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In this paper, the tube model predictive control (Tube-MPC) via notch �lter is proposed for �exible air-breathing hypersonic
vehicle with actuator fault. Firstly, considering the low-order �exible modes, the polytopic linear parameter varying (LPV)
model of �exible air-breathing hypersonic vehicle is established using Jacobian linearization and tensor product. Actuator
fault and parameter uncertainty are transformed into a lumped disturbance term. �e baseline Tube-MPC trajectory
tracking controller is developed by designing robust auxiliary feedback control law and nominal control law. In order to
weaken the e�ect of �exibility, a notch �lter is introduced to eliminate the frequency response peak of �exible modes. And
the e�ect of notch �lter on control performance and stability is analysed. Secondly, an alternative controller design strategy
is proposed to ensure stability of the closed-loop system. �e �lter and the original nonlinear model are combined together
such that the new polytopic LPV model is codesigned. On the basis, the adjustable Tube-MPC controller is developed to
improve the control performance and ensure the stability of the system. Finally, the e�ectiveness of the two controllers is
veri�ed by simulations.

1. Introduction

Air-breathing hypersonic vehicle has the advantages of high-
speed and low-launch cost in space transportation and
potential of fast global strike in military application [1].
Compared with the traditional aircraft, air-breathing hy-
personic vehicle has more signi�cant characteristics such as
the interaction of aerodynamic-heating-�exible-propulsion,
strong time-varying parameters, and modelling uncertainty.
Hence the �exible control system faces new challenges [2].

Since the 1980s, many researchers have devoted to
modelling �exible air-breathing hypersonic vehicle. �ere
are two categories of approaches: analytical method based on
physical principles and computational �uid dynamics (CFD)
method. In the former, the longitudinal nonlinear dynamics
model derived by Bolender and DOman [3] is widely ap-
plied. �is model represents complex interaction among

aerodynamics, structural dynamics and propulsion system,
and has �exible deformation and vibration. In addition,
Waszak et al. [4] establish the fuselage/structure coupling
model of hypersonic vehicle using the average axis method
and decouple the rigid body from the �exible motion
equation. Sudalagunta et al. [5] take six independent dis-
placements of the rigid section to model the �exible de-
formation. In the latter, the purpose of CFD modelling is to
analyse aerodynamics by �uid dynamics and calculate
aerodynamic coe¤cients by data �tting. Lisa [6], David [7],
and Parker [8] establish �exible hypersonic vehicle models
by means of CFD. Regardless of analytical modelling or CFD
modelling, the �exible air-breathing hypersonic vehicle
model is strongly nonlinear and coupled, which is very
unfavourable to control system.

Many control methods have been applied to the control
of hypersonic vehicle, such as linear quadratic regulator

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 4474884, 21 pages
https://doi.org/10.1155/2022/4474884

mailto:cfhu@tju.edu.cn
https://orcid.org/0000-0002-3461-302X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4474884


(LQR) [9], feedback linearization control [10], backstepping
control [11], sliding mode control [12], intelligent control
[13], robust control [14], and adaptive control [15]. For
hypersonic vehicle with high nonlinearity and large flight
envelope, linear parameter varying (LPV) control has the
advantage of simple design and attracted more attentions.
When hypersonic vehicle is flying at high speed and large
maneuver, flexibility cannot be ignored. Commonly, flexi-
bility includes two modes: known flexibility and unknown
flexibility. In the first case, the flexible modes are taken as
known states for controller design. Huang et al. [16] build
polytopic LPV model for hypersonic vehicle with known
flexibility, and design gain-scheduling switch controller.
Zhang et al. [17] investigate a novel switching LPV
framework based on mode independent/dependent persis-
tent dwell time (PDT/MPDT) switching signals to deal with
the case of coexistence of slow maneuver and frequent rapid
maneuver. Wu et al. [18] build the LPV model of flexible
hypersonic vehicle by utilizing the curve fit and least-squares
method and design the nonfragile output tracking con-
troller. When flexibility is unknown, either the observer is
designed to estimate and compensate flexibility, or the ro-
bustness of closed-loop system is utilized to suppress flex-
ibility. Xu et al. [19] model the coupling among flexibility,
rigid body, and the accessional angle of attack caused by
wind as unknown disturbance, and design neural network
and disturbance observer to deal with the lumped coupling.
Sun et al. [20] develop a robust backstepping cruise tracking
control scheme with closed-loop finite-time convergence for
flexible hypersonic vehicle, where a fixed-time sliding-mode
disturbance observer is designed for flexibility, uncertainties,
and external disturbances.

In addition, actuator fault possibly occurs [21] due to
high-speed and large-maneuver flight. )ereby, online ob-
servation and compensation or improvement of controller’s
robustness are common strategies to handle actuator fault.
)e former belongs to active fault-tolerant control (FCT)
method and the latter is passive approach. For example,
Zhao et al. [22] develop FTC strategy based on direct
Lyapunov method and the bilinear matrix inequalities
technique for flexible hypersonic vehicle. An et al. [23]
regard the flexible dynamics as equivalent disturbances, and
design disturbance observer and sliding-mode tracking
controller for flexible hypersonic vehicle ith actuator fault. In
order to identify the lumped effect involving flexible modes
and actuator fault online, Shao et al. [24] propose neural
estimator based on hysteresis quantizer to achieve
appointed-time tracking of flexible hypersonic vehicle. In
passive FTC research, a weighted LPV Tube-MPC is pro-
posed for hypersonic vehicle with three kinds of actuator
fault [25]. )e passive fault-tolerant tracking problem is
investigated for the bounded external disturbance and
sensor fault [26].

Model predictive control (MPC) is popular due to its
good ability of handling constraint, and LPV model is
generally combined for controller design [27, 28]. )is
control method is often applied to control complex
nonlinear systems. For example, based on the LPV model
of unmanned airship, a gain-scheduling MPC controller

was designed for lateral control [29]. A systematic design
procedure for approximate explicit MPC is presented for
constrained nonlinear systems described in LPV form
[30]. One-step ahead robust MPC for LPV model with
bounded disturbance is developed [31]. Similarly, MPC
and LPV are also applicable to hypersonic vehicle, which
can effectively deal with the nonlinearity and uncertainty
of hypersonic vehicle model. For example, a novel pa-
rameter-dependent robust MPC (PD-RMPC) algorithm
with explicit time-delay compensation is presented for
hypersonic vehicle.

Inspired by the previous work, a Tube-MPC control
strategy with north filter is proposed for flexible air-
breathing hypersonic vehicle with loss of actuator ef-
fectiveness fault in the presence of parameter uncertainty.
)e weak coupling between flexibility and rigid body is
ignored, by which the continuous LPV model of vehicle is
established by Jacobian linearization. And the corre-
sponding polytopic formulation is built by tensor
product. Parameter uncertainty or actuator fault are
uniformly transformed into an additional disturbance
term. On the basis, baseline Tube-MPC controller is
designed, where robust auxiliary feedback control law
and nominal control law are calculated, respectively. )e
nominal control law provides a reasonable reference
trajectory for the actual system. )e robust auxiliary
feedback control law steers the actual trajectory into the
mRPI set and makes it approximate the nominal tra-
jectory. In order to reduce the flexible effect, a notch filter
is introduced into the short-period mode. Moreover, the
effect of notch filter on the control system is analysed.
Alternatively, in order to ensure the stability of the
closed-loop system, the transfer function model of filter is
transformed into state-space equation. )e states of filter
and filtered pitch rate are both combined with the
original nonlinear model. Considering the weak coupling
between flexibility and rigid body, the new polytopic LPV
model with notch filter is codesigned. To improve control
performance and reduce conservatism, an adjustable
Tube-MPC controller is developed.)e simulation results
show that the two types of Tube-MPC design method with
notch can both effectively get rid of the elastic effect and
provide good tracking performance.

)e rest of this paper is organized as follows. Firstly, the
nonlinear longitudinal model of hypersonic vehicle is pre-
sented. Secondly, the control-oriented polytopic LPV model
is established and the baseline Tube-MPC controller design
via notch filter is proposed. )en, the adjustable Tube-MPC
controller based on the codesigned polytopic LPV model is
presented. )e effectiveness of these two strategies is verified
by simulations. Finally, conclusion is drawn.

2. Flexible Hypersonic Vehicle Model

)e flexible hypersonic vehicle is regarded as a pair of
cantilever beams and assumed to follow Hook’s law. )e
longitudinal dynamic equations (Coupling model, CM) are
introduced [8], which consists of rigid body motion equa-
tions and flexible vibrations.
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where h, V, α, θ, q are altitude, velocity, attack angle, pitch
angle, and pitch rate, respectively; m, Iyy, g are quality,
moment of inertia, and gravitational acceleration, respec-
tively. ηi represent the generalized flexible coordinates of the
ith flexible mode; ζ i,ωi, 􏽥ψi are natural frequencies, damping
ratios and inertial coupling parameter of the ith flexible
mode, respectively. ki � 1 + 􏽥ψ2

i /Iyy. In addition, L, D, T, and
M denote lift, drag, thrust, and pitching moment, respec-
tively, and Ni denotes the generalized force of the ith flexible
mode. )ey are expressed by the following curve-fitting
approximation:
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where δe is the elevator deflection. q is the dynamic pressure.
S, zT, c represent reference area of vehicle, thrust to moment
coupling coefficient, and mean aerodynamic chord,

respectively. q and coefficients of the nonlinear model are
calculated as
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where ρ is the air density, ρ0, h0, 1/hs are the air density at
nominal altitude, nominal altitude for air density approxi-
mation, and air density decay rate, respectively.Φ is the fuel-
to-air ratio; ce is the elevator coefficient;
βi(h, q), i � 1, 2, . . . , 8 are thrust parameters.

3. Tube-MPC via Notch Filter

For longitudinal trajectory tracking of flexible air-breathing
hypersonic vehicle in presence of uncertain parameter and
actuator fault, the baseline Tube-MPC controller is designed
[32]. Meanwhile, a notch filter is introduced to suppress
flexibility.)e schematic of the closed-loop control system is
shown in Figure 1.

3.1. Control-Oriented Polytopic LPV Modelling. To linearize
nonlinear vehicle model, the weak coupling between the
rigid body and the flexible modes is ignored (called
Decoupling Model, DM).)e following longitudinal motion
equations are adopted [16]:
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Figure 1: Baseline Tube-MPC scheme.
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In this paper, the polytopic LPV model of DM is built by
Jacobian linearization and tensor product.

Firstly, within the flight envelope, altitude and velocity
are selected as scheduling variables, denoted as
p(t) � [h, V]T ∈ Γ. )en, Jacobian linearization is per-
formed at each equilibrium point. Define
xs � [h, V, α, θ, q, η1, _η1, η2, _η2] and us � [Φ, δe]. To compute
the equilibrium points of flexible vehicle, let
_xs � li(xs, us) � 0, i � 1, 2, . . . , 9. According to the selected
height hr and velocity Vr, the states and control inputs at the
equilibrium point are described as
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Define the neighbourhood of equilibrium point as
l(xs, us). )e first-order Taylor series expansion is per-
formed as
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Further, model (4) is rewritten as

_x(t) � Ax(t) + Bu(t), (9)

where A � zl(xs, us)/zxs, B � zl(xs, us)/zus. Obviously,
equation (6) is a linear time-varying (LTI) system.

Within the flight envelope, multiple equilibrium points
are selected for Jacobian linearization. )e corresponding
LTI systems are fitted into the following continuous LPV
model:

_x(t) � A(p(t))x(t) + B(p(t))u(t). (10)

where A(p(t)) and B(p(t)) are matrices with scheduling
variables.

)e continuous LPV model (7) is transformed into a
polytopic LPV system by tensor product [33].

Assuming that m singular values are determined in
height and n singular values in velocity, a polytopic LPV
system with Rl � m × n vertices is obtained. A time-varying
matrix is defined as S(p(t)) � [A(p(t)), B(p(t))],
expressed by a convex combination of vertex systems

S(p(t)) ≈
ξ

􏽘 Rl

i�1τi(p(t))Si, (11)

where Si, i � 1, . . . , Rl represents each vertex system,
τi(p(t)) is the weight coefficient of each vertex system being
dependent on scheduling variables, and 􏽐

Rl

i�1 τi � 1. ξ is the
modelling error between the original nonlinear model and
the polytopic LPV model.

)e above polytopic LPVmodel is discretized, and there is

x(k + 1) � A(p(k))x(k) + B(p(k))u(k), (12)

where [A(p(k)), B(p(k))] ∈ Ω � Co [A1, B1], . . .􏼈
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]}. [Ai, Bi], i � 1, . . . , Rl are the polytopic vertices,Ω
is the convex set, and Co is the convex hull.
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Rl

i�1 τi(k)[Ai, Bi], and 􏽐
Rl

i�1 τi(k) � 1,
0≤ τi(k)≤ 1.

)e Bode diagram of the DM model and the polytopic
LPV model are drawn at any point in the flight envelope. As
shown in the figure, the solid red line represents the DM
system, and the dotted blue line for the polytopic LPV
system. It can be seen that the two lines overlap very well. In
other words, the established LPV model has high accuracy.

Due to aeroelastic deformation during flight, moment of
inertia, reference area, and some aerodynamic parameters of
hypersonic vehicle will change. Considering the uncertain
parameters and linearization modelling error, the following
model is obtained:
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Figure 2: Bode diagram comparison of polytopic LPV and DM. (a) Amplitude frequency characteristic. (b) Phase frequency characteristic.
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x(k + 1) � A(p(k))x(k) + B(p(k))u(k) + f, (13)

f is a summarized term resulting from parameter uncer-
tainty and modelling error. It is assumed that f is bounded,
i.e., f ∈W1 � f ∈ R9| − |f|min ≤f≤ |f|max􏼈 􏼉.

In some cases, actuator faults may occur during vehicle
flying. Loss of effectiveness fault is addressed in this paper
and its corresponding faulty model is written as

x(k + 1) � A(p(k))x(k) + B(p(k))uf(k) + f, (14)

where uf is the control inputs with loss of effectiveness fault
occurring on elevator.

uf �
1 0

0 ρf

⎡⎣ ⎤⎦
Φ

δe

􏼢 􏼣 � Ρu. (15)

)en,

x(k + 1) � A(p(k))x(k) + B(p(k))u(k) + f + w, (16)

where w � B(p(k))(Ρ − I)u, and w is bounded, that is,

w ∈W2 � w ∈ R
9
| − |B(p(k))(Ρ − I)u|min􏽮

≤w≤ |B(p(k))(Ρ − I)u|max􏼉.
(17)

In summary, uncertain parameters, modelling error, and
actuator failure of flexible hypersonic vehicle can be lumped
into a bounded term Δ. )ereby, model (11) is rewritten as

x(k + 1) � A(p(k))x(k) + B(p(k))u(k) + Δ, (18)

where Δ � f + W and Δ is bounded, that is,

Δ ∈W � Δ ∈ R
9
| − |Δ|min ≤Δ≤ |Δ|max􏽮 􏽯. (19)

Remark 1. In polytopic LPV modelling, the uncertain term
f caused by uncertain parameters, the disturbance term w

caused by actuator faults, and the lumped term Δ are all

assumed to be bounded. In controller design, the worst
conditions will be considered to obtain the maximum ro-
bustness, f, w,Δ are taken as maximum or minimum.

3.2. Baseline Tube-MPC Controller Design. For model (14),
the nominal system is defined as

xn(k + 1) � A(p(k))xn(k) + B(p(k))un(k), (20)

where xn are nominal states and un are nominal control
inputs.

)e Tube-MPC control law is designed as

u(k) � F x(k) − xn(k)( 􏼁 + Kxn(k), (21)

where K is the nominal control gain used to generate a
nominal trajectory and F is the auxiliary robust feedback
gain to reject the lumped term. )e control law (16) forces
the trajectory of the actual system into mRPI set and the
actual trajectory will get close to the nominal.

Firstly, the robust feedback control gain F is designed.
)e control errors between the actual system and the
nominal system are defined as e(k) � x(k) − xn(k).)en, by
subtracting (15) from (14), the following error equation can
be obtained:

e(k + 1) � (A(p(k)) + B(p(k)F)e(k) + Δ). (22)

It can be known that e(k) is bounded when (A(p(k))) +

B(p(k)F) satisfies the conditions of Hurwitz matrix.
)e system without parameter uncertainty is defined as

e′(k + 1) � (A(p(k))) + B(p(k)F)e′(k). (23)

)e auxiliary robust feedback control gain F is solved by
the following lemma.

Lemma 1. (see [34]) For polytopic LPV systems (18), if there
are matrix MF, NF > 0 , so that the following LMI holds:

NF A(p(k))NF + B(p(k))MF( 􏼁
T

A(p(k))NF + B(p(k))MF( 􏼁 NF

⎡⎢⎣ ⎤⎥⎦> 0, A(p(k)), B(p(k)) ∈ Ω. (24)

Hen the auxiliary robust feedback control gain
F � MFN− 1

F can ensure the stability of system (18).
To compute mRPI set, the following definition is given.

Definition 1. (see [35]) )e set Z ∈ R9 is the mRPI set of the
polytopic LPV system (14) if and only if there is e(k + 1) ∈ Z

for all error states e(k) ∈ Z, [A(p(k)), B(p(k))] ∈ Ω and
Δ ∈W.

FromDefinition 1, we know that e(k) is always located in
the mRPI set. )erefore, x � (xn⊕Z) holds, where ⊕ is
Minkowski set addition. Due toW being symmetric around
the origin, the mRPI set Z has the same symmetric char-
acteristic around the origin. Consequently, the mRPI set of
model (14) is defined as

Z � e(k) ∈ R
9
| − z≤ e(k)≤ z, z> 0􏽮 􏽯, (25)

where z is the upper bound.
For ∀Δ ∈W, Z satisfies the following equation:

(A(p(k)) + B(p(k))F)Z⊕W⊆Z. (26)

)ereby, the constraint (21) can be converted to

I
T
i ((A(p(k)) + B(p(k))F)e(k) + Δ)≤ I

T
i z,

∀e(k) ∈ Z,∀Δ ∈W, i � 1, 2, . . . , 9,
(27)

where I ∈ R9×9 is the identity matrix.
In order to enhance robustness, it is expected that the

invariant set becomes as small as possible. Define c � 􏽐
9
i�1 zi,

where zi is the maximum value of each column. By
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minimizing c, the boundary of Z is solved, and the best
robustness is achieved. Farkas lemma is introduced to solve
mRPI set Z.

Lemma 2 (see [36]). For d ∈ Rn, n ∈ R, A ∈ Rd×n, b ∈ Rd, if
there is 􏽢c satisfying A􏽢c< b, then the following two statements
are equivalent.

(1) dTc≤ n, such that Ac< b,
(2) ∃ρ ∈ Rm such that ρ≥ 0, ATρ � d, bTρ≤ n.

He optimization problem for the mRPI set is formulated
as follows:

min c,

s.t. ρi
W ≥ 0, ρi

W + EIi ≥ 0, ρi
e(x) ≥ 0,

ρi
e(k) + A p(k)Zd( 􏼁 + B(p(k))FZd( 􏼁

T ≥ 0,

I
T
i ZdI − W

T
1 2ρi

W + EI􏼐 􏼑 − I
T 2ρi

e(k) + A p(k)Zd( 􏼁 + B(p(k))FZd( 􏼁
T
Ii􏼐 􏼑≥ 0,

c − 􏽘

9
i�1I

T
i ZdIi ≥ 0. (28)

where ρi
W1
∈ R9W1 , ρi

e(k) ∈ R9, Zd � diag(Z), Ii is the n-di-
mensional unit vector, and E ∈ R9×9 is the interference dis-
tribution matrix. Hen, z � ZdIi, and Z can be obtained by
(20).

Consider the control input constraints of flexible hy-
personic vehicle

u(k) ∈ U ≔ � u ∈ R
2
‖u(k)‖≤ umax􏽮 􏽯, (29)

where umax represents the maximum of control inputs.

Based on the auxiliary robust feedback control gain F
and the mRPI set Z, the control inputs of the nominal system
should satisfy

un(k) ∈ χ ≔ � un ∈ R
2
|UΘFZ􏽮 􏽯, (30)

where Θ is the Pontryagin set difference, and there is
UΘFZ≠∅.

)e nominal control law at the vertex of each convex hull
is designed to provide an appropriate nominal trajectory.
For system (15), the following infinite time-domain qua-
dratic programming performance index is given:

min
K

max
[A(p(k)),B(p(k))]∈Ω

J∞(k) � 􏽘
∞

i�0
xn(k + i|k)

����
����
2
ψ + un(k + i|k)

����
����
2
σ􏼔 􏼕, (31)

where ψ > 0, σ > 0.
If there are matrix Y ∈ R2×9, symmetric matrix Q ∈ R9×9,

and a positive scalar cn, such that all polytopic vertices
[Ai, Bi], i � 1, . . . , Rl satisfying the following optimization
problem, the nominal control law
un(k) � Kxn(k) � YQ− 1xn(k) can stabilize system.

min
cn,Y,G,Q

cn, (32)

s.t
1 xn(k)

T

xn(k) Q
􏼢 􏼣≥ 0, (33)

Q Q
T
A

T
i + Y

T
B

T
i Q

Tψ1/2T
Y

Tσ1/2T

i
AQ +

i
BY Q 0 0

ψ1/2
Q 0 cnI 0

σ1/2Y 0 0 cnI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

i ∈ 1, 2, . . . , Rl􏼈 􏼉,

(34)

Χ Y

Y
T

Q
􏼢 􏼣≥ 0, X �

un1 0
0 un2

􏼢 􏼣, unj ≤ u
2
nj,max, j � 1, 2, (35)

where u2
nj,max is the maximum of the jth nominal input.

)e quadratic programming criterion “min-max” (26) is
converted tominimization of the upper bound cn, that is, a new
minimum optimization problem (32) is formulated [37]. LMI
constraint (33) guarantees that the nominal states stay in the
invariant set with respect to the nominal control law un(k), i.e.,
xn(k|k) � xn(k) ∈ Ω, and Ω � xn ∈ R9|xT

n Qxn ≤ 1􏼈 􏼉. Equa-
tion (34) indicates that the Lyapunov function of the nominal
system (15) is decreasing [37]. Equation (35) is derived from the
input constraint |unj|≤ unj,max.

In conclusion, the nominal control law
un(k) � Kxn(k) � YG− 1xn(k) can guarantee the stability of
the nominal system (15).

)e real control law is written as

utotal � F x − xn( 􏼁 + Kxn + ur, (36)

where ur is the control input at the equilibrium point.
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3.3. Notch Filter Design. )e Tube-MPC controller designed
above can guarantee the stability of the rigid body states and
flexible states of hypersonic vehicle with actuator faults. In
order to further handle flexibility and reduce the coupling
originating from flexible modes, a notch filter is introduced
in this paper. )e notch filter can reduce the flexible vi-
bration as much as possible by eliminating the peak of
flexible mode frequency response [38, 39].

)e frequency response of an ideal notch filter is de-
scribed as

H e
jωt

􏼐 􏼑 �
0,ω � ωf

1,ω≠ωf

⎧⎨

⎩ , (37)

where ωf is the notch frequency.
A notch filter should have the following two

characteristics.

(1) )e notch is deep enough and has a certain width. All
zeros of transfer function of notch filter should be on
the unit circle.

(2) Non-notch frequency signals are unaffected. )e
zero-pole of transfer function of notch filter must
match.

)e transfer function of notch filter is [38]

H(s) �
1/ω2

zs
2

+ 2εz/ωzs + 1
1/ω2

ps
2

+ 2εp/ωps + 1
, (38)

where ωz,ωp are frequency and εz, εp are damping ratio.
In equation (33), the numerator transmission function

can determine the frequency of the notch centre. )e de-
nominator transmission function is used for the physical
implementation of notch filter.

From CM (1), it can be seen that the coupling between
rigid body states and the flexible modes is mainly reflected in
pitch rate q. )erefore, a notch filter is introduced into the
feedback of q channel. )e open-loop Bode diagram is
presented as Figure 3, to analyse the effect of notch filter on
flexible hypersonic vehicle.

From the figure, it can be seen that the peak caused by
the flexible mode is suppressed after the notch filter is
connected into the flexible hypersonic vehicle. )e different
parameter alternation of notch filter has the similar effect as
[40]. In conclusion, the reasonable choice of notch filter will
not destroy the stability of the original system.

For the effects of the first-order and second-order flexible
modes on hypersonic vehicle, we linearize CM (1) at equi-
librium point based on small disturbance linearization, and the
open-loop pole distribution diagram is drawn in Figure 4.

From Figure 4, it can be seen that CM (1) has a total of 7
motion modes, including five motion modes of rigid body
and two aeroelastic modes. Two flexible modes correspond
to two pairs of underdamped conjugate complex roots,
whose natural frequencies are almost consistent with the

natural frequencies of structural flexibility. Since the two
pairs of underdamped conjugate complex roots are close to
the imaginary axis, both of the two flexible modes have a
great influence on CM (1). )erefore, the notch filter is
designed for the first- and second-order flexible modes,
respectively. Only single one flexible mode is focused.
However, by means of reasonable selection of notch filter
parameters, it is possible to reduce the other flexible mode
while suppressing the focused one. Take the first-order
flexible mode as an example, as shown in Figure 5. )e first-
order flexible mode is the centre of notch filter and aimed to
be cancelled. Meanwhile, the second-order flexible mode is
partially decreased at the edge of notch filter.

After the notch filter is introduced, the system stability of
flexible hypersonic vehicle can still be guaranteed by control
law (31). )e reasons are as follows.

First of all, the principle of notch filter is that the non-
notch frequency is not affected, so only the first flexible
mode is filtered out. As previously analysed, the appropriate
parameter selection of notch filter will not destroy the
stability of the original system, and will even increase the
phase margin of the system.

Secondly, the model parameter uncertainty, including
M, Iyy and other 10 parameters, is considered while de-
signing Tube-MPC controller. )ese uncertainties are
caused by many factors such as flexibility, fuel con-
sumption, and flight environment change. With the Tube-
MPC controller, the actual states of system are limited
within the mRPI set and are constantly approximating the
nominal trajectory. )e filtering of first flexible mode can
actually be regarded as the reduction of the model pa-
rameter uncertainty. In this paper, the mRPI set is
designed on the basis of maximum parameter uncertainty.
)erefore, the system states still stay in mRPI set after
filtering. At the same time, compared with the system
without notch filter, the position of system states with
notch filter in the mRPI set is closer to the nominal
trajectory, as shown in Figure 6. )erefore, the control law
(31) can still ensure the stability of flexible hypersonic
vehicle. Moreover, the performance of system with notch
filter is better than without notch filter.

4. An Adjustable Controller Design Scheme

In this paper, an alternatively adjustable controller based
on the codesigned polytopic LPV model is proposed to
ensure the stability of the system. Filter states and output
are introduced into the original model to formulate an
extended states coupling model (ECM). )e new poly-
topic LPV model is codesigned using the same lineari-
zation method for the weak coupling between flexibility
and rigid body. To improve the control performance, the
adjustable Tube-MPC controller is designed. )e sche-
matic of the new control system is shown in Figure 7.
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Figure 3: Bode diagram of notch filter’s effect on flexible hypersonic vehicle. (a) Effect of ωp when εp � 0.5. (b) Effect of εp when.ωp � 15.
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4.1. ECMModelling. Convert the transfer function of notch
filter into state space equation, as follows:

_xq1

_xq2

⎡⎣ ⎤⎦ �
aq1 aq2

aq3 aq4

⎡⎣ ⎤⎦
xq1

xq2

⎡⎣ ⎤⎦ +
bq1

bq2

⎡⎣ ⎤⎦q,

q′ � cq1 cq2􏽨 􏽩
xq1

xq2

⎡⎣ ⎤⎦ + dqq,

(39)

where xq1, xq2 are states of notch filter, respectively; q′ is
output of filter, that is, the filtered pitch rate;
aq1,2,3,4, bq1,2, cq1,2, dq are the parameters of corresponding
matrix, respectively.

In order to ensure the stability of the control system, the
filter states are introduced into the original CMmodel, and q

is replaced by q′. Consequently, an ECM involving notch
filter is presented as follows:

_h � V sin(θ − α),

_V �
1
m

(T cos α − D) − g sin(θ − α),

_α �
1

mV
(− T sin α − L) + q′ +

g

V
cos(θ − α),

_θ � q′,

_q′ � cq1 _xq1 + cq2 _xq2 +
dq

Iyy

M + 􏽥ψ1€η1 + 􏽥ψ2€η2( 􏼁,

€η1 �
1
k1

− 2ζ1ω1 _η1 − ω2
1η1 + N1 − 􏽥ψ1

M

Iyy

−
􏽥ψ1􏽥ψ2€η2

Iyy

􏼠 􏼡,

€η2 �
1
k2

− 2ζ2ω2 _η2 − ω2
2η2 + N2 − 􏽥ψ2

M

Iyy

−
􏽥ψ2􏽥ψ1€η1

Iyy

􏼠 􏼡,

_xq1 � aq1xq1 + aq2xq2 + bq1q,

_xq2 � aq3xq1 + aq4xq2 + bq2q,

(40)

4.2. Codesigned Polytopic LPV Modelling. Considering the
weak coupling between flexible modes and rigid body, the
ECM model is transformed into a control-oriented linear-
ization model by using the same linearization method as
above, where the notch filter is included.

In the flight envelope, the speed and altitude are also
taken as the scheduling variables, and the corresponding
system states and control inputs are defined as
xs
′ � [h, V, α, θ, q′, η1, _η1, η2, _η2, xq1, xq2]

T, us
′ � [Φ, δe]

T. )e
states at the equilibrium point can be obtained as

xr
′ � hr, Vr, αr(h, V), θr(h, V), qr

′(h, V), η1r(h, V), _η1r(h, V), η2r(h, V), _η2r(h, V), xq1r(h, V), xq2r(h, V)􏽨 􏽩
T

,

ur
′ � Φr(h, V), δer(h, V)􏼂 􏼃

T
.

(41)

)e corresponding LTI model can be built by Taylor
expansion

_x′(t) � A′x′(t) + B′u′(t). (42)
where
xs
′ � Δh,ΔV,Δα,Δθ,Δq′,Δη1,Δ _η1,Δη2,Δ _η2,Δxq1,Δxq2􏽨 􏽩,

u′ � ΔΦ,Δδe􏼂 􏼃,

A′ �
zl xs
′, us
′( 􏼁

zxs
′

, B′ �
zl xs
′, us
′( 􏼁

zus
′

.

(43)

Similarly, select different equilibrium points in the flight
envelope for linearization and fitting to formulate the
corresponding continuous LPV model:

_x′(t) � A′(p(t))x′(t) + B′(p(t))u′(t), (44)

where A′(p(t)) and B′(p(t)) are matrices over scheduling
variables.

)en, the discrete polytopic LPV model can be obtained
by tensor product

x′(k + 1) � A′(p(k))x′(k) + B′(p(k))u′(k). (45)

Nominal trajectory

Z

mRPI set

With notch filter

Without notch filter

Figure 6: )e state of system in the mRPI set at the same time.
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)e corresponding nominal system has the following
form

xn
′(k + 1) � A′(p(k))xn

′(k) + B′(p(k))un
′(k), (46)

where, xn
′(k), un
′(k) are nominal system states and control

inputs.
)e comparison of Bode diagram is also given in Figure 8

to show the accuracy of the codesigned polytopic LPV
model, in which the blue line represents the codesigned
model and the red line for the ECM model. It can be seen
that the new model can also conform to the frequency
characteristics of the original model.

4.3. Adjustable Tube-MPC Controller Design. )e baseline
Tube-MPC controller is designed in the worst case of fault.
However, in the actual flight, the worst case may not happen.
In order to balance the control performance and robustness
of system, an adjustable Tube-MPC control method is in-
troduced [25].

Considering the case of incomplete actuator fault, the
faulty model is formed as follows:

x′(k + 1) � A′(p(k))x′(k) + B′(p(k))u′(k) + Δ′, (47)

where Δ′ ∈W′. W′ denotes incomplete disturbance set, that
is, W′⊆W. u′(k) is the adjustable Tube-MPC control inputs,
written as the following weighted formula:

u′(k) � τF′ x′(k) − xn
′(k)( 􏼁 + K′xn

′(k), (48)

where τ is the adjustable factor. F′ and K′ are adjustable
robust feedback gain and nominal control gain, respectively.

Firstly, the design method of F′ is the same as the
baseline controller by solving (19). It should be noted that
the matrix in (19) should be expanded to the corresponding
dimension.

Next, the invariant set is designed. In order to achieve
better control performance, it is not necessary to choose the
mRPI set Z for the extreme faults. )e size of Z is positively
correlated with the size of disturbance set W. Considering
the nonworst case actuator fault, a smaller mRPI set Z′ can
be selected, where Z′ is called incomplete disturbance mRPI
(idmRPI) set. In this paper, an adjustable factor τ is used to
regulate the size of mRPI set corresponding to incomplete
fault. In general, τ should be a diagonal matrix representing

the scaling degree of each dimension in Z. For simplicity,
this paper considers that each dimension has the same
scaling degree, so τ can be taken as a value from 0 to 1.
)erefore, the relationship between Z and Z′ can be
expressed as Z′ � τZ.

Finally, the adjustable nominal control law K′ is
designed. )e following optimization problems are
presented:

min
cn
′,Y′ ,G′ ,Q′

cn
′, (49)

s.t
1 xn
′(k)

T

xn
′(k) Q′

􏼢 􏼣≥ 0, (50)

Q′ Q′
T
A
′T
i + Y′

T
B
T
i Q′

Tψ′1/2T
Y′

Tσ′1/2T

Ai
′Q′ + Bi

′Y′ Q′ 0 0

ψ′1/2T
Q′ 0 cn

′I′ 0

σ′1/2T
Y′ 0 0 cn

′I′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0,

i ∈ 1, 2, . . . , Rl􏼈 􏼉.

(51)

Χ′ Y′

Y′
T

Q′
􏼢 􏼣≥ 0, X′ �

un1′ 0
0 un2′

􏼢 􏼣, unj
′ ≤ u
′2
nj′max, j � 1, 2,

(52)

where Y′ ∈ R2×11 is a matrix. Q′ ∈ R11×11 is a symmetric
matrix. cn

′ is a positive scalar. u′2nj,max is the maximum of the
jth adjustable nominal inputs satisfying the following
constraint:

un
′ ∈ UΘF′Z′( 􏼁. (53)

Solving the above optimization problems, the adjustable
nominal control law K′ � Y′Q′ − 1 can stabilize the system.

From (46), it can be seen that τ expands the constraint
range of nominal control input. When τ is decreased, the
nominal system constraint is relaxed such that the control
performance becomes better and the robustness is worse. On
the contrary, the nominal system constraints become strict
such that the control performance decreases but the ro-
bustness of the system is improved. By adjusting τ, the
stability of the closed-loop system can be further guaranteed.

Nominal model

Reference
trajectory

output

Extended nominal
states 

Extended states

Adjustable
factor

Hypersonic vehicle
(with fault and parameter

uncertainty)

Auxiliary
controller

Nominal
controller

τF (x' - x'n)

–

+

+

+r'
x'n

u'n
x'n

u'n u'
y'

x'

Figure 7: Adjustable control system scheme.
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(1) Design parameters of notch filter
(2) Establish ECM model based on parameters of notch filter.
(3) Codesign the polytopic LPVmodel of flexible air-breathing hypersonic vehicle by Jacobi linearization and the tensor product based

on ECM.
(4) Solve the robust auxiliary feedback control gain F′ offline.
(5) Choose adjustable factor τ and compute the idmRPI set Z′.
(6) Calculate the nominal control gain K′ offline.
(7) Apply the actual control law utotal

′ � τF′(x′ − xn
′) + K′xn

′ + ur
′ to the nonlinear model of flexible air-breathing hypersonic vehicle.

ALGORITHM 1: Steps of the proposed method.

RMPC (DM)
Tube-MPC (CM)
Tube-MPC with notch filter (CM)
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Figure 10: Continued.
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Figure 9: Trajectory in Case 1. (a) Altitude. (b) Velocity.
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4.4. He Real Control Law Is Written as

utotal′ � τF′ x′ − xn
′( 􏼁 + K′xn

′ + ur
′ (54)

where ur
′ is the control input at the equilibrium point.

)e design steps of the adjustable design scheme are as
follows.

5. Simulations

5.1. Simulation Conditions. Two cases are simulated to
validate the effectiveness of the proposed method.

Case 1. In this case, the Tube-MPC controller via notch filter
is verified. Select Γ � [85000ft, 865000ft]× [7700ft/s,
8300ft/s] as the flight envelope. And a polytopic LPVmodel
with 20 vertices is built. )e initial flight conditions are
h � 85500ft, V � 7900ft/s. )e commands are step signals:
600ft for height and 250ft/s for speed. )e input

constraints are 0≤Φ≤ 1.5, − 30∘ ≤ δe ≤ 30∘. )e maximum
allowable error of longitudinal attitude angle is ± 0.5∘. It is
assumed that the loss of actuator effectiveness fault with 10%
occurs at 100s, that is, ρf � 0.9. )e uncertain parameters
exist, given as m< 10%, Iyy < 10%, S< 1%, zT < 1%, c< 1%,
ce < 3%, β1 < 3%, β3 < 3%, β5 < 3%, β7 < 3%.

Case 2. In this case, the adjustable controller design scheme
is verified. In the same flight envelope, the codesigned
polytopic LPV model with 6 vertices is built. )e command
rises from h � 85500ft, V � 7900ft/s to h � 86100ft, V �

8150ft/s at a constant speed after 20 s.)e adjustment factor
τ � 0.8. Parameter uncertainty and relevant parameters of
fault are the same as Case 1.

5.2. Simulation Result and Analysis. To show the advantages
of the controller designed in this paper, the traditional
robust MPC (RMPC) is compared. It is worth noting that the
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Tube-MPC (CM)
Tube-MPC with notch filter (CM)
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Figure 10: States in Case 1. (a) Attack angle. (b) Pitch angle. (c) Pitch rate.
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Figure 11: Continued.
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traditional RMPC cannot achieve satisfactory result in the
presence of flexibility. So the traditional RMPC is just used
to control the DM (4) without flexibility.

Figure 9 shows the height and velocity trajectory
tracking results in the presence of parameter uncertainty and
actuator fault of loss of effectiveness. After fault happens, the
flexible hypersonic vehicle can still track the reference
trajectory stably using Tube-MPC. However, the accurate
altitude tracking is not achieved by the traditional RMPC.
Figure 10 shows attack angle, pitch angle, and pitch rate
vibrate when fault occurs but soon stabilize at equilibrium.
Compared with the traditional RMPC, the vibration is

smaller. Compared with Tube-MPC without notch filter, the
state change of Tube-MPC with notch filter is gentler and
smoother after fault occurs. Figure 11 shows the curves of
the generalized flexible coordinates and their derivatives.
)ey vibrate after fault occurs, but soon return to stability.
Similarly, using the traditional RMPC control, they vibrate a
lot more. )e jitter of the system under Tube-MPC with
notch filter is gentler and smoother. Figure 12 shows the
curves of the control inputs. It can be seen that control
inputs satisfy the input constraints in presence of fault.

)e notch filter in the above simulation is designed for
the first-order elastic mode. To show its power further, the
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second-order flexible mode is addressed separately by notch
filter, shown in Figure 13. It can be known that the notch
filter has a slight inhibition on the derivative of the first-
order flexible mode, and a significant impact on the de-
rivative of the second-order flexible mode.

Simulation results show that the Tube-MPC with notch
filter can realize accurate and stable trajectory tracking in
presence of uncertain parameters and actuator loss of ef-
fectiveness fault. )e dynamic error of the longitudinal

attitude angles is within ± 0.5∘. By introducing notch filter,
the flexible modes can be rejected.

As can be seen from Figures 14 and 15, the adjustable
control scheme not only ensures the stability of the aircraft,
but also improves the rapidity of speed response. In Fig-
ure 16, the adjustable controller can get rid of the influence
of elastic characteristics. As can be seen from Figure 17, in
case of failure, the control inputs of the adjustable method
can still be maintained within a reasonable range.
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6. Conclusion

In this paper, Tube-MPC via notch filter trajectory tracking
controller are designed for flexible air-breathing hypersonic
vehicle with parameter uncertainty and actuator fault.
Firstly, the polytopic LPV model is established by Jacobian
linearization and tensor product. )e parameter uncertainty
and actuator fault are uniformly transformed into the
lumped term. )e Tube-MPC controller is designed, where
the actual trajectory is limited to the mRPI set and is able to
approximate the nominal trajectory. )e notch filter is in-
troduced to eliminate flexibility. To ensure the stability of the
closed-loop system, the adjustable control scheme is pro-
posed. )e filter and the original nonlinear model are
combined to formulate the ECM model. Based on the
codesigned polytopic LPV model, the adjustable Tube-MPC
controller is designed to balance control performance and
robustness. )e simulation results show the effectiveness of
the two controllers. Online identification of flexibility of
hypersonic vehicle will be considered in future research.
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