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When building a surrogate model, it is important to identify a proper mean function for the kriging model. .e commonly used
variable selection method is the penalized blind kriging (PBK) method. But this method could lead to a low time efficiency, which
is not suitable for experiments with time-sensitive data. In this paper, we propose three step-by-step approaches for constructing
an appropriate mean function to improve the prediction accuracy and time efficiency of the PBK method. Several functions and
two engineering examples are used to prove the effectiveness of the proposed methods. From simulation results, we can see that
Method 1 (M1) and Method 2 (M2) have been significantly improved in both the prediction accuracy and the time efficiency
compared with PBK. Especially, in the Test function, compared with the traditional PBKmethod, the prediction accuracy of M2 is
improved by 69.08% and 26.13%, respectively, under the penalty of Lasso and Elastic Net, and the time efficiency of M1 is
improved by 85.15% and 90.33%, respectively, under the penalty of Lasso and Elastic Net. In addition, Method 3 (M3) has been
significantly improved in prediction accuracy compared with PBK.

1. Introduction

.e surrogate model has been widely used to replace
computation-intensive engineering simulation models or
black-box systems [1–3]. .ere are several commonly used
surrogate models, such as kriging, support vector regression,
and radial basis functions [4]..eir application fields involve
the structural dynamics of aeroengine casings, dynamic
reliability estimation of turbine blisk, and computationally
expensive constrained optimization problems.

.e kriging model can be used to fit computer experi-
ments because of its interpolate character. Its error esti-
mation can be extended to many aspects such as failure
probability estimation [5], robust design optimization [6],
uncertainty analysis [7], and global sequential sampling [8].
As the combination of mean function and stochastic
Gaussian process (GP), the kriging model is called ordinary
kriging (OK) if using a constant mean to fit the overall trend
or universal kriging (UK) if supposing some specified
variables in the mean function. However, their prediction
accuracy will be reduced if the mean function is specified

inappropriately [9]. Computer experiments usually include a
large number of input variables, inactive variables which
hardly have an impact on the response tending to reduce
prediction accuracy; thus, it is a matter to identify active
variables into a mean function [10].

In this paper, we consider the problem of variable
selection for the kriging model. We want to use the method
of variable selection to construct an interpretable kriging
model which can select the active variables and remove
inactive variables with high prediction accuracy and high
time efficiency. .e commonly used variable selection
method in the kriging model is the penalty likelihood
method. For the penalty likelihood method, Hung [11]
proposed the penalized blind kriging (PBK) approach to
select variables. .is method, however, suffers from the
limitation of low time efficiency and prediction accuracy.
In the field of engineering, because of the time sensitive of
data, researchers always want to improve time efficiency
greatly while maintaining preferable prediction accuracy.
.erefore, efficient variable selection methods are called
for.
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.e idea here is to improve the time efficiency and
prediction accuracy of PBK using step-by-step approaches.
.ree new approaches are proposed for variable selection.
.e first method is to select the variables using a linear
model at the first and then estimate the parameters in the
kriging model. .e second method is first to estimate the
parameters with the OK model and then select the variables
via the penalized kriging model and finally refit the kriging
model. .e third method is an improvement of PBK, which
is a refitting based on the variable selection of PBK. .ese
methods are proved to improve the prediction accuracy and
time efficiency by several analytic functions and two
examples.

.e remainder of the paper is organized as follows: in
Section 2, three new methods are proposed for variable
selection. Section 3 illustrates the effectiveness of proposed
methods with four simulated examples and compares the
prediction accuracy, identification, and time efficiency.
Section 4 implements the proposed methods for two en-
gineering examples. Section 5 provides some discussion and
concluding remarks.

2. Step-by-Step Variable Selection Methods

In this section, we first review some of the details; then, three
methods are proposed for variable selection based on PBK
methods.

2.1. Kriging Preliminaries. .e kriging model [12] assumes
that the response y(x) is a realization from the stochastic
process:

y(x) � 

p

i�1
βifi(x) + z(x) � f(x)

Tβ + z(x), (1)

where f(x) � (f1(x), . . . , fp(x))T is the basis functions,
and β � (β1, . . . , βp)T is a vector of unknown coefficients,
respectively. .e stochastic process z(x) has mean 0 and
covariance σ2R , where R(θ, xi, xj) is a correlation function
between xi and xj depending on parameter θ. In most
engineering applications, the most commonly used corre-
lation function is the stationary Gaussian correlation
function Rij(θ) � R(θ, xi, xj) � 

d
k�1 exp(−θk(xik − xjk)2),

which is chosen in our research.
Given some sampled points xi ∈ Rd and the responses

yi ∈ R, i � 1, . . . , n, the best linear unbiased predictor
(BLUP) can be obtained as follows [12]:

y(x) � f(x)
Tβ + r(x)

T
R

−1
(y − Fβ), (2)

where r � [R(θ, x1, x), . . . , R(θ, xn, x)]T is a correlation
between the unsampled point x and the sampled points
xi, i � 1, . . . , n; the matrix F � [f(x1), . . . , f(xn)]T is con-
structed by f(x) at the sampled points.

.e log-likelihood function can be written as follows:

L β, σ2, θ | y  � −
n

2
log(2π) −

1
2
log σ2R


 −

1
2σ2

(y − Fβ)
T
R

−1
(y − Fβ).

(3)

.en, the parameters β, σ2, and θ could be estimated via
maximum likelihood estimation (MLE). For given corre-
lation parameters θ, the MLE of β is as follows:

β � F
T
R

−1
F 

−1
F

T
R

−1
y, (4)

and the MLE of σ2 is as follows:

σ2 �
1
n

(y − Fβ)
T

R
−1

(y − Fβ). (5)

Since there is no analytical solution for the parameters θ,
optimization methods are needed to obtain as follows:

θ � argminθ n log σ2 + log|R| . (6)

Finally, the estimated parameters β, σ2, θ are substituted
into equation (2) to obtain the predictor of responses for the
unsampled points.

2.2. Step-by-Step Variable Selection Methods. Although the
kriging model has a character of interpolator due to its
stochastic process, penalty methods still could be used to
select the important variables from the candidates to im-
prove prediction accuracy [13].

Two penalty functions are used for variable selection in
the PBK model by Hung [11], i.e., Lasso [14] and adaptive
Lasso [15]. It estimates the regression coefficients β by
minimizing the negative penalized log-likelihood
function.

Q β, θ, σ2  �
(y − Fβ)

T
R

−1
(y − Fβ)

2σ2
+ 

p

j�1
Pλ |βj



 , (7)

where Pλ(|βj|) is the regularization term called “penalty
function,” and λ is the regularization parameter. In order to
efficiently obtain the estimation of parameters in the penalty
likelihood function, Hung [11] proposed the iteratively
reweighted least angle regression (IRLARS) algorithm for
Lasso penalty and adaptive Lasso penalty.

Besides above penalty methods, Elastic Net penalty
proposed by Zou and Hastie [16] also could be used for
variable selection. It has regularization parameters λ and α.
.e Elastic Net estimation of the parameters β can be solved
by the following formulation:

βEN � argminβ
(y − Fβ)

T
R

−1
(y − Fβ)

2σ2
+ λα‖β‖1 + λ(1 − α)‖β‖

2
2 ,

(8)

where ‖β‖1 � 
p

j�1 |βj| and ‖β‖22 � 
p

j�1 β
2
j . .us, it can be

seen that the penalty function of Elastic Net is a convex
combination of ridge regression and Lasso. Particularly, the
Elastic Net penalty becomes ridge regression when α � 0,
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and the Elastic Net penalty becomes Lasso penalty when
α � 1. According to the IRLARS algorithm for Lasso penalty,
we describe the IRLARS algorithm for Elastic Net penalty in
Algorithm 1.

Regularization parameters are obtained based on 10-fold
cross validation, and the estimation of parameters β, θ, σ2 are
obtained based on the IRLARS algorithm in this research.

Although PBK effectively reduces the prediction error,
further improvements are needed for low time efficiency.
.us, we propose three step-by-step variable selection
methods to improve the prediction accuracy and time ef-
ficiency. We describe them in detail as follows:

2.2.1. Method One (M1). We integrate penalty into the
linear model y(x) � f(x)Tβ + ε firstly, where ε ∼ N(0, σ2);
then, we select active variables by solving the penalized
likelihood function for β:

β � argminβ ‖y − Fβ‖
2

+ 

p

j�1
Pλ βj



 ⎛⎝ ⎞⎠, (9)

where λ is obtained based on cross validation. .en, selected
basis functions fi

′(x), i � 1, . . . , m corresponding nonzero
regression coefficients β are substituted into the Kriging
model (1) as new variables, and correlation parameters θ are
updated as θ′. β′, σ′2, θ′ are estimated by formulas (4)–(6),
respectively. Finally, the estimated parameters β′, σ′2, θ′ are
used to predict the responses of unsampled points by
substituting into formula (2), and the predicted model can
be expressed as follows:

y′(x) � f′(x)
Tβ′ + r′(x)

T R′
−1

y − F′β′ . (10)

.e proposed method M1 is given in Algorithm 2.

2.2.2. Method Two (M2). Firstly, we estimate the parameters
θOK and σ2OK with the ordinary kriging model y(x) � μ +

z(x) by solving the following formulas:

μOK � 1T
n R

− 11n 
−1
1T

n R
−1

y, (11)

σ2OK �
1
n

y − 1nμOK( 
T
R

− 1
y − 1nμOK( , (12)

θOK � argminθ n log σ2OK + log|R| , (13)

where 1n is an n × 1 vector of ones..en, we can select active
variables by minimizing the negative penalized log-likeli-
hood function Q(β, θOK, σ2OK) and update correlation pa-
rameters. Finally, the new kriging model is fitted similarly to
that in M1..e proposed method M2 is given in
Algorithm 3.

2.2.3. Method 8ree (M3). Firstly, the PBK method is used
to select active variables β based on the kriging model via

minimizing the negative penalized log-likelihood function
(7). It considers correlation between sample points, which is
different fromM1..en, the selected variables based on PBK
were substituted into the model (1) as new variables, and
correlation parameters are updated. Finally, the estimated
parameters β′, σ′2, θ′ estimated by formulas (4)–(6) are used
to predict the responses of unsampled points by substituting
into (2).

.e variable selection part of M3 is using IRLARS of PBK
in Algorithm 1. .e fitting steps are the same as Steps 2–4 in
Algorithm 2 after selecting variables. We will not go into
details here.

.eoretically, M1 and M2 do not need the iterative step
of parameter estimation of β such as PBK in variable se-
lection; thus, they can improve time efficiency greatly. In
addition, the last step of the proposed three methods is to
update θ and refit the kriging model, so the prediction
accuracy could be improved.

3. Simulation

.e effectiveness of the proposedmethods is proved in terms
of simulation performance. We validate the simulation
performance of the methods compared with back propa-
gation (BP) neural network, generalized regression (GR)
neural network, and PBK method according to time effi-
ciency and prediction accuracy. We use the following in-
dicators to measure time and prediction accuracy.

(a) .e root mean square prediction error (RMSPE) is
defined as

RMSPE �

����������������������

1
N



N

i�1
y x

test
i  − y x

test
i  

2




, (18)

where N is the number of testing samples. .e mean
of RMSPE (MRMSPE) of the simulations is calcu-
lated to evaluate the prediction performance.

(b) .e time of consumption (CPU) shows the uptime of
the system.
Especially, we need identification to measure their
accuracy of variable selection in linear functions
using the following indicators:

(c) .e average number of inactive effect identified rate
(IEIR).

(d) .e average number of active effect identified rate
(AEIR).

(e) .e average size of identified mean function
(MEAN).

Obviously, when AEIR is larger, MRMSPE, IEIR, and
CPU are smaller, and if MEAN is closer to the target, the
model is better.

Four analytical functions are displayed in the following
equations:
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(1) A known function [11]:

y(x) � 0.4x1 + 0.3x2 + 0.2x3 + 0.1x4 + 0.05x5

+ 0.01x6 + z(x).
(14)

(2) Test function [17]:

y(x) � 9 + 15
6

i�1
xi +

25
2



5

i�1
xixi+1 + 10

6

i�1
x
2
i . (15)

(3) Gramacy and Lee function [13]:

y(x) � exp sin 0.9 x1 + 0.48( 
10

   + x2x3 + x4. (16)

(4) Borehole function [18]:

y(x) � 2πx3 x4 − x6(  × log
x2

x1
  1 + 2

x3x4

log x2/x1( x2
1x8

 

−1

.

(17)

A known function (KF) includes twelve-dimensional in-
puts, where the first six variables (x1, x2, . . . , x6) decrease the
effects on the responses, the remaining variables
(x7, x8, . . . , x12), are unrelated (i.e., zero coefficients) to the
outputs, and z(x) has mean 0 and covariance σ2R(θ), where
σ2 � 0.05 and θ � 16. .e Test function (TF) includes twelve-
dimensional inputs, where the last six variables are irrelevant
to the outputs. .e Gramacy and Lee function (GL) includes
six-dimensional inputs, where the last two variables are ir-
relevant to the outputs. .e Borehole function (BF) includes
eight-dimensional inputs. And the nonlinearity gradually gets
more obvious from the function KF to function BF. In
function KF, we consider 60, 80, and 100 sample points for
training in order to compare the effect of different sample
sizes. In function TF, GL, and BF, we consider 100 sample
points for training in order to compare the effect of non-
linearity. 1,000 sample points are randomly selected as testing
data. We evaluate the accuracy of prediction, identification,
and time efficiency based on 500 simulations.

In order to compare the effectiveness of the proposed
methods, simulation studies are conducted to evaluate the
performance of the BP neural network and GR neural
network methods as other surrogate models firstly. .e
number of neurons in the hidden layer of the BP neural
network is the optimal number of neurons among the 15
candidate neurons. .e transfer functions from the input
layer to the hidden layer and the hidden layer to the output
layer choose “logsig” and “purelin,” respectively. .e sim-
ulation results for four functions are given in Table 1.

Due to the lack of interpretability of a neural network,
neural network methods cannot select variables. In this
paper, we will focus on variable selection for the kriging
model. We carry out simulation studies using PBK, three
methods in Section 2 with Lasso penalty and Elastic Net
penalty. .e first-order polynomial basis function and the
stationary Gaussian correlation function are used. And Latin
Hypercube designs [19] are used to select sample points for
training data in the design domain because they can be
produced with minimal computational cost, and the design
space is fulfilled well. .e simulation results for four
functions are given in Tables 2–6, respectively.

.e principal results of these simulations are as follows:

(1) According to Tables 2–6, the prediction accuracy of
the proposed three methods is better than that of the
PBK, BP, and GR neural networks, where M3 is the
better one. In addition, their high prediction accu-
racy is obvious with escalating nonlinearity. Par-
ticularly, we take Table 4 as an example; the RMSPE
for the predictors with Lasso penalty and Elastic Net
in M3 gets low to (69.30% � (0.3528 − 0.1083)

/0.3528)and 58.53% smaller than the PBK predictors,
respectively.

(2) According to simulation results of the function KF
(i.e., Tables 2 and 3), the method M1 could identify
more variables, which lead to its highest AEIR and
IEIR. Although AEIR of M2 is not high, its IEIR is
the lowest andMEAN is close to the target. As toM3,
its identification is basically the same as PBK. It
indicates that M2 and M3 have better identification
in variable selection.

(3) In the aspect of time, the efficiency of M1 and M2 is
obviously better than that of PBK, BP, and GR neural
networks, where M1 is the most efficient. But the
efficiency of M3 is little worse than that of PBK.
Particularly, we take n � 100 in Tables 2 and 3 as an
example the time of M1 with Lasso penalty and
Elastic Net penalty gets low to 79.16% and 86.50%
smaller than PBK, respectively. For other cases, the
optimization of time efficiency of M1 is almost
higher than 80%.

In summary, the BP neural network is mostly worse than
the traditional PBKmethod in the accuracy of prediction, and
it is not faster than the PBK method with Lasso penalty in the
time efficiency. Although the GR neural network is faster than
the PBKmethod in the time efficiency, it is mostly worse than
the traditional PBKmethod in the accuracy of prediction. We

Step 1: set the initial values for β(0), θ(0), σ2(0)

Step 2: with R(θ
(k)

)− 1/σ(2(k)) � CTC, y′ � Cy, and F′ � CF, solve penalized likelihood function for λ and α obtained by cross
validation,β

(k+1)
� argminβ(‖y′ − F′β‖2 + λα

p

j�1 |β|j + λ(1 − α) 
p

j�1 |β|2j)

Step 3: estimate σ2, θ via maximizing the log-likelihood function (3),σ2(k+1) � 1/n(y − Fβ
(k+1)

)TR− 1(y − Fβ
(k+1)

),
θ

(k+1)
� argminθ(n log σ2(k+1) + log|R|)

Step 4: if the convergence is attained, get the estimation β, θ, σ2; otherwise, return to step 2

ALGORITHM 1: (IRLARS algorithm for Elastic Net penalty).
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Step 1: Screen variables using formula (9).
Step 2: Select the new basis function fi

′(x) as new variables. Update the correlation parameter to θ′.
Step 3: Estimate the parameters β′, σ′2, θ′ via formulas (4)–(6).
Step 4: .e estimated parameters β′, σ′2, θ′ are used to predict the responses by substituting into formula (10).

ALGORITHM 2: (variable selection algorithm for M1).

Step 1: give μ(0), θ(0), and σ2(0) as initial variables
Step 2: use formulas (12) and (13) for optimal model parameters θOK, σ2OK

Step 3: with R(θOK)− 1/σ2OK � CTC, y∗ � Cy, and F∗ � CF solve the penalized likelihood function for λ, β � argminβ(‖y∗ − F∗β‖2 +


p
j�1 Pλ(|βj|)), where λ is obtained based on cross validation

Step 4: the remaining steps of fitting are the same as Steps 2–4 in Algorithm 2 and will not be repeated here

ALGORITHM 3: (variable selection algorithm for M2).

Table 1: Data simulation results of neural network.

Function Sample Size
BP GR

MRMSPE CPU(s) MRMSPE CPU(s)
KF n� 60 0.110 6 3008.31 0.114 5 2142.63

n� 80 0.108 5 3509.58 0.110 5 2236.98
n� 100 0.107 7 3794.20 0.108 9 2246.46

TF n� 100 3.972 7 5112.79 14.469 4 2429.14
GL n� 100 0.668 5 4354.56 0.672 7 2306.72
BF n� 100 4.341 1 3597.09 22.362 2 2405.54

Table 2: Data simulation results of the function KF with Lasso.

Sample Size Method MRMSPE IEIR(%) AEIR(%) MEAN CPU(s)
n� 60 PBK 0.067 8 37.60 92.47 7.80 2815.65

M1 0.067 5 55.93 96.53 9.15 589.02
M2 0.067 4 4.37 79.20 5.01 687.74
M3 0.066 9 37.67 92.43 7.81 2879.55

n� 80 PBK 0.066 7 20.53 91.70 6.73 3101.15
M1 0.066 5 58.17 97.00 9.31 618.83
M2 0.066 3 5.67 81.20 5.21 953.33
M3 0.065 7 20.77 91.60 6.74 3384.24

n� 100 PBK 0.065 8 12.53 93.17 6.34 3525.52
M1 0.065 7 58.90 97.50 9.38 734.71
M2 0.065 0 7.77 82.40 5.41 1128.58
M3 0.064 9 14.20 93.17 6.44 3881.17

Table 3: Data simulation results of the function KF with Elastic Net.

Sample Size Method MRMSPE IEIR(%) AEIR(%) MEAN CPU(s)
n� 60 PBK 0.067 8 44.20 93.40 8.26 10 315.95

M1 0.067 5 63.00 97.00 9.60 1126.76
M2 0.067 0 6.33 81.57 5.27 1315.17
M3 0.067 2 43.40 93.63 8.22 10 980.71

n� 80 PBK 0.066 7 25.17 92.27 7.05 10 787.02
M1 0.066 5 63.10 97.27 9.62 1277.98
M2 0.0661 8.33 83.27 5.50 1685.08
M3 0.065 8 25.37 92.53 7.07 11 161.00

n� 100 PBK 0.065 7 17.37 93.63 6.66 11 135.97
M1 0.065 6 63.57 97.53 9.67 1503.19
M2 0.0651 10.73 83.40 5.65 1914.47
M3 0.065 0 17.90 93.90 6.71 11 761.19
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take n � 100 in function KF as an example; the RMSPE for BP
neural network, the GR neural network and PBK is 0.107 7,
0.108 9, and 0.065 8, respectively, and their time is 3794.20 s,
2246.46 s, and 3525.52 s. In addition, due to the lack of in-
terpretability of BP and GR neural networks, these methods
do not have identification..us, the neural network is not the
preferred candidate method in variable selection methods
compared with PBK. Although M1 greatly improves time
efficiency by reducing the iterative steps of parameter esti-
mation of β, it identified more inactive variables than PBK,
which lead to its high AEIR and IEIR, as the correlation
between sample points is not considered in the variable se-
lection. As to M2, it not only maintains the advantage of M1
in time efficiency but also makes up for the shortcomings of
M1 by considering the correlation between sample points.
.erefore, M2 is superior to M1 in both identification and
prediction accuracy and can be used to replace PBK. Although
M3 is refitted on the basis of the variable selection of PBK,
which leads to its low time efficiency, it has a significant
improvement in the prediction accuracy. .erefore, we can
use M3 as an improved method of PBK.

4. Empirical Application

4.1. Circuit Simulation. .e proposed methods are applied
to the circuit-simulation code [12]. Six input variables
x1, . . . , x6 and one response y are in this experiment. .e
simulation experiments were conducted 32 times. .is data
are also used to analyze the relationship between output and
input [20]. It can be useful for illustrating the prediction
accuracy and time efficiency. .e candidate variable set
includes all linear effects. To compare the prediction

accuracy and time efficiency of different methods, the dataset
was separated into two sections: half of the data are used for
training and the other half for testing. .e experimental
results with Lasso and Elastic Net penalty are listed in Ta-
bles 7 and 8, respectively.

From the second and third columns of Tables 7 and 8, we
could find the prediction accuracy of M1 (0.220 7 and
0.2207), M2 (0.2207 and 0.2207), and M3 (0.1520 and
0.1591) which can achieve better prediction than PBK
(0.286 9 and 0.274 0), and the prediction of M1 and M2 are
all improved by 23.07% and 19.45%, those of M3 are im-
proved by 47.02% and 41.93% relative to PBK.

As displayed in the last two columns of Tables 7 and 8, we
could find the operation time of M1 (0.37 s and 0.81 s) and
M2 (0.43 s and 1.08 s) which are less than those of PBK
(2.26 s and 8.65 s) and M3 (2.29 s and 9.01 s), and the ap-
proximation efficiency of M1 is improved by 83.63% and
90.64%, those of M2 are improved by 80.97% and 87.51%
relative to PBK.

.erefore, M1 and M2 can be used as variable selection
methods to replacing the traditional PBK method according
to prediction accuracy and time efficiency for fitting small
samples. And M3 can be used as an improved method of
PBK due to better prediction accuracy.

4.2.PistonClapNoise. Piston secondarymotion would cause
an engine noise which is unwanted. It is the departure of a
piston from the nominal motion prescribed by the mech-
anism. Six variables were used to minimize the piston clap
noise..e variables are the cylinder liner x1, location of peak
pressure x2, skirt length x3, skirt profile x4, skirt ovality x5,
and pin offset x6, respectively.

Table 4: Data simulation results of the function TF.

Method
Lasso Elastic Net

MRMSPE CPU(s) MRMSPE CPU(s)
PBK 0.352 8 3896.31 0.355 9 13 416.90
M1 0.2051 578.45 0.268 5 1297.63
M2 0.1091 888.38 0.262 9 2286.61
M3 0.108 3 3924.61 0.147 6 14 977.26

Table 5: Data simulation results of the function GL.

Method
Lasso Elastic Net

MRMSPE CPU(s) MRMSPE CPU(s)
PBK 0.755 5 2015.58 0.755 8 7034.73
M1 0.641 6 242.03 0.640 2 766.81
M2 0.633 8 600.29 0.632 6 1237.27
M3 0.634 2 2181.55 0.634 6 8150.91

Table 6: Data simulation results of the function BF.

Method
Lasso Elastic Net

MRMSPE CPU(s) MRMSPE CPU(s)
PBK 0.877 9 2198.33 0.878 7 10 522.03
M1 0.710 4 367.71 0.871 3 1234.14
M2 0.687 0 696.51 0.827 8 1459.26
M3 0.616 4 2775.03 0.796 4 12 315.72

6 Mathematical Problems in Engineering



.e relevant dataset of the example is derived from Fang
et al. [2]. .e data include 100 observations, 6 input vari-
ables, and the candidate variable set includes all linear ef-
fects. In this paper, we divide the 100 data into 5 sets, select
one of the sets as the test set for calculating RMSPE, and
others as the train sets; this process is repeated 5 times and
train sets are different every time. PBK, M1, M2, and M3are
compared, and the running time is recorded..e simulation
results with Lasso and Elastic Net penalty are shown in
Tables 9 and 10, respectively.

From the second and third columns of Tables 9 and 10,
we could find the prediction accuracy of M2 (0.5466 and
0.5466) which can achieve better prediction than PBK
(1.0069 and 0.9942), M1 (0.8316 and 0.7108), andM3 (0.6357
and 0.5466), and the prediction ofM1 is improved by 17.41%
and 28.51%, those of M2 are improved by 45.71% and
45.02%, and those of M3 are improved by 36.87% and
45.02% relative to PBK.

As displayed in the last two columns of Tables 9 and 10,
we can find that the operation time of the M1 (2.11 s and
5.75 s) and M2 (5.20 s and 16.89 s) which are less than those
of PBK (18.50 s and 189.45 s) and M3 (21.66 s and 207.76 s),
and the approximation efficiency of M1 is improved by
88.59% and 96.96%, and those of M2 are improved by
71.89% and 91.08% relative to PBK.

.erefore, M1 and M2 can achieve the goal which re-
place the PBK method both in terms of prediction accuracy
and time efficiency. And M3 can be viewed as an im-
provement of PBK.

5. Conclusion and Discussion

In the field of engineering, we always use a simple surrogate
model to fit the complex true model for time saving and
interpretability [21]. In order to improve the accuracy of
prediction and save the cost of time for the PBK method,
three new methods are proposed to obtain the trend
function to improve the prediction accuracy and time ef-
ficiency. M1 is to select the variables using the linear model
at the first and then to estimate the parameters in the kriging
model. M2 is first to estimate the parameters with the OK
model and then to select the variables via the penalized
kriging model and finally refit kriging model. M3 is an
improvement of PBK, which is a refitting based on the
variable selection of PBK.

Several analysis functions with escalating nonlinearity
and two engineering examples with different sample sizes are
used to test our proposed step-by-step variable selection
methods. .e experimental results show that M2 which is
superior to PBK, BP, and GR neural networks and other

Table 7: Experimental results for circuit simulation with Lasso.

Method RMSPE Improved (%) CPU(s) Improved (%)
PBK 0.286 9 — 2.26 —
M1 0.220 7 23.07 0.37 83.63
M2 0.220 7 23.07 0.43 80.97
M3 0.152 0 47.02 2.29 -1.33

Table 8: Experimental results for circuit simulation with Elastic Net.

Method RMSPE Improved (%) CPU(s) Improved (%)
PBK 0.274 0 — 8.65 —
M1 0.220 7 19.45 0.81 90.64
M2 0.220 7 19.45 1.08 87.51
M3 0.1591 41.93 9.01 -4.16

Table 9: Experimental results for piston clap noise with Lasso.

Method RMSPE Improved (%) CPU(s) Improved (%)
PBK 1.0069 — 18.50 —
M1 0.8316 17.41 2.11 88.59
M2 0.5466 45.71 5.20 71.89
M3 0.6357 36.87 21.66 -17.08

Table 10: Experimental results for piston clap noise with Elastic Net.

Method RMSPE Improved (%) CPU(s) Improved (%)
PBK 0.9942 — 189.45 —
M1 0.7108 28.51 5.75 96.96
M2 0.5466 45.02 16.89 91.08
M3 0.5466 45.02 207.76 -9.66

Mathematical Problems in Engineering 7



methods can be used as a favorable method of variable
selection in both prediction accuracy and time efficiency. If
we want to pursue higher time efficiency while maintaining
certain prediction accuracy, M1 might be a good choice. As
well, M3 could be used as an improved method of PBK due
to good prediction accuracy.
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