
Research Article
Designing a Component-Based Throttled Load Balancing
Algorithm for Cloud Data Centers

Dawit Mekonnen ,1 Alemayehu Megersa,1 Rakesh Kumar Sharma,2

and Durga Prasad Sharma 3

1Arba Minch Institute of Technology, Arba Minch University, Arba Minch, Ethiopia
2University of Maryland Eastern Shore, Princess Anne, MD, USA
3AMUIT, MOEFDRE Under UNDP and MAISM-RTU Kota, Jaipur, India

Correspondence should be addressed to Dawit Mekonnen; dawit.mekonnen@amu.edu.et

Received 18 July 2022; Accepted 15 September 2022; Published 3 October 2022

Academic Editor: Vimal Shanmuganathan

Copyright © 2022 Dawit Mekonnen et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cloud services are accessed from diferent geographical locations where client migration or switching from one server to another
based on the loads is a common phenomenon. One of the most critical challenges the cloud data centers face is managing the loads
over geographically dispersed data centers and their virtual machines (VMs). VMs need to be balanced with the varied loads or
dynamics of trafc. Tere are possibilities of the highest loads to be tolerated by the VMs over the cloud servers without crashing.
Load balancing issues are managed by load balancing algorithms. Load balancing algorithms have varied issues of efciency due to
certain parameters like the capability of the lowest resource utilization, response time, higher overhead while checking the idle or
normal nodes, and many others. Trottled load balancing algorithmmanages loads of the virtual machines by dividing the virtual
machines into two segments, that is, “available” and “free.” To do this, the throttled algorithm uses a single component to assign
the virtual machines and other tasks. Te throttled algorithm utilizes only the frst VMs available, the next, and so on. Tese
strategic issues most often degrade the performance of the applied load balancing algorithm. Such issues create a curiosity to
enhance this algorithm’s performance for efciently managing the dynamic loads of the cloud VMs.Tis research paper proposes
a component-based throttled load balancing algorithm with VM reader, free VM holder, and free VMmanager components. Te
VM reader component reads all available VMs. Te free VM component holds free VMs temporarily until they are moved to the
free VM manager component. For the performance test, the cloud analyst simulation tool was used. Based on the comparative
analysis with the other fve popularly used load balancing algorithms, the component-based algorithm’s performance is sig-
nifcantly enhanced. Te proposed algorithm resulted in 325.30-microsecond response time and 27.12-microsecond processing
time by the closest data center service broker policy.Te newly proposed “component-based throttled load balancing algorithm” is
found to be better than the existing throttled algorithm and the other fve selected algorithms in terms of response time, processing
time, and resource utilization.

1. Introduction

Cloud computing is the use of computer system resources
on-demand as a public utility for the users of the cloud. Tat
means people sufering from diferent constraints, either
hardware or software or power, can proceed to their work
from the cloud itself without requiring extra facilities in
which they can have a high amount of storage, and they can
use their application software and others without any

random access memory (RAM), central processing unit
(CPU), and other constraints. Tey can use it simply from
their device, which can access the Internet through the
browser or preinstalled cloud application.

Tere are several defnitions of cloud computing. Te
one which is adapted from the National Institute of Stan-
dards and Technology (NIST) which is commonly known as
the NISTdefnition defnes cloud computing as a model that
lets and provisions its users to get ubiquitous, convenient,

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 4640443, 12 pages
https://doi.org/10.1155/2022/4640443

https://orcid.org/0000-0003-0611-6031
https://orcid.org/0000-0002-1654-901X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4640443


on-demand network access to a shared pool of confgurable
computing resources (e.g., networks, servers, storage, ap-
plications, and services) [1].

Tese days cloud computing is an excellent platform that
is used to store users’ data at low cost, being available entirely
all the time. However, it has several critical issues that need
serious consideration, like security, fault tolerance, and load
balancing [2]. Due to its simplicity to use and other factors,
cloud systems have multiple customers, increasing each year
[3]. Tese cloud users are masked from their background
operations. Even they cannot tell exactly from which server
or virtual machine (VM) they are processing their data.

Cloud computing operates in a distributed computing
manner [4, 5]; by using the cloud, people who are found in
diferent geographical locations can access a single cloud
system. Te increased number of cloud users from diferent
areas has made the requests (the load) that go to the servers
too much. Te cloud has several nodes or VM that receive
the requests for processing. So these nodes or VMs need to
respond efectively to the requests efciently.

Load balancing is the sharing of the loads between
diferent nodes to efectively give services to the cloud user
without hampering the underlying infrastructure. It is the
distribution of loads over the diferent nodes, which pro-
vides good resource utilization when nodes are overloaded
with jobs [4]. Load balancing is a technique that is used to
balance the load between the nodes or VM of the cloud.
Balancing means that it makes the less loaded node take
additional loads and makes the highly loaded node to be free
from taking or accepting additional loads. Te load bal-
ancing is done by using a cloud-based load balancing al-
gorithm. Cloud-based load balancing algorithm is a method
that is implemented by the load balancers to balance the load
in the cloud VMs.

Te utilization of web assets is broadly expanding,
bringing about the increment of workload exponentially
[6, 7], so identifying the efcient cloud-based load balancing
algorithm to use is essential to manage all the loads.

Tis study is an efort to develop a component-based
algorithm for the throttled cloud-based load balancing al-
gorithm; that is, the study proposed a new component-based
cloud-based load balancing algorithm by using the throttling
concept. Further, the study has also done deep performance
analysis experiments on the existing cloud-based load bal-
ancing algorithms with the developed component-based
cloud-based load balancing algorithm to fnd the best per-
forming algorithm for diferent scenarios.

In general, load balancing is a technique that ensures
that VMs should not be kept idle while other VMs are being
overutilized [8]. Te main goal of the load balancing
concept in a cloud environment is to ensure the optimum
utilization of resources with minimal response and pro-
cessing times over cloud data centers. Since there is ex-
ponential growth in cloud users, it is not constant; that is, it
fuctuates from time to time [9]. It is desirable to serve the
users as per their service level agreements (SLAs) and
desired service specifcations, that is, with a better or de-
sired performance of the resources in minimal request and
response times.

Te two types of cloud-based load balancing algorithms
are most often used in this context; that is, static algorithms
like round-robin and randomized algorithms do not check
the state of the VMs before assigning the loads to the VM.
Te main goal of such algorithms is to lower the response
time [8]; therefore, the parameters like load status are ig-
nored. In cloud environment’s load balancing scenarios, the
best-case situation occurs when the frst or the random VM
is free or idle for assigning the task. On the other hand,
dynamic algorithms like throttled and active VM moni-
toring checks the state of the VM before assigning the load to
the VM. At this point, repeatedly checking the node for load
status creates another challenge of task overhead [10]. Tis
situation needs a strong measurement to resolve these
problems by providing an efective cloud-based load bal-
ancing algorithm for efcient allocation of VM.

Te throttled load balancing algorithm is one of the
dynamic load balancing algorithms, which implements the
throttled adjustable mechanisms. In this algorithm, the data
center controller directly forwards the user requests to the
throttled VM load balancer. Now the load balancer checks
for the availability of a VM and sends its ID to the data center
controller. In general, the throttled load balancer algorithm
manages diferent tasks starting from reading the current
VM state to communicating to the data center controller for
delivering the ID of the free or underloaded VM. All these
load balancing tasks, along with other specifc tasks, are
being done only on a single component of the load balancer
by creating a task overhead on the same load balancer. To
deliver efective service, the tasks of the load balancer should
not have to be constrained into a single part; that is, the tasks
have to be shared with diferent components to lower the
unnecessary overhead.

Te throttled load balancer also maintains a table that
manages the salient states of VMs. Te load balancer pro-
vides the frst available VM ID that it gets from the status
table every time. In this scenario, whenever the data center
controller forwards a request for a VM, it sends back only the
foremost VM lists from the table of available lists of VMs.
Tis implies that it does not use every VMs, which is found
in the table of available VMs.

Te aforementioned scenarios revealed a clear research
gap towards enhancement in the throttled algorithm. More
specifcally, the existing ranking (underutilized, overutilized,
or idle) status and performance of the throttled algorithm
require a signifcant improvement in the existing state of
design towards better performance. Te scope of a perfor-
mance enhancement can be a unique contribution to the
throttled algorithm as the task overhead and the less re-
source utilization of the throttled need to be resolved cat-
egorically. Te problems which need to be resolved in
assigning the VMs using throttled algorithm are signifcantly
important for the overall performance of the cloud
environment.

1.1. Research Goal and Questions to Be Answered. In this
research paper, eforts have been made to answer the three
important questions: What are the defciencies in the

2 Mathematical Problems in Engineering



existing load balancing algorithms used for load balancing
over cloud data centers? Which parameters can be explored
to enhance the performance of the throttled algorithm? How
to design an enhanced component-based throttled algo-
rithm for improved response time, processing time, and
resource utilization with a comparison matrix?

Te general objective of this research was to develop an
enhanced component-based throttled load balancing algo-
rithm for the better management of workloads over cloud
VMs. To achieve this, four specifc tasks were performed;
that is, parameter-based performance defciencies are en-
listed in amatrix by comparing the existing cloud-based load
balancing algorithms. A component-based throttled algo-
rithm for improved response time, processing time, and
resource utilization is developed. For performance valida-
tion of the results, the two diferent test scenarios are created
in a simulated environment using the cloud analyst tool. Te
frst scenario was focused on the response time and pro-
cessing time; however, the second scenario was created to
showcase resource utilization. Te results demonstrated in
the simulated environment showcased a clear enhancement
in the algorithmic performance of the throttled algorithm.

In developing the enhanced component-based throttled
algorithm, the study was primarily confned to the load
balancing issue of cloud computing, that is, more specif-
cally, on VMs load balancing. Te other issues of the cloud,
that is, security and fault tolerance, are not included in the
study. Te research analyzed only the VM’s load balancing
by comparing numerous static and dynamic algorithms for
both conventional and nonconventional algorithms. In
addition, the study only compared the algorithms that are
used for managing the VM loads only in a simulated en-
vironment to imitate the real cloud environment. Only three
parameters, that is, response time, processing time, and
resource utilization, are considered to enhance the algo-
rithmic performance.

To justify the research dimension, a rigorous literature
survey was done to identify and analysis of the research gaps
based on the state of art research contributions by numerous
researchers. Balancing the VM’s load is an essential pa-
rameter to ensure efective service delivery. A study [11]
states that cloud computing can be efcient using the load
balancing method and showed that load balancing signif-
cantly increases user satisfaction for cloud services. Tis
study does not suggest any performance enhancement in the
existing algorithm. Further, the study does not mention how
to implement the proposed partitioning mechanism as an
efective solution. Another survey study [12] presented eight
cloud load balancing algorithms from both the static and
dynamic algorithms currently used in the cloud computing
environment. However, the study shows only the basic
operations of the algorithms but does not include any ex-
perimental setups to test the presented algorithms. Diferent
kinds of nonconventional hybrid algorithms are presented as
a survey in the study [13]. Te study clarifes that the cloud
analyst tool is the most frequent tool that is used by diferent
studies in the load balancing domain. Te analysis presented
in the survey does not mention whether they used a ho-
mogeneous VM or heterogeneous VM environment.

Another efort was made in [14] on load balancing al-
gorithms. In this research, two diferent categories of load
balancing algorithms, namely, the dynamic and the static,
are used. Te study recommended dynamic load balancing
algorithms for larger loads and better performance [14]. Tis
study explained centralized load balancing algorithms and
diferent parameters used to compare load balancing algo-
rithms by describing the basic load balancing algorithms like
the round-robin algorithm, randomized algorithm, and
others with their respective adverts and demerits.

Diferent studies have made eforts to compare and
analyze the cloud VM load balancing algorithms. A study [6]
compared ten algorithms and suggested optimization-based
algorithms to overcome resource utilization and response
time problems. Te study did not mention any experimental
environments with respective scenarios. Te suggestion
needs to be supported with numerical fgures of experiment
results.

In a study [15], round-robin, equally spread current
execution, and throttled cloud load balancing algorithms
were compared, and it was found that throttled load bal-
ancing algorithm performs better than the two by using
three diferent cases using a cloud analyst simulation tool.
Te throttled algorithm showed better results in response
time and data center processing time. Tis study [15]
neglected the analysis that can be obtained on resource
utilization. Resource utilization is a typical parameter in
comparing algorithms, and it needs to be examined. Another
performance comparison was made in a study [10]. In this
study, the same algorithms with cloud analysts yielded that
the round-robin algorithm is the best performing amongst
the other throttled and equally spread current execution
algorithms in a homogeneous environment.

Te study [16] proposed a balanced throttled algorithm.
Te cloud analyst tool was used to check the performance of
the proposed algorithm with the round-robin algorithm,
throttled algorithm, and active VM monitoring algorithm.
Tis study has enhanced the response time of the throttled
load balancing algorithm. However, the study [16] does not
mention the experimental setups used for undertaking the
experiment.

1.2. ResearchMethodology. Tis paper used a mixed version
of descriptive and experimental research designs. As seen in
Figure 1, the study undergoes experimental analysis of the
diferent load balancing algorithms to identify the best or the
most efcient algorithm in diferent scenarios and cases by
experimenting in simulated environments.Te study tries to
explore the diferent scenarios using both qualitative and
quantitative data for analysis approaches.

2. The Component-Based Cloud VM Load
Balancing Algorithm

Te throttled load balancing algorithm consists of only one
component inside its load balancer implementation [17, 18].
Te proposed component-based throttled load balancing
algorithm consists of three kinds of diferent components.
Tese components are described as follows:

Mathematical Problems in Engineering 3



VM Reader. Te primary task of this component is to
read and hold the existing VMs inside its allocation
table (Table 1). Te VM state (available or busy) is to be
known before assigning them to the request. Now the
VM reader component reads all the VMs that are found
in that data center with their respective ID and state.
Te state of the VM that is read by this VM reader is
either Busy or Available.
Free VM Holder. Te free VM holder component is
used as a temporary free VMs holder. It communi-
cates with the VM reader and collects the information
about the free VMs from the allocation table of the
VM reader component. All the VMs which are found
in the free VM holder are considered free VMs that
are ready for transfer to the free VM manager
(Table 2).
Free VM Manager. Primarily, the free VM manager
component takes the VMs that are found in the free
VM holder. Tis component is responsible for man-
aging the VMs. When the data center controller re-
quests for specifc VM, the free VM manager sends the
ID of a single VM from its table (Table 3) by selecting
randomly.

2.1. Component-Based Trottled Load Balancing Algorithm.
In the proposed algorithm, Figure 2 describes the basic
operations of the proposed algorithm, that is, the compo-
nent-based throttled load balancing algorithm. In general,
sharing multiple tasks for diferent entities lowers the
burden on a single component and results in better
performance.

Te newly proposed component-based algorithm tries to
enhance the performance of the throttled algorithm by
mitigating the task overhead. Tis task overhead is found on
the single component of the throttled algorithm. As is seen
in Figure 2, initial requests from diferent user bases are
received by the data center controllers. Ten, the data center
controller requests the load balancer for the free VM to use.
Now the proposed load balancer automatically responds to
the request directly by sending the status of the free VMs
getting from the free VM manager. Since the free VM
manager component only contains the available VMs list, it

is very easy to send a respective VM ID to the request of the
data center controller. After getting the ID from the free VM
manager, the data center controller communicates to the
VM identifed by the ID.

Tus, the existing throttled algorithm, the newly pro-
posed component-based algorithm, presents a better allo-
cation table with an instant updating mechanism for the
VMs status. In the existing algorithm, there was a single
component for reading the VM and sending the free VM,
and therefore it was focused only on a replacement mech-
anism to update.

On the other hand, in the proposed component-based
throttled algorithm, when a given VM is allocated to a
specifc task, the VM is removed from both the free VM
holder and free VM manager component. Also, in the VM
reader, the state for that VM is updated to show it is a busy
state. In the case of deallocation of a VM, only the state in
the VM reader component is updated to the available
state.

3. Design of the Component-Based Algorithm

Te design of the proposed algorithm, that is, the
“component-based throttled algorithm,” is presented in
Figures 3 and 4. As seen in the algorithm design, it starts
by reading the VMs and ends up by updating the com-
ponents of the algorithm upon allocation and deallocation
of a VM.

4. Simulated Experimentation and Discussion

To show the implementation, the experimentations were
done in a simulated environment using the cloud analyst
simulation tool. Initially, the simulation setup was consid-
ered for large-scale data of the cloud applications such as
social network data. Te study used Facebook’s statistical
data to confgure the user bases of client numbers (cloud
service consumer numbers). Facebook was selected because
of its highest number of social clients than the other cloud-
based social networks that are accessed globally during all
of-peak hours and on-peak hours. According to the
Miniwatts Marketing Group report, Facebook has more than
2.22 billion users globally [19].

Review of Literature Data Collection Tool Selection 

Algorithm Selection Designing a New 
Algorithm 

Implementing the 
Algorithms

Simulation and 
Experimentation

Comparative
Analysis

Conclusion and 
Recommendation 

Figure 1: Research process fow.

4 Mathematical Problems in Engineering



4.1. Experimentations in Simulated Environment. Te ex-
perimentations were donemainly in two parts, each of which
is based on two diferent scenarios of the service broker
policy of the cloud load balancing algorithm. Te service
broker policy was used to determine which data center
should receive the incoming requests upon implementing
the diferent policies. Tis simulated experiment was done
using these two policies.

Te frst service broker policy was the closest data
center service broker policy. Tis service broker policy
was used for pointing the requests to the nearest data
center with an active VM in which their request was
processed. Te second service broker policy in the cloud
load balancing algorithm was the maximum response time
service broker policy. Tis policy mainly maximizes the

response time for a particular request by executing the
request in diferent data centers to get the shortest time of
response.

Te frst part experiment was done to analyze the re-
sponse time and data center processing time at constant
execution time by altering data center and VM numbers. A
total of 36 experiments, as shown in Table 4, were done for
the selected fve algorithms, that is, round-robin (RR) al-
gorithm, throttled algorithm, equally spread current exe-
cution algorithm (ESCE), threshold algorithm, honey bee
algorithm, and the proposed component-based algorithm.
Te second experiment was done to analyze resource uti-
lization by setting the VM and the data center constant and
varying the execution time. In this, a total of 12 experiments
were done for the selected fve algorithms and the proposed

Table 3: Free VM manager.

VM 

VM ID

VM state ……….

VM1 VM3 VM… VM… VM…N

VM1ID VM3ID VM5ID VM…ID VM…N ID

VM…N State

Available VMs

Table 1: VM reader.

Available VMs
Busy VMs

VM VM1 VM2 VM3 VM4 VM… VM… VM…N

VM ID VM1ID VM2ID VM3ID VM4D VM5ID VM…ID VM…N ID

VM state ………. VM…N State

Table 2: Free VM holder.

VM 

VM ID

VM state ……….

VM 

VM ID

VM state ……….

VM1

VM1

VM2 VM3

VM3

VM4 VM…

VM… VM…

VM… VM…N

VM…N

VM1ID

VM1ID

VM2ID VM3ID

VM3ID

VM4D VM5ID

VM5ID

VM…ID

VM…ID

VM…N ID

VM…N ID

VM…N State

VM…N State

Available VMs
Busy VMs

Mathematical Problems in Engineering 5



component-based algorithm. Undertaking experiments with
diferent kinds of experimental setups is essential for criti-
cally evaluating the performance of the algorithm in dif-
ferent scenarios in contrast with miscellaneous algorithms.

4.2. Experiment Part One

4.2.1. Sample Experimentation. Scenario 1 Case 1 (S1C1): 1
Data Center with 25 VMs. In this experiment, one data
center was used to manage all the requests. Te data center
was placed in Region 2, which was assumed to be the center
for all the other regions on average. In this data center, 25
VMs were installed.

S1C1_Experiment 6: Component-Based Load Balancing
Algorithm. As shown in Table 5, in this experimental sce-
nario, the new component-based algorithm was simulated
for 24 hrs of execution time over the cloud.

4.2.2. Scenario 1 Experimental Results (Using the Closest Data
Center Service Broker Policy). By using the closest data
center service broker policy, it was observed that, with
minimum data center number and VMs in Case 1, the

component-based load balancing algorithm achieved the
highest performance in terms of response time and data
center processing time than the other algorithms. In addi-
tion, from the experiment, it is observed that the proposed
algorithm found higher performance than the other algo-
rithms with an increased number of data centers and VMs.
In this experimental scenario, the number of cloudlets from
the users was kept constant. In this scenario, Facebook’s
statistical data with a large number of cloud users at on and
of-peak hours were used by changing the number of the
data centers and VMs in each experiment. From these ex-
periments, it was observed that the component-based al-
gorithm was found to be more efcient than the other
algorithms when cloud systems consist of a limited number
of data centers with limited VM distribution. Te results are
depicted in Figures 5 and 6 where the average response time
and the average data center processing time are also pre-
sented by using the closest service broker policy.

4.2.3. Scenario 2 Experimentations Results (Using the Max-
imum Response Time Service Broker Policy). By using the
maximum response time service broker policy in the ex-
periment, it was observed that the performance, specifcally

UB 1 

UB 2 UB 3 UB 4 UB 5 
UB 6 

Data Center Controller 

Virtual Machine Reader 

Transfer Free Virtual Machine 

Holder Free Virtual Machine 

Transfer Free Virtual Machine 

Free Virtual Machine 
Manager 

VM1 VM...VM3VM2 VM... VM...VM... VMN

Virtual Machine List 

Free Virtual Machine List 

VM ID
Access to Free VM 

Lo
ad

 B
al

an
ce

r

Re
ad

 V
irt

ua
l M

av
hi

ne
s

Figure 2: Proposed component-based throttled load balancing algorithm.

6 Mathematical Problems in Engineering



the response time for the component-based algorithm, was
found to be higher than the algorithms in the foremost two
cases.Te whole second experimental scenario is depicted in
Figures 7 and 8. Also, the average data center processing
time was found to be higher than the others in the third case.
Tis clearly shows that the component-based algorithm over
cloud-based systems using a limited number of data centers
and VMs can minimize the response time on the service
broker policy of maximizing response time.

4.3. Experiment Part 2. Te frst experiment was conducted
to test the resource utilization of the algorithms within the 1-
hour execution time.Te second one was done for a 24-hour
execution time.

4.3.1. Sample Experiment: Experiment 1: Resource Utilization
for 5 VM for 1 hr. As presented in Figure 9, by using the
closest data center service broker policy and maximizing
response time service broker policy for all the six algorithms,
the resource utilization was measured based on the VM
allocation count.

4.3.2. First and Second Experimental Results on Resource
Utilization. From the experiments as depicted in Figure 9, it
was observed that the component-based algorithm for each
VM performed more uniformly than the throttled algo-
rithm. Te experimental results for the resource utilization
showed that no VM is underutilized and no VM is
overutilized in contrast with the throttled. Also, the uni-
formity of the allocation of the VMs is depicted in Figure 10
by using the component-based algorithm in the case of the
second experiment, which was conducted for 24 hours of
execution time.

4.4. Comparative Analysis. A comparative analysis was also
performed to identify the efciency of the algorithms based
on the selected parameters, that is, response time, data center
processing time, and resource utilization. In each experi-
ment and case, the algorithms were ranked based on their
performance results on the selected parameters. Te frst
algorithm, which showed the best performance, was given a
weight of 1, and the least performing algorithm was given a
weight of 6. Table 6 presents the overall rank based on the
comparison results of the performance of the algorithms.

Start 

VM Reader reads all the VMs 

DCC Receives the Request from the UB 

VM Reader Compares the State of the VMs 

is the VM State 
Available 

NO

Transfer Available VM to Free VM Holder 

Yes 

Free VM Holder Temporarily Holds the Available VM 

Free VM Manager Receives the Available VM 

Free VM Manager Sends Randomly VMID from its Free VM List for DCC 

is the VM 
Allocated 

Remove the Allocated VM from the Free VM Manager 
Remove the Allocated VM from the Free VM Holder and 

Change the VM State in the VM Reader to Busy 
Change the VM State in the VM Reader to Available No Yes

End 

Figure 3: Design of the component-based algorithm.

Mathematical Problems in Engineering 7



Figure 4: Pseudocode of the component-based algorithm.

8 Mathematical Problems in Engineering



Table 4: Experimentation scenarios and cases for part 1 experiment.

Scenarios Scenario 1 (S1): closest data center service broker Scenario 2 (S2): optimize response time service broker
Case 1 (C1) 1 data center with 25 VMs 1 data center with 25 VMs
Case 2 (C2) 3 data centers with 50, 70, and 100 VMs, respectively 3 data centers with 50, 70, and 100 VMs, respectively

Case 3 (C3) 6 data centers with 60, 70, 80, 90, 100, and 110 VMs,
respectively

6 data centers and 60, 70, 80, 90, 100, and 110 VMs,
respectively

Table 5: Sample experiment one result for S1C1: Experiment 6.

Avg. (ms) Min. (ms) Max. (ms)
Overall response time 325.30 42.17 698.59
DC processing time 27.12 0.06 185.91

34
8.

81

29
9.

62

18
7.

6

34
8.

16

29
9.

09

18
7.

57

32
5.

32

27
0.

7

16
7.

7

34
7.

93

29
9.

1

18
8.

84

35
3.

67

34
1.

72

26
0.

19

32
5.

31

27
0.

71

16
7.

7

S1C1-EXPERIMENT S1C2-EXPERIMENT S1C3-EXPERIMENT

Avg.Response time by using closest Data center service broker

0

50

100

150

200

250

300

350

400

Re
sp

on
se

 ti
m

e

Round Robin CLBA
Honey bee CLBA

ESCE CLBA
Threshold CLBA

Throttled CLBA
Component-Based CLBA

Figure 5: Avg. response time by using the closest data center service broker.

50
.6

6

11
2.

37 13
5.

47

49
.9

9

11
1.

84 13
5.

44

27
.1

4

83
.9

5

11
5.

76

49
.7

6

11
1.

85 13
6.

72

55
.5

9

15
5.

39

20
8.

74

27
.1

2

83
.9

5

11
5.

76

S1C1-EXPERIMENT S1C2-EXPERIMENT S1C3-EXPERIMENT

Avg.Data Ceneter processing time by using closest Data 
center service broker

0

50

100

150

200

250

Pr
oc

ce
sin

g 
Ti

m
e

Round Robin CLBA
Honey bee CLBA

ESCE CLBA
Threshold CLBA

Throttled CLBA
Component-Based CLBA

Figure 6: Average data center processing time by using the closest data center service broker.

Mathematical Problems in Engineering 9



50
.7

2

98
.6

2 11
5.

7

50
.1

1

98
.6

4 11
5.

09

27
.1

3

74
.7

4

10
4.

24

49
.8

11
1.

85

11
4.

26

55
.1

3

96
.0

3

13
5.

6

27
.1

4

74
.7

5

10
3.

99

Avg.Data Ceneter processing time by using maximize 
response time service broker

S2C1-EXPERIMENT S2C2-EXPERIMENT S2C3-EXPERIMENT

Round Robin CLBA
Honey bee CLBA

ESCE CLBA
Threshold CLBA

Throttled CLBA
Component-Based CLBA

0

20

40

60

80

100

120

140

160

Pr
oc

ce
sin

g 
tim

e

Figure 8: Avg. data center processing time by using maximize response time service broker.

11
54

11
53

11
53

11
53

11
53

35
32

11
88

58
7

30
5

15
4

35
31

10
88

53
5

27
2

15
1

11
39

11
50

11
17

11
86

11
74

11
51

12
04

11
58

10
90

11
63

11
36

10
88

11
31

10
80

11
36

VM0 VM1 VM2 VM3 VM4

VM Allocation Count for Five VM on One Hour

0
500

1000
1500
2000
2500
3000
3500
4000

A
llo

ca
tio

n 
co

un
t

Round Robin CLBA
Honey bee CLBA

ESCE CLBA
Threshold CLBA

Throttled CLBA
Component-Based CLBA

Figure 9: VM allocation count for 5 VMs for 1 hr.

34
8.

84

30
5.

3

19
2.

17

34
8.

24

30
4.

97

19
2.

5

32
5.

32

28
0.

59

17
9.

65

34
7.

94

30
4.

66

19
0.

99

35
3.

17

32
8.

63

27
5.

3

32
5.

3

28
0.

48

18
0.

03

S2C1-EXPERIMENT S2C2-EXPERIMENT S2C3-EXPERIMENT

Avg.Response time by using maximize response time service 
broker

0

50

100

150

200

250

300

350

400

Re
sp

on
se

 ti
m

e

Round Robin CLBA
Honey bee CLBA

ESCE CLBA
Threshold CLBA

Throttled CLBA
Component-Based CLBA

Figure 7: Avg. response time by using maximize response time service broker.

10 Mathematical Problems in Engineering



Te rank-based comparative analysis of the selected
algorithms concludes that the component-based load bal-
ancing algorithm was found as the most efcient algorithm
on the selected parameters, that is, response time, data center
processing time, and resource utilization.

5. Conclusion

Cloud computing systems are extensively used by numerous
business houses and private and public sector organizations.
In addition to the issues and concerns such as security, fault
tolerance, and scalability, load balancing is becoming the
most crucial matter for the efciency of computing over
cloud-based systems. Tis paper focuses on resolving the
issues in the load balancing environments of cloud-based
VMs. In general, load balancing techniques were evolved to
ensure the optimum utilization of cloud resources. Tis
implies that none of the VMs are allowed to be kept idle,
underutilized, or overloaded while operating. In this paper,
the eforts are made to compare the performance of the
various load balancing algorithms using selected parameters,
that is, response time, data center processing time, and
resource utilization. Tese algorithms are generalized as
static and dynamic. In this paper, we proposed a newly
evolved “component-based throttled load balancing algo-
rithm” for solving the problem of the “task overhead” in the
existing algorithms. Te paper compared the various load
balancing algorithms in diferent simulated experimental
setups using the cloud analyst simulation tool. In the frst
part of the experiment, the response time and data center’s
processing time are experimentally measured and compared
for the proposed component-based algorithm and the other

aforementioned fve algorithms. Te frst part experiment
was done by varying the number of data centers and the VMs
(i.e., in the heterogeneous environment) by using them in
two diferent scenarios of the service broker policy. Te
second part experiment was done to fnd the best performing
algorithm for the best resource utilization by allocating the
VMs to the process efciently. Unlike the frst part, this
experiment was done by varying the execution time in the
simulation to 1.0 hr and 24 hr in a homogeneous environ-
ment with a fxed number of VMs.

In the frst part experiment, the component-based al-
gorithm showed a better performance in terms of the re-
sponse time and the data center processing time than the
throttled and other algorithms. But in the second part ex-
periment, the round-robin algorithm performed better in
allocating the VMs efectively. However, the newly proposed
component-based algorithmwas found to be very efcient in
contrast with the existing throttled algorithm. Tis showed
that the proposed component-based throttled algorithm is
found to be more efcient than the existing throttled al-
gorithm in allocating the VMs efectively, that is, resource
utilization.

Finally, the selected algorithms were ranked based on
their performance in each of the experiments. Te weight-
based relative ranking was used to compare and determine
the most efcient algorithm. Upon parameter-based com-
parative analysis, the component-based throttled load bal-
ancing algorithm was identifed as the most efcient
algorithm based on the selected parameters, that is, average
response time, average data center processing, and resource
utilization. Finding and considering other parameters that
could help to check the performance of the cloud load

Table 6: Overall comparative performance analysis of the algorithms.

Algorithms
Algorithms’ relative rank based on

Te overall sum of the relative ranks
Response time Dc processing time Resource utilization

Round-robin CLBA 5 5 1 11
ESCE CLBA 4 4 5 13
Trottled CLBA 2 1 5 8
Honey bee CLBA 3 3 3 9
Treshold CLBA 6 6 3 15
Component-based CLBA 1 1 2 4

Throttled Load Balancing Algorithm vs Componet Based Load Balancing 
Algorithm on resource utilization

0

50000

100000

150000

A
llo

ca
tio

n 
C

ou
nt

Componnent-Based LBA
Throttled LBA

VM1 VM2 VM3VM0
Virtual machines in DC

Figure 10: Trottled versus component-based on resource utilization second experiment.

Mathematical Problems in Engineering 11



balancing algorithms experimentally is the future work that
needs to be done after this study. Moreover, enhancing this
component-based throttled algorithm with optimization
techniques is additional future work that needs to be done
after this study.

Data Availability

Te data were collected from Facebook statistics data for
confguring the user base of the cloud analyst https://www.
internetworldstats.com/facebook.htm (accessed October 23,
2020). Te data for undergoing the comparison were ob-
tained from the results of the simulated experiment.

Disclosure

Tis academic research is part of the M.S. fnal research
thesis at Arba Minch University under the Federal Ministry
of Education of Ethiopia, Arbaminch University, Ministry of
Education of Ethiopia.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] P. Mell and T. Grance, “Te NIST-national institute of
standars and technology- defnition of cloud computing,”
NIST Special Publication, p. 7, 2011.

[2] K. E. Narayana, S. Kumar, and K. Jayashree, “A review on
diferent types of deployment models in cloud computing,”
International Journal of Innovative Research in Computer and
Communication Engineering, vol. 4, no. 2, pp. 1475–1481,
2011.

[3] T. Diaby and B. B. Rad, “Cloud Computing: A Review of the
Concepts and Deployment Models,” International Journal of
Information Technology and Computer Science, vol. 9, no. 6,
pp. 50–58, 2017.

[4] S. M. Lanjewar, S. S. Surwade, S. P. Patil, P. S. Ghumatkar, and
Y. B. Gurav, “Load Balancing in Public Cloud,” 2014, https://
www.iosrjournals.org.

[5] D. Yadav, D. P. Sharma, and B. Keshwani, “A study of intranet
over cloud,” International Journal of New Innovations in
Engineering and Technology, vol. 7, no. 2, pp. 1–6, 2017.

[6] R. Rajeshkannan and M. Aramudhan, “Comparative study of
load balancing algorithms in cloud computing environment,”
Indian Journal of Science and Technology, vol. 9, no 20, 2016.

[7] J. Muda, S. Tumsa, A. Tuni, and D. P. Sharma, “Cloud-enabled
E-governance framework for citizen centric services,” Journal
of Computer and Communications, vol. 8, no. 7, pp. 63–78,
2020.

[8] M. T. Student, M. S. Siva Skandha, and M. N. Sandeep
Chaitanya, “Load balancing model for cloud services based on
cloud partitioning using RR algorithm pooja,” International
Journal of Electronics, Communications and Computer Engi-
neering, vol. 6, no. 5, pp. 102–106, 2015.

[9] M. T. Student, M. S. Siva Skandha, and M. N. Sandeep
Chaitanya, “Load Balancing Model for Cloud Services Based
on Cloud Partitioning Using RR Algorithm Pooja,” 2015,
https://www.ijecce.org.

[10] M. S. Shakir and E. A. Razzaque, “Performance Comparison
of Load Balancing Algorithms Using Cloud Analyst in Cloud

Computing,” in Proceedings of the 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communica-
tion Conference (UEMCON), New York, NY, USA, October
2017.

[11] D. Tazhathethil, N. Katre, J. Mane-Deshmukh,
M. Kshirsagar, and A. Nadaph, “A model for load balancing
by partitioning the public cloud,” International Journal of
Innovative Research in Computer and Communication Engi-
neering, vol. 32971 page, 2007.

[12] M. O. Ahmad and R. Z. Khan, “A survey on load balancing
algorithms in cloud computing,” International Journal of
Autonomic Computing, vol. 2, no. 4, p. 366, 2017.

[13] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in
cloud computing: a big picture,” Journal of King Saud Uni-
versity - Computer and Information Sciences, vol. 32, no. 2,
pp. 149–158, 2020.

[14] S. Gupta, A. Dixit, and H. Dev, “A study on various load
balancing algorithms for response time reduction in cloud,”
International Journal of Current Engineering and Scientifc
Research (IJCESR), vol. 4, no. 10, 2017.

[15] T. Adityasaisrinivas, K. Govinda, S. S. Manivannan, and
E. Swetha, “Analysis of load balancing algorithms using cloud
analyst,” International Journal of Recent Technology and En-
gineering, vol. 6, pp. 684–687, 2019.

[16] S. Y. Mohamed, M. H. N. Taha, H. N. Elmahdy, and H. Harb,
“A proposed load balancing algorithm over cloud computing
(balanced throttled),” International Journal of Recent Tech-
nology and Engineering, vol. 10, no. 2, pp. 28–33, 2021.

[17] B. Patel and S. Patel, “Various load balancing algorithms in
cloud computing,” IJARIIE, vol. 1, no. 2, pp. 187–202, 2015.

[18] H. Yeh, D. Ph, A. Chassiakos, and D. Ph, “Comparative
Analysis of Load Balancing Algorithms in Cloud Computing,”
2017, https://arxiv.org/ftp/arxiv/papers/1403/1403.6918.pdf.

[19] Facebook, “Facebook World Stats and Penetration in the
World - Facebook Statistics,” https://www.internetworldstats.
com/facebook.htm.

12 Mathematical Problems in Engineering




