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�e crossing numbers of graphs were started fromTurán’s brick factory problem (TBFP). Because of its wide range of applications,
it has been used in computer networks, electrical circuits, and biological engineering. Recently, many experts began to pay much
attention to the crossing number of G\e, which obtained from graph G by deleting an edge e. In this paper, by using some
combinatorial skills, we determine the exact value of crossing numbers ofK1,4,n\e andK2,3,n\e. �ese results are an in-depth work
of TBFP, which will be bene�cial to the further study of crossing numbers and its applications.

1. Introduction

�e concept of crossing number was introduced by the
Hungarian mathematician Turán [1]. He encountered a
practical problem in Budapest brick factory, which named
“Turán’s brick factory problem”(TBFP). In fact, TBFP is to
determine the minimal number of crossings among edges of
the complete bipartite graph Km,n.

In the past �ve decades, it turned out that the crossing
numbers have strong practical signi�cance. And they can be
widely used in various �elds, such as the VLSI circuit layout
[2], the identi�cation and repaint of sketch [3], and auto-
matic generation of ER diagram in software development [4]
(see [5, 6]). One of important applications is to �nd the best
location for a new electrical substation so that every two
substations are directly connected and to do without
overlapping power lines. Rach [7] has applied the crossing
number to solve a problem of locating electrical substations
in the city of Glencoe, MN.

With the depth of research, the crossing numbers of
graphs have been investigated extensively in the mathe-
matical, computer, and biological literature, often under
di¥erent parameters, such as the parity [8], odd-crossing
number [9], regular graphs [10], chromatic number [11], and
genus [12]. For more results and its properties about

crossing numbers, reader can refer to [13–16]. As for the
complete bipartite graphsKm,n, Kleitman in [17] proved that

cr Km,n( ) ��
m

2
�
m − 1
2

�
n

2
�
n − 1
2

� Z(m, n),

m≤ 6, m≤ n.
(1)

Recently, the crossing numbers of complete multipartite
graphs attracted much attention. In 1986, Asano [18] ob-
tained the crossing numbers of graphs K1,3,n and K2,3,n. In
2008, Huang and Zhao in paper [19] established that the
crossing number of graphK1,4,n is equal to n(n − 1). In 2020,
the crossing numbers of graphs K1,1,4,n as well as K1,1,4□T
have been proved in [20].

While studying the crossing number of the primal graph
G, many experts also began to follow with interest the
crossing number of G\e, which is obtained by deleting an
edge e from G. �is is an interesting problem worthy of
consideration. For G, it is a complete graph or complete
bipartite graph. Ouyang in [21, 22] as well as Chia in [23],
independently, established the precise values of crossing
numbers of certain graphs G\e: (1) Kn\e for n≤ 12, (2)
Km,n\e for m � 3, 4 and n≥ 1.

Very recently, Huang and Wang in [24] by applying the
method of edge-labeling, which is new and di¥erent from
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those used in [22, 23], have proved that
cr(Km,n\e) � (n − 1)(n − 2). In the present paper, We at-
tempt to study the crossing number of graph G\e, where G is
a complete tripartite graph. Using Huang’s result and some
combinatorial skills, we establish exact value of crossing
numbers of K1,4,n\e and K2,3,n\e.

Terms and definitions involved in the paper follow as
those in [24]. Given a simple graph G, the crossing number
denoted by cr(G) is the minimum number of crossings in
any good drawing of graph G. *e good drawing with
minimum number of crossings is called the optimal
drawing. For a vertex v ∈ V(G), Ev is used to represent all
edges which is incident with v. *e responsibilities of v,
denoted rD(v), are defined to be the sum of crossings of all
edges incident to v in the drawing D.

2. Crossing Number of K1,4,n\e

Let X, Y, Z{ } be the vertex partition of the graph K1,4,n,
where X � x{ }, Y � y1, y2, y3, y4􏼈 􏼉, and Z � z1, z2, . . . , zn􏼈 􏼉.
Let XY, XZ, and YZ be the subgraphs of K1,4,n induced by
X∪Y, X∪Z, and Y∪Z, respectively. Clearly, XY � K1,4.
For i � 1, 2, . . . , n, letEzi

be the subgraph ofK1,4,n induced by
five edges incident with the vertex zi. We will easily get the
following formula:

K1,4,n � XY∪XZ∪YZ

� XY∪ ∪
n

i�1
Ezi

􏼒 􏼓.
(2)

Lemma 1 (see [19]). cr(K1,4,n) � Z(5, n) + 2⌊n/2⌋ � n(n −

1) for any n≥ 1.

Lemma 2 (see [24]). cr(K5,n\e) � (n − 1)(n − 2) for any
n≥ 1.

Lemma 3 (see [13, 25]). cr((S3 ∪K1) + nK1) � Z(5, n)

+⌊n/2⌋ for any n≥ 1.

Lemma 4. For an edge e in complete tripartite graph K1,4,n,
then

cr K1,4,n\e􏼐 􏼑≤

Z(5, n) +⌊
n

2
, e ∈ XY,

Z(5, n) + 2 ⌊
n

2
− ⌈

n

2
+ 1􏼒 􏼓, e ∈ XZ,

Z(5, n) +⌊
n

2
− ⌈

n

2
+ 1, e ∈ YZ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Proof. Let D be an optimal drawing of K5,n having Z(5, n)

crossings due to Zarankiewicz [17]. In the drawing, we place
the vertices of K5,n at coordinators (0, i) and (j, 0) where
− 2≤ i≤ 3, − ⌊n/2⌋≤ j≤ ⌈n/2⌉, and i, j≠ 0. *en, we join (0, i)

to (j, 0) with straight line segment.
Next, we join the edges of K1,4 � xyi, 1≤ i≤ 4􏼈 􏼉 as shown

in Figure 1, and an optimal drawing of the complete

tripartite graph K1,4,n is obtained. Let us denote the drawing
by D′. It is not difficult to see that crD′(K1,4,n) � cr(K1,4,n)

� Z(5, n) + 2⌊n/2⌋. In the following, we obtain the graph
K1,4,n\e together with its drawing from D′.

(i) If e ∈ XY. By deleting the edge e � xy1 from D′,
then a drawing of K1,4,n\exy is obtained. We can
easily check that there are ⌊n/2⌋ crossings on the
edge of xy1. *erefore, we can verify that

cr K1,4,n\exy􏼐 􏼑≤Z(5, n) + 2⌊
n

2
− ⌊

n

2
� Z(5, n) +⌊

n

2
.

(4)

(ii) If e ∈ XZ. *en, by deleting the edge of e � xz⌈n/2⌉,
we can obtain a drawing of K1,4,n\exz. Likewise, the
responsibility of the edge xz⌈n/2⌉ is 2(⌈n/2⌉ − 1). So,
we can obtain that

cr K1,4,n\exy􏼐 􏼑≤Z(5, n) + 2⌊
n

2
− 2 ⌈

n

2
− 1􏼒 􏼓

� Z(5, n) + 2 ⌊
n

2
− ⌈

n

2
+ 1􏼒 􏼓.

(5)

(iii) If e ∈ YZ. In the optimal drawing of K5,n, which
have Z(5, n) crossings given by Zarankiewicz, we
reconnect the edges of K1,4 � xyi, 1≤ i≤ 4􏼈 􏼉, as
shown in Figure 2. And then, by deleting the edge
of e � y1z1, a drawing of K1,4,n\eyz is obtained. Let
us denote the drawing by D′. *en, one can verify
that the responsibility of the edges K1,4 and y1z1
is n and 2(⌈n/2⌉ − 1) + 1, respectively. *erefore,
we have

cr K1,4,n\eyz􏼐 􏼑≤Z(5, n) + n − 2 ⌈
n

2
− 1􏼒 􏼓 − 1

� Z(5, n) +⌊
n

2
− ⌈

n

2
+ 1.

(6)

Combined with the above three cases, this completes the
proof. □

Theorem 1. For any edge exy in complete tripartite graph
K1,4,n, where exy ∈ XY, then

cr K1,4,n\exy􏼐 􏼑 � Z(5, n) +⌊
n

2
. (7)

Proof. It is not difficult to know that K1,4,n\exy contains a
subgraph that is isomorphic to (S3 ∪K1) + nK1. And it was
shown from Lemma 3 that cr((S3 ∪K1) + nK1) � Z(5, n)

+⌊n/2⌋. *us, cr(K1,4,n\exy)≥ cr((S3 ∪K1) + nK1) � Z(5, n)

+⌊n/2⌋. *e reverse inequalities are confirmed by Lemma 4.
*is completes the proof. □

Theorem 2. For any edge eyz in complete tripartite graph
K1,4,n, where eyz ∈ YZ, then
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cr K1,4,n\eyz( ) � Z(5, n) +�
n

2
− �
n

2
+ 1. (8)

Proof. At �rst, according to Lemma 4, we have
cr(K1,4,n\eyz)≤Z(5, n) + �n/2� − [n/2] + 1, and �eorem 2
is true if the equality holds. For n � 1 since K1,4,1\eyz is
planar graph, therefore, cr(K1,4,1\eyz) � 0≥Z(5, 1) + �1/2�
− �1/2� + 1 � 0 is true. Now, we suppose that
cr(K1,4,m\eyz)≥Z(5, m) + �m/2� − �m/2� + 1 for any posi-
tive integer 2≤m≤ n − 1.

Let D be an optimal drawing of graph K1,4,n\eyz, which
satis�es crD(K1,4,n\eyz) � cr(K1,4,n\eyz) � c. Without loss of
generality, we say eyz � y1z1. By deleting the edges ofEz1 from
drawing D, the graph K1,4,n− 1 is obtained. Hence, we get that

rD z1( )≤ c − cr K1,4,n− 1( ). (9)

Likewise, for any i � 2, 3, . . . , n, we have the following that

rD zi( )≤ c − cr K1,4,n− 1\eyz( ). (10)

Otherwise, by deleting the edges of Ezi for any
i � 2, 3, . . . , n, we obtain the graph which is isomorphic to
K1,4,n− 1\eyz and has less than cr(K1,4,n− 1\eyz) crossings.
�erefore, from (9) and (10), summing up for 1≤ i≤ n, we
can obtain that

2c �∑
n

i�1
rD bi( )≤ c − cr K1,4,n− 1( ) +(n − 1) c − crK1,4,n− 1\eyz( ).

(11)

�us, we simplify and conclude that

cr K1,4,n\eyz( ) � c≥
(n − 1)cr K1,4,n− 1\eyz( ) + cr K1,4,n− 1( )

n − 2
.

(12)

y1

y2

y3

X

y4

Z4 Z2 Z1 Z3Z[ ]n2
Z[ ]n2

Figure 1: A good drawing of K1,4,n\exz.

y1

X

y3

y2

y4

Z4 Z2 Z1 Z3Z[ ]n2
Z[ ]n2

Figure 2: A good drawing of K1,4,n\eyz.
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Finally, combining with inductive hypothesis and
Lemma 1, we have that

cr K1,4,n\eyz( )≥Z(5, n) +�
n

2
− �
n

2
+ 1. (13)

�us, the proof of �eorem 2 is �nished. □

Theorem 3. For any edge exz in complete tripartite graph
K1,4,n, where exz ∈ XZ, then

cr K1,4,n\exz( ) � Z(5, n) + 2 �
n

2
− �
n

2
+ 1( ). (14)

Proof. From Lemma 4, we can get that
cr(K1,4,n\exz)≤Z(5, n) + 2(�n/2� − �n/2� + 1). �us, �eo-
rem 3 is true; we need only to prove that
crφ(K1,4,n\exz)≥Z(5, n) + 2(�n/2� − �n/2� + 1) for any
drawing φ of K1,4,n\exz.

Without losing generality, we assume that under the
drawing φ of K1,4,n\exz, the clockwise order of these four
images φ(xyi) around φ(x) is φ(xy1)⟶ φ(xy2)
⟶ φ(xy3)⟶ φ(xy4). And we assume exz � xz1. �us,
the graph K1,4,n\exz has an additional (n − 1) edges xzi
incident with x(2≤ i≤ n). Let A1, A2, A3, A4 denote the sets
of all those images xzi, each of which places in the angle αi is
formed between φ(xyi) and φ(xyi+1), where the indices are
read modulo 4 (see Figure 3(a)). We note that
|A1| + |A2| + |A3| + |A4| � n − 1. Further more, we see that
in the plane R2, there exists a circular neighborhood around
φ(x) such that N(φ(x), ε) � s ∈ R2: ‖s − φ(x)‖≤ ε{ }, where
ε is a positive number small enough such that for any other
edge yizj(i � 1, 2, 3, 4; j � 1, 2, . . . , n) of K1,4,n\exz not in-
cident with x, φ(yizj)∩N(φ(x), ε) � ∅. Next, we divide
two cases to discuss. □

Case 1. assume (n − 1) is odd. �us, we have |A1|≠ |A3| or
|A2|≠ |A4|. Otherwise, n − 1 � ∑4

I�1 |Ai| � 2(|A1| + |A2|);
this contradicts the fact that (n − 1) is odd. Without loss of
generality, we assume |A1|≠ |A3|, and more precisely, let
|A3|≥ |A1| + 1. In the following, we produce the graph
K5,n+1\e together with its drawing φ’ by three steps.

Step 1. Add a new vertex zn+1 in some location of
φ(xy2)∩N(φ(x), ε).

Step 2. For all 1≤ i≤ 4, delete the partition of φ(xyi) lying in
N(φ(x), ε) (do not delete the vertex (zn+1)).

Step 3. Connect zn+1 to each vertex in
φ(x),φ(y1), . . . ,φ(y4){ } in such a way as described in
Figure 3(b).

�us, we obtain a drawing φ’ of the graph K5,n+1\e from
the drawing φ of K1,4,n\exz. It is easy to obtain that

crφ′ K5,n+1\e( ) � crφ K1,4,n\exz( ) + 2 A1
∣∣∣∣
∣∣∣∣ + A2
∣∣∣∣
∣∣∣∣ + A4
∣∣∣∣
∣∣∣∣,

≤ crφ K1,4,n\exz( ) + n − 2.
(15)

With the help of cr(K5,n+1\e) � n(n − 1) by Lemma 2, we
have that

crφ K1,4,n\exz( )≥ crφ′ K5,n+1\e( ) − n + 2

≥ n(n − 1) − n + 2

≥Z(5, n) + 2 �
n

2
− �
n

2
+ 1( ).

(16)

Case 2. assume (n − 1) is even. We consider arbitrarily a
pair of numbers |A1| and |A3| or |A2| and |A4|. Without
losing generality, we say |A1| and |A3|, again we say
|A1|≤ |A3|. Completely analogously to Case 1 above, we can
get a drawing φ’ of graph K5,n+1\e such that

crφ′ K5,n+1\e( ) � crφ K1,4,n\exz( ) + 2 A1
∣∣∣∣
∣∣∣∣ + A2
∣∣∣∣
∣∣∣∣ + A4
∣∣∣∣
∣∣∣∣

≤ crφ K1,4,n\exz( ) + n − 1.
(17)

Now, applying cr(K5,n+1\e) � n(n − 1), we obtain the
following that

crφ K1,4,n\exz( )≥ crφ’ K5,n+1\e( ) − n + 1

≥ n(n − 1) − n + 1

≥Z(5, n) + 2 �
n

2
− �
n

2
+ 1( ).

(18)

�us, by the arguments derived in Cases 1 and 2, we have
shown that crφ(K1,4,n\exz)≥ Z(5, n) + 2(�n/2� − �n/2� + 1)
for any drawing φ of K1,4,n\exz. �is completes the proof.

A1

x

A3

A2A4

y1 y2

y4 y3

z1

A1

x

A3

A2A4

y1 y2

y4 y3

z1

zn+1

Figure 3: A drawing φ′ of K5,n+1\e obtained from φ(K1,4,n\exz).
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*erefore, from *eorems 1–3, we can get the following
corollary immediately.

Corollary 1. For an edge e in complete tripartite graph K1,4,n,
then

cr K1,4,n\e􏼐 􏼑 �

Z(5, n) +⌊
n

2
, e ∈ XY,

Z(5, n) + 2 ⌊
n

2
− ⌈

n

2
+ 1􏼒 􏼓, e∈ XZ,

Z(5, n) +⌊
n

2
− ⌈

n

2
+ 1, e ∈ YZ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

3. Crossing Number of K2,3,n\e

In graph K2,3,n, let X, Y, Z{ } be the vertex partition, where
X � x1, x2􏼈 􏼉, Y � y1, y2, y3􏼈 􏼉, Z � z1, z2, . . . , zn􏼈 􏼉. We de-
note XY, XZ, YZ be the subgraphs of K2,3,n induced by
EXY, EXZ, EYZ, respectively. Clearly, XY � K2,3. For
i � 1, 2, . . . , n, let Ezi

be the subgraph of K2,3,n induced by
five edges incident with zi. We can easily get that

K2,3,n � XY∪XZ∪YZ

� XY∪ ∪
n

i�1
Ezi

􏼒 􏼓.
(20)

Lemma 5 (see [18]). cr(K2,3,n) � Z(5, n) + n for any n≥ 1.

Lemma 6 (see [26]). cr(K2,3\e + nK1) � Z(5, n) + ⌊n/2⌋ for
any n≥ 1.

Lemma 7. For an edge e in complete tripartite graph K2,3,n,
then

cr K2,3,n\e􏼐 􏼑≤

Z(5, n) +⌊
n

2
, e ∈ XY,

n
2

− 2n + 2, e ∈ XZ,

n
2

− 2n + 1, e ∈ YZ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Proof. Let D be an optimal drawing of K5,n having Z(5, n)

crossings due to Zarankiewicz [17]. In the drawing, we place
the vertices of K5,n at coordinators (0, i) and (j, 0) where
− 2≤ i≤ 3, − ⌊1/2⌋≤ j≤ ⌈1/2⌉ and i, j≠ 0. *en, we join (0, i)

to (j, 0) with straight line segment.
Next, we join the edges of K2,3 � xiyj, 1≤ i< j≤ 3􏽮 􏽯, as

shown in Figure 4, and thus an optimal drawing of the
complete tripartite graph K2,3,n is obtained. Let us denote the
drawing by D′. We can easily check that
crD(K2,3,n) � cr(K2,3,n) � Z(5, n) + n. In the following, we
obtain the graph K2,3,n\e together with its drawing from D′.

(i) If e ∈ XY. By deleting the edge e � x2y2 from D′,
then a drawing of K2,3,n\exy is obtained. It is easily

checked that there are ⌈n/2⌉ crossings on the edge of
x2y2. *erefore, we can verify that

cr K2,3,n\exy􏼐 􏼑≤Z(5, n) + n − ⌈
n

2
� Z(5, n) +⌊

n

2
. (22)

(ii) If e ∈ XZ. We can get a drawing of K2,3,n\exz by
deleting the edge e � x1z⌈ n/2 from D′. Obviously,
the responsibility of the edge of x1z⌈n/2⌉ is
2(⌈n/2⌉ − 1). So, we have

cr K2,3,n\exz􏼐 􏼑≤Z(5, n) + n − 2 ⌈
n

2
− 1􏼒 􏼓 � n

2
− 2n + 2.

(23)

(iii) If e ∈ YZ. *e drawing of K2,3,n\eyz can be ob-
tained by deleting the edge e � y1z1 from D′. We
note that the edge y1z1 crosses with the edges
〈YZ∪x2y2〉 exactly 2(⌈n/2⌉ − 1) + 1 times. *us,
we obtain that

cr K2,3,n\eyz􏼐 􏼑≤Z(5, n) + n − 2 ⌈
n

2
− 1􏼒 􏼓 − 1 � n

2
− 2n + 1.

(24)

*erefore, according to the above analysis, we have
completed the proof. □

Theorem 4. For any edge exy in complete tripartite graph
K2,3,n, where exy ∈ XY, then

cr K2,3,n\exy􏼐 􏼑 � Z(5, n) +⌊
n

2
. (25)

Proof. It is not difficult to know that K2,3,n\exy is iso-
morphic to K2,3\e + nK1. And it was shown by Lemma 6 that
cr(K2,3\e + nK1) � Z(5, n) + ⌊n/2⌋. *us, cr(K2,3,n\exy)≥
cr(K2,3\e + nK1) � Z(5, n) + ⌊n/2⌋. *e reverse inequalities
are confirmed by Lemma 7. Hence, the proof is done. □

Theorem 5. For any edge exz in complete tripartite graph
K2,3,n, where exz ∈ XZ, then

cr K2,3,n\exz􏼐 􏼑 � n
2

− 2n + 2. (26)

Proof. Without loss of generality, let exz � x1zn. *erefore,
according to (4), we note that

K2,3,n\exz � XY∪ ∪
n− 1

i�1
Ezi

􏼒 􏼓∪Ezn

� K2,3 ∪ ∪
n− 1

i�1
Ezi

􏼒 􏼓∪Ezn
.

(27)

At first, we can obtain by Lemma 7 that
cr(K2,3,n\exz)≤ n2 − 2n + 2. It is not difficult to know that
K2,3,1\exz contains a subgraph which is isomorphic to K3,3
and K2,3,2\exz contains a subgraph which is isomorphic to
K3,4. *us, we have cr(K2,3,1\exz)≥ 1 and cr(K2,3,2\exz)≥ 2,
so the theorem is established for n � 1 and 2. Now, we
suppose that n≥ 3 and that cr(K2,3,k\exz)≤ k2 − 2k + 2 for
any 3≤ k≤ n − 1. We will derive contradiction to prove the
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reverse inequality. We assume to contrary that K2,3,n/exz has
a good drawing D such that

crD K2,3,n\exz( )≤ n2 − 2n + 1. (28)

In the subsequent proof process, we always deduce some
contradictions to (∗ ). We �rst have the following
claims. □

Claim 1. crD(Ezi, Ezj)≥ 1 for all i, j � 1, 2, . . . , n − 1, and
i≠ j.

Proof. Otherwise, without loss of generality, let
crD(Ez1, Ez2) � 0. According to Lemma 5, cr(K2,3,2) � 2
implies that crD(K2,3, Ez1 ∪Ez2)≥ 2. As 〈Ez1 ∪Ez2 ∪Ezn〉
isomorphic to K5,3\e, and it was shown by Lemma 2 that
cr(K5,3\e) � 2. �us, crD(Ezn, Ez1 ∪Ez2)≥ 2. �e known fact
that cr(K3,5) � 4 implies that crD(Ezi, Ez1 ∪Ez2)≥ 4 for all
i � 3, 4, . . . , n − 1. �erefore, we have

crD K2,3,n\exz( ) � crD K2,3 ∪ ∪
n

i�3
Ezi ∪Ez1 ∪Ez2( )

≥ crD K2,3,n− 2\exz( ) + crD K2,3 ∪ ∪
n

i�3
Ezi, Ez1 ∪Ez2( )

≥Z(5, n − 2) + n − 2 − 2�
n − 2
2

+ 2 + 4 + 4(n − 3)

� n2 − 2n + 2.

(29)

Clearly, this contradicts to (∗). □

Claim 2. crD(K2,3) + crD(K2,3, ∪ ni�1Ezi)≤ n − 1.

Proof. Otherwise, we have crD(K2,3) + crD(K2,3,
∪ ni�1Ezi)≥ n. As ∪

n
i�1Ezi is isomorphic to K5,n\e, and it was

proved by Lemma 2 that cr(K5,n\e) � (n − 1)(n − 2). �us,
we obtain

crD K2,3,n\exz( ) � crD K2,3 ∪ ∪
n− 1

i�1
Ezi ∪Ezn( )

≥ crD K2,3( ) + crD K2,3, ∪
n− 1

i�1
Ezi ∪Ezn( ) + crD ∪

n− 1

i�1
Ezi ∪Ezn( )

≥ n +(n − 1)(n − 2)

� n2 − 2n + 2.

(30)

�is also contradicts to (∗).
Furthermore, we have the following claim. □

Claim 3. �ere exists a vertex zi(1≤ i≤ n − 1) such that
crD(K2,3, Ezi) � 0.

Proof. If crD(K2,3) � 0, then the good drawing of K2,3
induced by D divides the plane into three quadrangular
regions ω(y1, y2), ω(y2, y3), and ω(y3, y1) depending on
which two of the vertices y1, y2, y3, and y4 are placed on the
corresponding boundary. �us, under the drawing of K2,3,
we have crD(K2,3, Ezn)≥ 1 and crD(K2,3, Ezi)≥ 1 for all
i � 1, 2, . . . , n − 1. In other words, the edges of K2,3 are
crossed at least n times by the subgraphs 〈∪ n− 1i�1 Ezi〉; this
contradicts with Claim 2.

α

Z1

(1)

Z1

(2)

Figure 5: Two drawings of 〈K2,3 ∪Ez1〉.

y1

y3

X1

y2

X2

Z4 Z2 Z1 Z3Z[ ]n2
Z[ ]n2

Figure 4: An optimal drawing of K2,3,n.
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If crD(K2,3)≥ 1, combining together with Claim 2, we
can obtain that crD(K2,3, ∪ n− 1

i�1 Ezi
)≤ n − 2. *is forces that

there exists a vertex zi(1≤ i≤ n − 1) such that
crD(K2,3, Ezi

) � 0. *us, Claim 3 is proved.
Now, we continue to prove the theorem. By Claim 3,

without loss of generality, we assume crD(K2,3, Ez1
) � 0.

*us, there is a disk such that the five vertices of K2,3 are all
placed on the boundary of disk. We assume the vertex z1
placed in the external of the disk, and the edges of K2,3 are all
placed in the inner side of the disk. It is easy to obtain that
two drawing of 〈K2,3 ∪Ez1

〉 as shown in Figure 5.

In Figure 5, except for the region which marked with α,
each of regions contains at most two vertices of K2,3 in its
boundary. Hence, we obtain that crD(K2,3 ∪Ez1

, Ezi
)≥ 3.

When zi is placed in the region α, we have
crD(K2,3 ∪Ez1

, Ezi
)≥ 2, if and only if crD(K2,3, Ezi

) � 2 and
the equality crD(Ez1

, Ezi
) � 0 holds. *is together with

Claim 1 implies that crD(K2,3 ∪Ez1
, Ezi

)≥ 3.
Moreover, each region contains at most three vertices of

K2,3 in its boundary in Figure 5. *us,
crD(K2,3 ∪Ez1

, Ezn
)≥ 1. *erefore, it follows from

crD(K2,3 ∪Ez1
) � 1, 〈∪ n− 1

i�1 Ezi
〉 � K5,n\e, and the assump-

tion of the theorem that

crD K2,3,n\exz􏼐 􏼑 � crD K2,3 ∪Ez1
∪ ∪

n− 1

i�2
Ezi
∪Ezn

􏼒 􏼓

≥ crD K2,3 ∪Ez1
􏼐 􏼑 + crD K2,3 ∪Ez1

, ∪
n− 1

i�2
Ezi
∪Ezn

􏼒 􏼓 + crD ∪
n− 1

i�2
Ezi
∪Ezn

􏼒 􏼓

≥ 1 + 3(n − 2) + 1 +(n − 2)(n − 3)

� n
2

− 2n + 2.

(31)

Clearly, this contradicts to (∗).
In summary, the hypothesis is not true, and the proof is

done.
Using the method completely similar to *eorem 5, we

can get the following *eorem 6. *ereby, the proof process
of *eorem 6 is omitted here. □

Theorem 6. For any edge eyz in complete tripartite graph
K2,3,n, where eyz ∈ YZ, then

cr K2,3,n\eyz􏼐 􏼑 � n
2

− 2n + 1. (32)

Since K2,3,n\exz is isomorphic to K3,n\e + 2K1, thus we
have the following corollary.

Corollary 2. cr(K3,n\e + 2K1) � n2 − 2n + 1, n≥ 1.

Together with *eorems 4–6, we can get the following
corollary immediately.

Corollary 3. For an edge e in complete tripartite graph K2,3,n,
then

cr K2,3,n\e􏼐 􏼑 �

Z(5, n) +⌊
n

2
, e ∈ XY,

n
2

− 2n + 2, e ∈ XZ,

n
2

− 2n + 1, e ∈ YZ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

4. Conclusion

*e problem crossing numbers of graphs are originated in a
practical application, whose theory has been widely applied in
many fields. However, determining the crossing numbers of
graphs are NP-complete. Because of its difficulty, the research
progress is slow. In this paper, according to the structural
characteristics of completemultipartite graph, using “drawing
restriction method,” “embedding method,” and “point degree
local modification method,” we determine the exact value of
crossing numbers of K1,4,n\e and K2,3,n\e. *ese results are an
in-depth work of TBFP, which will be beneficial to the further
study of crossing numbers and its applications.

Finally, we give some conjecture and open problems.

Conjecture 1. cr(K6,n\e) � Z(6, n) − 2⌊n − 1/2⌋ for n≥ 1.

Problem 1. For an edge e in complete tripartite graph K1,5,n,
K2,4,n, and K3,3,n.*en what are the precise values of crossing
numbers of K1,5,n\e, K2,4,n\e, and K3,3,n\e?
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