than 0.5 in the
CAmatrix are the same class in the final clustering result; (2)
CSPA method: like the CA method, obtain the base cluster
and calculate the CA matrix. 0e CA matrix generates a
graph with vertices as data points, the CA value between the
data points is the weight of the edges, then use the clustering
algorithm METIS algorithm based on graph theory to
cluster, and get the final ensemble clustering result.

Apply the above method to 4450 diff-genes; 35 (CA
method) and 5 (CSPAmethod) optimal clustering structures
are obtained, respectively. 0en the key genes screened by
different methods are obtained; see Figure S1 in the

Supplementary Materials. Figure 5 shows the heatmap of the
expression of key genes screened by the four methods, which
proves the effectiveness of the four methods.

Further, in order to demonstrate the superiority and
robustness of the method, the key genes screened are
calculated and compared in the classification accuracy of
cancer samples and healthy samples in six independent
gene expression datasets downloaded from GEO. Dif-
ferent classifiers have their own advantages and disad-
vantages. In order to avoid the classification accuracy
deviation caused by the classifiers, this paper uses three
commonly used classifiers: decision tree (DTree), support
vector machine (SVM), and random forest (RF). 0e
classification accuracy is calculated through the rpart
package, the e1071 package, and the randomForest
package in RStudio. 80% of the dataset is randomly se-
lected as the training set and 20% as the test set. 0e three
classifiers are repeated 200 times for the key genes
screened by each method, and the average precision is
calculated.

Table 4 and Figure 6 show the classification accuracy of
different clustering methods applied to different datasets
under the three classifiers. It can be seen from Table 4 and
Figure 6 that although the classification accuracy of the
four methods is affected by the classifier and the test
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Figure 5: 0e expression heatmaps of key genes screened by four methods, of which (a), (b), (c), and (d) are AA method, AB method, CA
method, and CSPA method, respectively.
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dataset, they all show better classification results. In
particular, the AB method proposed in this paper has
achieved 100% classification accuracy under different

classifiers in the GSE6791 dataset (data marked in italics in
Table 4). Due to the difference in the number of key genes
obtained by the four methods, the number of key genes

Table 4: Classification accuracy of four clustering methods using three classifiers on six datasets.

Dataset
GSE6791 GSE7803 GSE9750 GSE63514 GSE52903 GSE29570

Classifier Method

DTree

AA 0.67 0.86 0.83 0.73 0.8 0.77
AB 1 0.71 0.83 0.73 0.8 0.46
CA 1 0.86 0.83 0.91 0.93 0.85

CAPA 0.83 1 0.5 0.64 0.73 0.92

Forest

AA 0.83 0.86 0.75 0.82 0.8 0.85
AB 1 0.71 0.83 0.64 0.8 0.69
CA 1 1 1 0.91 0.93 0.92

CAPA 0.83 0.71 0.92 0.82 0.8 0.69

SVM

AA 0.83 1 0.92 0.82 1 0.85
AB 1 0.71 0.83 0.45 0.8 0.69
CA 1 1 1 0.82 0.8 0.85

CAPA 0.83 0.71 0.83 0.73 0.8 0.69
0e number “1” corresponding to the AB method in each classifier should be marked in italics in the GSE6791 column of data.
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Figure 6: 0e classification accuracy rates of the classifiers, of which (a), (b), and (c) are DTree, SVM, and RF, respectively.
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screened by the AB method is the least, but it is still
comparable to the classification accuracy of the key genes
screened by the other three methods, which shows the
superiority of the AB method.

5. Conclusions

Granular computing is a young research field. 0ere is no
clear definition and scope of research so far. Different re-
searchers have different understandings of this field, but it
can be roughly divided into two categories: one focuses on
uncertainty processing, and the other type focuses on
multigranularity computing. Among them, the idea of
multigranularity computing is to use abstraction and
layering to deal with problems, thereby reducing the
complexity of dealing with complex problems. Data clus-
tering is an ancient and active research field, and it has a very
important meaning and function for studying the laws
between discrete data. 0e clustering ensemble technology
can increase the stability of the clustering process, that is,
reduce the dependence on algorithm parameters, thereby
improving the quality of clustering, enable different algo-
rithms to collaborate when searching for consensus parti-
tions, and consider problems from “multiple perspectives.”
Effectively solving the advantages of mixed numbers and
classification features, missing values, and noisy clustering
tasks has also become one of the hot research fields in recent
years [46].

Cervical cancer is a malignant tumor that seriously
threatens women’s health. Although its occurrence and
development process are complicated, disease predictors
can be extracted through the analysis of gene expression
data, thereby increasing the basis for clinical diagnosis. In
this paper, with the help of concepts such as granular
computing, clustering ensemble, and entropy, a new
method is designed to identify predictors of cervical
cancer. And a prediction accuracy of 98.82% is obtained
under the premise of fewer predictors. Comparing the
method proposed in this paper with other classical
methods shows the superiority and robustness of the
method in this paper and provides an effective method
and basis for the analysis of biological data and the clinical
diagnosis of diseases.

0e research work in this paper focuses on the idea of
granular computing and uses clustering methods to simplify
the complex system. 0rough the identification of cervical
cancer predictors, it provides some support and contribu-
tions to the clinical diagnosis of the disease, but there are also
some problems: (1) 0e method has certain limitations. At
present, only the hierarchical clustering algorithm is used as
the construction method of granularity space, and future
work will consider the comparison of different clustering
algorithms. (2) Life is a dynamic development process; the
work of this paper only focuses on static data. Using data at
different time nodes to complete the process of discretized
data points approaching dynamic changes can more effec-
tively reflect the overall process of disease occurrence and
development and have a deeper understanding of the
disease.
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et al., “0e amerindian mtDNA haplogroup B2 enhances the
risk of HPV for cervical cancer: de-regulation of mitochon-
drial genes may be involved,” Journal of Human Genetics,
vol. 57, no. 4, pp. 269–276, 2012.

[42] M. Zakaria, A. Fatima, J. Klar et al., “Primary microcephaly,
primordial dwarfism, and brachydactyly in adult cases with
biallelic skipping of RTTN exon 42,” Human Mutation,
vol. 40, no. 7, pp. 899–903, 2019.

12 Mathematical Problems in Engineering



[43] T. Gui, Tumor Heterogeneity in Recurrent Ovarian Cancer as
Demonstrated by Polycomb Group Proteins Expression, Peking
Union Medical College Hospital, Beijing, China, 2013.

[44] F. Zhang and X. Yu, “WAC, A functional partner of RNF20/
40, regulates histone H2B ubiquitination and gene tran-
scription,” Molecular Cell, vol. 41, no. 4, pp. 384–397, 2011.

[45] F. Lang, R. K. Singh, Y. Pei, S Zhang, K Sun, and
E. S Robertson, “EBV epitranscriptome reprogramming by
METTL14 is critical for viral-associated tumorigenesis,” PLoS
Pathogens, vol. 15, no. 6, Article ID e1007796, 2019.

[46] V. Berikov, “Weighted ensemble of algorithms for complex
data clustering,” Pattern Recognition Letters, vol. 38, pp. 99–
106, 2014.

Mathematical Problems in Engineering 13


