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Te nonlinear option pricing model presented by Ivancevic is investigated. By using travelling wave transforming method, the
nonlinear option pricing equation is transformed into a diferential equation with constant coefcients. By solving the diferential
equation with F-expansion method, a series of exact solutions have been obtained for the Ivancevic option pricing model. By
choosing appropriate parameter values, the dark-soliton and dark-soliton-like solutions, periodic wave solutions, and rogue wave
solutions are obtained.Tese solutions will enrich the types of exact waves in the existing literature of the Ivancevic option pricing
model. Furthermore, they may have potential uses in describing the possible physical mechanisms for wave phenomenon in
fnancial markets.

1. Introduction

Te mathematical study of economy and fnance problems
has been one of the most interesting topics in fnancial risk
feld. Sharp proposed the stochastic diferential equations
(SDEs) in fnancial market [1]. Irving and Dewson inves-
tigated the mixed linear-nonlinear coupled diferential
equations based on multivariate discrete time series se-
quences [2]. Later, a continuous-time fnance model was
constructed according to the optimal consumption and
portfolio rules [3]. Priya and Muthukumar studied con-
trollability in terms of fractional-order impulsive stochastic
diferential equation [4]. Decardi-Nelson and Liu proposed
an algorithm to determine the economic zone to be tracked
based on the robust economic model [5]. As the economy
and fnancial markets are nonlinear systems, nonlinear
science is widely applied in constructing mathematical
models to fnd deep properties of economy and fnancial
problems. Most of nonlinear phenomena are generally
presented in the form of nonlinear partial diferential
equations (NPDEs) [6–8]. To conduct the mathematical
models of fnance, it is imperative to determine that the
models are either complex-valued or real values with wave

function. Many researchers developed the models to extract
wave distributions. In recent years, experts have investigated
diferent types of waves based on NPDEs, such as mixed
lump wave [9], three-wave [10], breather [11], rogue waves
[12], multiple complex soliton [13], bright and dark-soliton
[14], complex wave [15], soliton solution [16], travelling
wave solutions [17], dark waves [18], and double-wave so-
lutions [19]. On the other hand, soliton theory is one of the
widely used theories due to the exact information, such as
periodic, singular, dark, bright, complex, and travelling,
which can be obtained. Tese kinds of dynamical infor-
mation help to understand, predict, and control the complex
behaviors of fnancial market. Nowadays, various powerful
technical tools have been proposed to explore these NPDEs,
such as inverse scattering method [20], Hirota’s bilinear
method [21], F-expansion method [22–30], and auto-
Bäcklund transformation method [31].

As for the option pricing model, Black and Scholes
proposed the classic Black–Scholes model [32], which de-
termines a fair market value of an option. Over the past
several decades, the Black–Scholes model has been in-
creasingly popular because it provided an efective method
to model the option value and extract implied volatilities.
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Later, a quantum-probability-based option-pricing model
was presented by Ivancevic to describe the controlled
Brownian behavior of fnancial markets. Tis adaptive-wave
model is formally defned by the adaptive nonlinear
Schrödinger equation, defning the option-pricing wave
function in terms of the stock price and time [33]. Later, this
model was renamed as the Ivancevic option pricing model
(IOPM). As an alternative model of Black–Scholes equation,
the Ivancevic option pricing model has been increasingly
attracting over the last few years since it provides the values
of options efectively.

Te Ivancevic option pricing model can be written
by [33]

i
zψ
zt

+
1
2
σ

z
2ψ

zs
2 + λ|ψ|

2ψ � 0, (1)

where ψ (s, t) represents the complex-valued option price
wave function and |ψ|2 denotes the probability density
function for the option price in terms of the stock price s and
time t. Te volatility σ can be either constant or stochastic
process, which is dispersion frequency coefcient. In the
Black–Scholes model, the underlying volatility is assumed to
be a constant over the life of the derivative and unafected by
the changes in the price level. λ signifes the Landau coef-
fcient, representing the adaptive market potential. In
simplest nonadaptive scenario, λ is equal to r, which rep-
resents interest rate.

Te nonlinear evolution (1) has wide applications in
optics, fuid dynamics, and fnance. Note that some kink
wave solutions and travelling wave solutions have also been
generated for the Zoomeron equation, which has a similar
form as (1) [34]. Te trial function method, tanh expansion
method, and direct perturbation method have been explored
to get the exact solutions of the Ivancevic option pricing
model. Financial rogue wave solutions were studied on the
Ivancevic option pricing model [35]. Te dynamics of f-
nancial rogue wave solutions may be used to explain real
fnancial crisis/storms (e.g., 1997 Asian fnancial crisis/storm
and the current global fnancial crisis/storm). Later, Yan
proposed a coupled nonlinear volatility and option pricing
model to propose the vector fnancial rogue waves [36].
Vector fnancial one and two-rogon solutions were found for
the coupled nonlinear volatility and option pricing model
without embedded w-learning. In 2017, a model augmented
by external atomic potentials was proposed to price Euro-
pean call options on a stock index [37]. In [38], a nonzero
adaptive market potential was studied. Later, novel types of
rogue wave and dark wave solutions were constructed for the
Ivancevic option pricing model based on the trial function
method [39].Te Ivancevic option pricing model also can be
solved by rational sine-Gordon expansion method and
modifed exponential method. Trough these two methods,
complex, periodic, mixed dark-bright, singular, travelling,
and hyperbolic functions have been extracted [40]. Very
recently, a novel semi-analytical technique was carried out to
solve the time-fractional Ivancevic option pricing model
[41]. Since linearization is not required in this method,

complex numerical computations were signifcantly reduced
compared to the existing perturbation technique.

In this paper, the F-expansion method based on
hyperbolic secant functions and tangent functions is used
to reach the exact solutions for the Ivancevic option
pricing model. To enrich the wave solution types, a series
of novel wave solutions are found for the probability
density function. Te organization of this paper is as
follows. In Section 2, the nonlinear option pricing
equation is transformed into a diferential equation with
constant coefcients by using the travelling wave trans-
forming method. In Section 3, dark-soliton solutions,
periodic wave solutions, and singular wave solutions are
obtained by solving the diferential equation with the
F-expansion method. Section 4 will conclude this paper.

2. Methodology

To get various kinds of fnancial wave solutions, (1) will be
solved exactly using the F-expansion method [42]. We look
for the travelling wave solution to (1) in the form

ψ(s, t) � φ(ξ)exp[i(ks − ωt)], (2)

where ϕ(ξ) is a function depending on ξ � s − σkt. Te
substitution of (2) into (1) leads to the nonlinear oscillator
ordinary diferential equation:

1
2
σφ″(ξ) + ω −

1
2
σk

2
 φ(ξ) + βφ3

(ξ) � 0. (3)

Let c � (1/2)σk2 − ω, α � (σ/2), and then (3) reads as

αφ″(ξ) + cφ(ξ) + βφ3
(ξ) � 0. (4)

We assume that (3) has the following solution [42]:

φ(ξ) � 
N

i�−N

aiF
i
. (5)

In (5), ai is a real constant to be determined, and the
function F(ξ) should obey the following ordinary difer-
ential equation:

F′ � AF
3

+
1
2
F

− 1
, (6)

where F′ � (dF/dξ) and A is an unknown constant to be
determined. By solving (6), one can get a series of general
solutions. When A> 0, the general solution can be read as

F1 �

��������������
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���
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√
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���
2A

√



. (7)

When A< 0, (6) has two kinds of general solutions in the
following form:

F2 �

����������������
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����
−2A
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, (8)

or
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F3 �
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coth
����
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√
ξ + C3( 

����
−2A

√



. (9)

In equations (6)–(8), C1, C2, and C3 are free integral
constants. Changing the values of these parameters will not
result in the change of the overall shape of the wave function
but only afect the position of the wave.

Due to the requirements of the homogeneous equilib-
rium, each derivative will increase the power of the equation
by 2. If the power of the function F is n, i.e., d(F) � n, we can
easily get d(F′) � n + 2. To be sure that the highest deriv-
ative term is in equilibrium with the nonlinear term, N � 2
must be ensured in (5). So, the solution of (3) is

φ(ξ) �
a−2

F
2 +

a−1

F
+ a0 + a1F + a2F

2
. (10)

Insert (5) and (6) into (3), and let the coefcient before
each power of F be zero, and we can get the following set of
super-algebra equations:

−βa
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−3βa0a
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2
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− 3βa
2
−2a2 − 6βa−2a−1a1 � 0.

(22)

From (11), we have a−2 �
�������
(−2α/β)


or a−2 � 0. Te

values of the remaining parameters can be reached by
solving the rest of the equations, i.e., equations (11)–(21).

3. Results and Discussion

Case 1. To obtain nonzero solutions of (3), we suppose that
all the coefcients a1(i≠ 2) are 0, and thus we have

a2 �
c

�����
−2αβ

 ,

A � −
c

4α
.

(23)

Terefore, (5) reads as
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(24)

In the following, we discuss the case of a−2 �
�������
(−2α/β)


.

Obviously, the intensity distribution |ψ(s, t)|2 depends
on the values of the parameters according to equations (24)
and (25). Figure 1 shows the propagation of the fnancial
wave given by (24) for the chosen adaptive market potential
α � −1, β � 1, c � 1, k � 0.1, and C1 � 0. In this fgure, a
periodic solution is obtained. φ(ξ) will be infnity when

�������
(−c/2α)


ξ + C1 � (π/2) + pπ, where p is an arbitrary in-

teger. If the volatility is fxed, the probability for the option
price will become particularly large when the relationship
between asset price and time maintains that

�������
(−c/2α)


(s −

σkt) + C1 � (π/2) + pπ. Once the values of s and t deviate
from this relation, the probability intensity becomes zero
quickly.
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(24) also admits a type of fnancial rogue waves. Figure 2
shows a typical example of rogue waves when α � −1, β � 1,
c � 1, k � 50, and C1 � 0. Tis solution uniformly ap-
proaches the constant background zero at most values of s
and t. But in some intermediate time, it blows up to infnity.
Te existence of exploding rogue waves in the Ivancevic
option pricing equation is a distinctive phenomenon, and
their occurrence would be catastrophic in real fnancial
markets.

(24) gives a dark-soliton solution for the Ivancevic
option pricing model. A typical intensity propagation is
shown in Figure 3 when α � 1, β � −2, c � 3, k � 0.1, and
C2 � 0. It is found that the fnancial soliton keeps its shape
unchanged during the propagation process. During the
long-time evolution, the fnancial soliton keeps the energy
and momentum unchanged.

Case 2. If ai(i≠ − 2) � 0, we can obtain from equations (11)
to (21) that

a−2 �

����
−2α
β



,

A � −
c

4α
.

(25)

When αβ> 0, αc< 0, we can obtain a new solution of (5):

φ(ξ) �

����
−2α
β
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√
ξ + C1( 

���
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− 1

�

��
c

β



cot
����

−
c

2α



ξ + C4 .

(26)

Figure 4 gives a typical example of the propagation of a
singular wave solution when α � 1, β � 2, c � 1, k � 0.1, and
C2 � −2.

Case 3. If ai(i � ± 2)≠ 0, we can obtain from (11) and (14)
that
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Figure 1: Propagation of a periodic soliton solution (24) for α � −1
, β � 1, c � 1, k � 0.1, and C1 � 0.
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Figure 2: Propagation of a rogue soliton solution (24) for α � −1,
β � 1, c � 1, k � 50, and C1 � 0.
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Figure 3: Propagation of a dark-soliton solution (24) for α � 1,
β � −2, c � 3, k � 0.1, and C2 � 0.
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Figure 4:Wave propagation of solution (27) for α � 1, β � 2, c � 1,
k � 0.1, and C2 � −2.
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When the coefcients get the value as those in equation
(28), a series of exact solutions can be obtained.

When αβ< 0 and αc> 0, we have

φ(ξ) �
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���
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���
c

4α



ξ + C5b  .

(29)

When αβ> 0 and αc> 0, we have
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(30)

When αβ> 0 and αc< 0, we have

φ(ξ) �
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ξ + C7a  − tan
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c
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coth
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−
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ξ + C8a  − tanh
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−
c

4α



ξ + C8b  .

(32)

Obviously, equations (30)–(32) give a series of exact
solutions of (2), including bright soliton solutions, rogue
wave solutions, and dark-soliton-like wave solutions.
Figure 5 gives a typical example of a fnancial bright wave
solution of (30) when α � 1, β � 100, c � 1,
k � 1, C6a � 0.5, and C6b � −0.5. In this case, the proba-
bility density function for the option price remains un-
changed with the evolution of time. Terefore, the
fnancial market will be stable and the chance of large-
scale fnancial risks is low.

When the free parameters α, β, andc get some certain
values, (31) can admit dark-soliton-like wave solutions.
Figure 6 gives a typical example of a dark-soliton-like wave
solution of (31) when α � 10, β � 2, c � 7, k � 0.02, C7a � 2,
and C7b � 2. In most time, the probability density function
for the option price remains are a dark-soliton embedded in
a nonzero background. Diferent from that described in

Figure 4, the probability density is a nonzero fnite minimum
value at the center in Figure 6.

4. Conclusions

In conclusion, we have investigated the exact solutions of the
option pricing model. Using travelling wave transformation
and the F-expansion method, abundant exact solutions of
the nonlinear option pricing equation are obtained in terms
of hyperbolic secant functions and tangent functions. If the
parameters take special values, we get the existing solitary
wave solutions, singular soliton solution, periodic solutions,
including dark-soliton solutions, periodic wave solutions,
rogue wave solutions, and singular wave solutions. Tese
results may be used to explain some fnancial crisis.

Data Availability

No data were used to support this study.
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Figure 6: A dark-soliton-like wave solution of equation (31) when
α � 10, β � 2, c � 7, k � 0.02, C7a � 2, and C7b � 2.
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[7] Y. Yildırım and E. Yaşar, “An extended korteweg-de vries
equation: multi-soliton solutions and conservation laws,”
Nonlinear Dynamics, vol. 90, no. 3, pp. 1571–1579, 2017.

[8] T. S. Moretlo, B. Muatjetjeja, and A. R. Adem, “Lie symmetry
analysis and conservation laws of a two-wave mode equation
for the integrable kadomtsev-petviashvili equation,” Journal
of Applied Nonlinear Dynamics, vol. 10, no. 1, pp. 65–79, 2021.

[9] M. Younis, S. Ali, S. T. R. Rizvi, M. Tantawy, K. U. Tariq, and
A. Bekir, “Investigation of solitons and mixed lump wave
solutions with (3+1)-dimensional potential-ytsf equation,”
Communications in Nonlinear Science and Numerical Simu-
lation, vol. 94, 2021.

[10] Y. Guo, D. Li, and J. Wang, “Te new exact solutions of the
Fifth-Order Sawada-Kotera equation using three wave
method,” Applied Mathematics Letters, vol. 94, pp. 232–237,
2019.

[11] L. T. Gai, W. X. Ma, and M. C. Li, “Lump-type solution and
breather lump-kink interaction phenomena to a (3+1)-di-
mensional GBK equation based on trilinear form,” Nonlinear
Dynamics, vol. 100, pp. 2715–2727, 2020.

[12] C. Y. Qin, S. F. Tian, X. B. Wang, and T. T. Zhang, “On
breather waves, rogue waves and solitary waves to a gener-
alized (2+1)-dimensional camassa-holm-kadomtsev-pet-
viashvili equation,” Communications in Nonlinear Science and
Numerical Simulation, vol. 62, pp. 378–385, 2018.

[13] A. M. Wazwaz, “Multiple complex soliton solutions for in-
tegrable negative-order KdV and integrable negative-order

modifed KdV equationsffed KdV equations,” Applied
Mathematics Letters, vol. 88, pp. 1–7, 2019.

[14] J. G. Liu, M. S. Osman, and A.-M. Wazwaz, “A variety of
nonautonomous complex wave solutions for the (2+1)-di-
mensional nonlinear Schrödinger equation with variable
coefcients in nonlinear optical fbersfbers,” Optik, vol. 180,
pp. 917–923, 2019.

[15] Y. Ding, M. S. Osman, and A. M. Wazwaz, “Abundant
complex wave solutions for the nonautonomous Fokas-
Lenells equation in presence of perturbation terms,” Optik,
vol. 181, pp. 503–513, 2019.

[16] M. S. Osman, “One-soliton shaping and inelastic collision
between double solitons in the ffth-order variable coefcient
sawada-kotera equation,” Nonlinear Dynamics, vol. 96, no. 2,
pp. 1491–1496, 2019.

[17] H. M. Srivastava, D. Baleanu, J. A. T. Machado et al.,
“Traveling wave solutions to nonlinear directional couplers by
modifed kudryashov method,” Physica Scripta, vol. 95, no. 7,
Article ID 075217, 2020.

[18] M. Tahir, A. U. Awan, M. S. Osman, D. Baleanu, and
M.M. Alqurashi, “Abundant periodic wave solutions for ffth-
order sawada-kotera equations,” Results in Physics, vol. 17,
2020.

[19] M. Osman, D. Baleanu, A. Adem, K. Hosseini, M.Mirzazadeh,
and M. Eslami, “Double-wave solutions and lie symmetry
analysis to the (2+1)-dimensional coupled burgers equations,”
Chinese Journal of Physics, vol. 63, pp. 122–129, 2020.

[20] M. J. Ablowitz, P. A. Clarkson, and Soliton, Nonlinear Evo-
lution Equations and Inverse Scattering, Cambridge University
Press, Cambridge, England, 1991.

[21] A. M. Wazwaz and L. Kaur, “Complex simplifed Hirota’s
forms and Lie symmetry analysis for multiple real and
complex soliton solutions of the modifed KdV–Sine-Gordon
equationfed hirota’s forms and lie symmetry analysis for
multiple real and complex soliton solutions of the modifed
KdV-Sine-Gordon equation,” Nonlinear Dynamics, vol. 95,
no. 3, pp. 2209–2215, 2019.

[22] S. Zhang and T.-C. Xia, “Further improved extended Fan sub-
equation method and new exact solutions of the (2+1)-di-
mensional Broer-Kaup-Kupershmidt equations,” Applied
Mathematics and Computation, vol. 182, no. 2, pp. 1651–1660,
2006.

[23] S. Zhang and T.-C. Xia, “A generalized F-expansion method
and new exact solutions of Konopelchenko-Dubrovsky
equations,” Applied Mathematics and Computation, vol. 183,
no. 2, pp. 1190–1200, 2006.

[24] S. Zhang and T.-C. Xia, “A generalized auxiliary equation
method and its application to (2+1)-dimensional asymmetric
Nizhnik-Novikov-Vesselov equations,” Journal of Physics A:
Mathematical and Teoretical, vol. 40, no. 2, pp. 227–248,
2006.

[25] S. Zhang and T.-C. Xia, “Variable-coefcient extended
mapping method for nonlinear evolution equations,” Physics
Letters A, vol. 372, no. 11, pp. 1741–1749, 2008.

[26] S. Zhang, J.-L. Tong, andW.Wang, “A generalized -expansion
method for the mKdV equation with variable coefcients,”
Physics Letters A, vol. 372, no. 13, pp. 2254–2257, 2008.

[27] S. Zhang and H.-Q. Zhang, “Fractional sub-equation method
and its applications to nonlinear fractional PDEs,” Physics
Letters A, vol. 375, no. 7, pp. 1069–1073, 2011.

[28] S. Duran, “Dynamic interaction of behaviors of time-frac-
tional shallow water wave equation system,” Modern Physics
Letters B, vol. 35, no. 22, Article ID 2150353, 2021.

6 Mathematical Problems in Engineering



[29] S. Duran, “Travelling wave solutions and simulation of the
Lonngren wave equation for tunnel diode,” Optical and
Quantum Electronics, vol. 53, no. 8, p. 458, 2021.

[30] S. Duran and D. Kaya, “Breaking analysis of solitary waves for
the shallow water wave system in fuid dynamics,” Te Eu-
ropean Physical Journal Plus, vol. 136, no. 9, p. 980, 2021.
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