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To address the automatic detection of dense and small-scale fruit targets under natural large-scene conditions, litchi was used as
the research object. Here, a method to automatically detect dense and small-scale litchi fruit targets based on the YOLOv4
detection network is proposed. First, the K-means++ algorithm was used to cluster the labelled data frames (ground truth) to
determine the size of the anchor suitable for litchi.,en, the output size of the feature map of the original network was changed to
make it more suitable for small-scale target detection. In addition, the images were preprocessed (cropped input) before they were
fed into the network. To construct the litchi dataset, 400 images containing more than 20,000 targets were collected. Comparing
the detection level to that of the original YOLOv4 model, the recall, precision, and F1 score values of the improved model
increased from 0.81 to 0.825, 0.762 to 0.892, and 0.79 to 0.85, respectively. ,e experimental results indicate that the performance
of the litchi detection method proposed in the study is significantly greater than the original model, and it meets the requirements
for fruit monitoring in litchi orchards.

1. Introduction

Litchi is a characteristic fruit of south of the Five Ridges. It
not only produces a large amount of fruit but also has a high
fruit-drop rate [1, 2]. Monitoring the litchi growth process
and scientifically managing the planting process helps fruit
farmers predict yields and correctly develop market plans
(e.g., pricing products and hiring manpower). In recent
years, the detection of litchi fruit in the natural environment
using machine vision methods has received widespread
attention. With the development of Internet of ,ings (IoT)
technology, the concepts of unmanned farms and precision
agriculture have been proposed [3]. Unlike traditional ag-
riculture, unmanned farms allow farmers to access infor-
mation about their orchards without leaving their homes
and to make appropriate decisions based on the information
obtained [4–9]. ,is enables truly intelligent scientific
management. ,e method of real-time monitoring of or-
chards through fruit recognition by in-orchard cameras has

gained widespread attention. Accurate fruit identification
has many uses. It provides useful information for fruit
harvesting, ripeness detection [10–12], and fruit yield pre-
diction. Fruit farmers are able to develop scientific man-
agement and marketing plans through yield estimation
[13–17]. Additionally, with the machine harvesting of fruit,
fruit recognition provides information for the accurate
positioning of the robot [18–25].

Initially, fruit recognition used mainly traditional image
recognition algorithms. For example, Zhou et al. used
texture-based edge detection combined with red measure-
ment, region thresholding, and circle fitting to identify
apples in images. Lu et al. used grayscale images with
chromatic aberration GB and the Otsu algorithm to segment
the citrus and background, and then, they fitted the contours
by least squares circle fitting with Tukey’s weight function
[26]. Liu et al. first applied matching expansion in peach-
growing areas to identify the whole region, and then, they
fitted the centroid and radius of the peach by calculating the
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statistical parameters of the potential centroids [27]. Fu et al.
analyze the images in HSV space to remove parts of the
background. A support vector machine having local binary
pattern features and a histogram of banana-oriented gra-
dient features were then used to find the banana region [28].
Yu et al. used color and texture features to train a random
forest binary classification model to identify litchi fruit [29].

With continuous development and progress, many
classical algorithms for target detection based on deep
learning have been proposed. Unlike traditional image
recognition methods, deep learning can discover and carve
out the complex structural features inside the issue, instead
of manually extracting features, which can greatly improve
the algorithm’s detection performance. Many deep learning
algorithms for fruit detection have been proposed. ,ey can
be mainly divided into two categories. One class is the two-
stage detector represented by Fast R-CNN [30] and Faster
R-CNN [31]. ,e other class is the single-stage detector
represented by SSD [32] and You Only Look Once (YOLO)
[33–35].,is type of model does not have a separate regional
extraction network and relies mainly on a predefined prior
frame (anchor) for regression on the target. For the difficult
problem of automatically detecting litchi targets under
natural large-scene conditions, we propose a method based
on the YOLOv4 deep learning algorithm to detect small-
scale dense distributions of litchi fruit.

,e main contribution of our method is the improved
YOLOv4-based detection model, which makes the model
more suitable for detecting small and dense targets such as
litchi. A cropping chunking recognition method is also used
to further improve the accuracy of detecting small targets.
,ese methods are targeted at solving the difficult problem
of automatically detecting litchi targets under natural large-
scene conditions with good results. It effectively improves
the detection accuracy of litchi by the YOLOv4 model under
natural large-scene conditions.

Initially, we modified the backbone of YOLOv4. ,e
extraction of a 32-fold downsampled feature map was
eliminated, and the output detection of the original large-
scale feature map was removed. ,en, the K-means++ al-
gorithm was used to obtain the anchor box by clustering the
litchi dataset. Finally, using the chunk cropping method, the
images were cropped and inputted into the network sepa-
rately for detection before they are all inputted into the
network. After all the detection results are filtered using a
nonmaximum suppression (NMS) algorithm, they are
mapped back to the original image. Additionally, we used
common detection metrics (Precision, Recall, and F1) to
determine the performance of the model. ,e model results
were compared with those of the original YOLOv4 model
and the image of the actual scene.

2. Materials and Methods

2.1. Dataset Preparation. ,e dataset used in this study
contains images of litchi trees collected in an orchard within
the South China Agricultural University. ,e time periods
for collecting the images included morning and afternoon.
,e resolution of the collected images was 4,608× 3,072.

Images of both ripe red and immature green litchi were
collected.

A total of 400 images were collected, containing more
than 20,000 targets. ,e dataset was divided into training
and test sets. LabelImg software was used to label the litchi
fruit and generate an XML file containing the target type and
location. It was then converted into a data format suitable for
the YOLOv4 network.,e data division results are shown in
Table 1.

2.2. Yolov4 Algorithm. YOLO is a deep learning target de-
tection algorithm based on regression. Its main idea is to
convert the problem of object detection into a solvable
regression problem.,e YOLOv4model detection process is
as follows. First, the input image is resized to the input size.
,en, the downsampling process is performed five times and
the last three downsampling results are saved to predict the
target. ,en, the input image is divided into feature maps of
S × S cells, and the subsequent output is predicted in units of
cells.

YOLOv4 establishes a total of nine groups of anchors
and three outputs, and each output is assigned three groups
of anchors. Consequently, each cell of the output predicts
three bounding boxes (Figure 1).

2.3. Improved Model Lit-YOLO. Deeper convolutional
neural networks have a stronger nonlinear representation
and can learn to fit more complex features. However, as the
network becomes deeper, problems, such as increased
network computations, slower inferences, and feature dis-
appearance, may occur. Moreover, the detection used here,
litchi, is a small target that lacks rich semantic information.
,e original YOLOv4 network outputs three scales of feature
maps for target prediction.,e feature map with the smallest
resolution (26× 26) has severe semantic losses and has the
worst performance for detecting small targets. Conse-
quently, the Lit-YOLO model based on YOLOv4 was pro-
posed. ,e extraction of the 32-fold downsampling in the
original backbone network (Bone) was removed. ,e output
detection of the original network on the original large-scale
feature map was removed. To allow the network to acquire
more feature information from small targets and improve
the detection rate of small targets, we used the fourfold
downsampled featuremap output in the original network for
target detection because it contains more information about
the locations of small targets. ,e semantic information
from the 16-fold downsampling was merged with the
shallow network by upsampling to convey powerful se-
mantic features from top to bottom. ,e model further
improved the feature extraction capability, enhanced the
detection accuracy of small targets, and reduced the amount
of model computation. ,e improved network structure is
shown in Figure 2.

2.4. Clustering Algorithm. Many target detection algorithms
(e.g., YOLO, RCNN, and SSD) solve the edge regression
problem through the anchor box mechanism. ,e so-called
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Table 1: Dataset division information.

Dataset Number of images Percentage (%)
Train set 320 80
Test set 80 20

tx ty tW th P0 P1 P2 Pc...

Figure 1: YOLOv4 network output.,e parameters contained in each bounding box are as follows: the center coordinates of the box (tx, ty),
the width (tw), and height (th) of the target, the confidence score (P0) that the box has a target, and the probability (Pc) that the target in the
box belongs to each type of object.
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Figure 2: Lit-YOLO network structure.
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anchor box and border regression are used to preset the
borders to help establish the heights and widths of common
targets. When making predictions, the anchor box first
frames the target at possible locations. ,ese preset borders
are then fine-tuned by panning and scaling (border re-
gression), resulting in the fine-tuned window being closer to
the ground truth. ,e choice of anchor box size directly
affects the accuracy and speed of the model.

We recalculated the anchor box size using the
K-means++ clustering algorithm. K-means++ solves the
problem of the K-means algorithm being greatly influenced
by the initial value. Unlike the random selection of the initial
cluster centers, the basic idea of the K-means++ algorithm in
selecting the initial seed is to make the initial cluster centers
as far away from each other as possible. ,e K-means++
clustering process is shown in Figure 3, and the algorithm
flow is as follows:

(1) Randomly select a point in the input dataset as the
initial cluster center.

(2) Calculate the distance D(x) from each point x to the
nearest cluster center (selected) and record it in the
array (D1, D2, . . ., Dn).

(3) ,e next center is selected using the roulette method.
,e principle is that the point with larger D(x) has a
higher probability of being selected.

(4) Repeat steps (2) and (3) until K cluster centers are
found.

(5) ,e standard K-means algorithm is run using the
obtained K clustering centers from (4) as initial
points.

,e standard clustering algorithm measures the differ-
ence using the Euclidean distance. However, this method has
a correspondingly larger error when the size of the box is
relatively large. Consequently, the processed IOU is used as
an evaluation index, as in the following equation:

distance(box, anchor) � 1 − IOU(box, anchor). (1)

,e predefined anchor values in the original YOLOv4
detection network were obtained by clustering on the COCO
dataset. However, here, we tested a single object, only litchi.
To improve the accuracy of the model, the litchi dataset was
re-clustered to obtain the anchor values, as detailed in
Table 2.

2.5.CuttingDetection. ,e resolution of the images collected
in this study is 4,072× 3,072, and the size of the litchi fruit is
less than 100. ,us, a litchi fruit is an absolutely small target
relative to the whole image. Usually, YOLOv4 has three
detection sizes: 608× 608, 512× 512, and 416 × 416. ,e
YOLOv4 network scales the input image, which leads to
fewer pixels and less distinctive features for small targets.
Consequently, small target detection is difficult. ,erefore,
when the image size is much larger than the maximum input
size of the detection model, direct downsampling of the
input image is not effective for detection. To achieve the
detection of small targets in large scenes, the original images

are cropped and inputted separately into the model for
detection based on the improved model. ,en, the detection
results are mapped back to the original image.

Figure 4(a) shows the original input image to be
processed, and the area of the image region is set to
S. Because the original input image size is too large, it is
difficult to detect the small-scale target objects directly as
the input for the model. Here, the original image was
cropped into nine copies and inputted separately into the
model for detection. ,e image area can be expressed as
follows:

S � 
3

i,j�1
Sij. (2)

If the image is evenly divided into nine parts, then it
appears that the complete litchi target is cut into two parts
and attributed to different cropping areas. ,is leads to
duplicate recognition counts of litchi targets or missed
detection because the litchi cannot be correctly identified in
Figure 4(b). To avoid the above situation and ensure that
each litchi in the original image is detected completely and
correctly; during the original image cropping, each cropped
area should have the proper overlap with surrounding areas,
as shown in Figure 4(c). ,e original image was cropped to
an image detection region of lengthW and width H.,e area
size of each detected image after image cropping can be
determined as follows:

S � 
3

i,j�1
Sij, (3)

Wi,j �
W

3
+ δ1 δ1 �

W

10
 , (4)

Hi,j �
H

3
+ δ2 δ2 �

H

10
 . (5)

,e original image area can be determined as follows:

S � 

3

i,j�1
Wi,j × Hi,j  − 

3

i,j�1
Si,j. (6)

Some duplicate images inevitably occur in the over-
lapping regions. ,erefore, the NMS algorithm was used
to filter the images. Finally, the results of the cropped
images were combined together and mapped back to the
original image position to produce the final detection
results. ,e process of filtering duplicate boxes is as
follows:

(1) Sort all the prediction boxes in order of probability
from highest to lowest

(2) Eliminate prediction frames with probabilities of less
than a set threshold (confidence)

(3) Calculate the intersection ratio of the highest
probability box m1 and other boxes m2, respectively,
as follows: IoU � area(m1)∩ area(m2)/area(m1)∪
area(m2)
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(4) Eliminate boxes with intersection-to-merge ratio
(IoU) greater than the set threshold because the
overlap is too great

(5) Repeat steps (3) and (1) until all the boxes are filtered

3. Results and Discussion

3.1. Experimental Environment. ,e experiments were
conducted using the Darknet deep learning framework. ,e
Lit-YOLOmodel was compiled and tested in Python 3.6.,e
model was trained on a 64 bit Ubuntu 16.04 machine with an
Intel i7-10700k CPU, 16G RAM, and an NVIDIA RTX
2080S GPU.

3.2. Evaluation Indicators. In general, the most basic metrics
to judge the quality of a model are Precision, Recall, F1 value,
and mean average precision. Calculating these indicators
includes four parameters, positive sample and positive result
(True Positive, TP), negative sample and negative result
(True Negative, TN), negative sample and positive result
(False Positive, FP), and positive sample and negative result
(False Negative, FN).

Precision:

precision �
TP

TP + FP
. (7)

Recall:
recall �

TP
TP + FN

. (8)

F1 score:

F1 �
2 × precision × recall
precision × recall

. (9)

3.3. Results’ Analysis. ,e models were tested with three
input sizes of 416× 416, 512× 512, and 608× 608, and the

P-R graphs were plotted based on the test results, as shown
in Figure 5.

,e detection of the same model was improved when
using a larger input size. For the same model, the 608× 608
input size produced the best result, and the 416× 416 input
size produced the worst results. Moreover, the improved Lit-
YOLO model shows greater accuracy, recall, and average
precision values than the original YOLOv4 and Fast R-CNN
algorithm. ,e test results are shown in Table 3.

,e purpose of the intelligent monitoring of litchi or-
chards is to perform the statistical determination of the
number of single litchi fruit in large scenarios.,erefore, the
number of correctly identified litchi and the number of
incorrectly identified litchi are used as the model accuracy
evaluation criteria. ,e error identification includes false
detection, missed detection, frames with multiple fruit, and a
fruit in multiple frames. No litchi mark in the box indicates a
false detection. Litchi that is not boxed out is recorded as a
missed detection. If there are multiple litchi in a box, then
only mark one is correct. If a litchi is contained in multiple
boxes, then only one “correct” is marked. Because the
number of litchi fruit is large, 20 images were randomly
selected in the test set. ,e number of fruit was counted
manually as 1,732. ,e statistical results of the recognition
models presented here are shown in Table 4. ,ere were
1,584 correctly recognized litchi, and the correct recognition
rate was 91.45%. ,e number of incorrectly identified litchi
was 148, with a recognition error rate of 8.55%.

To test the generalization ability of the model for dif-
ferent densities of litchi, three different scenes of sparse
(small), normal (medium), and dense (large) litchi were
selected for recognition detection. ,e actual detection re-
sults are shown in Figure 6–8.

In the images taken in a natural environment, the
number and density of litchi differ greatly. It is easier to
identify the litchi that are larger and clearly imaged.
However, for images containing a large number of litchi, the
detection is more difficult because the branches and leaves
are obscured and the fruit are stuck together.,e test set was
divided into two gradients according to the number of fruit
in the image.,e gradients were less than 100 andmore than
100. ,e correct rates of the two recognition models were
compared separately. ,e image detection results are shown
in Table 5.

As the number of fruit in the image increased, there were
more cases of fruit blocking each other and sticking together.
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Figure 3: Standard K-means clustering process.

Table 2: ,e anchor values for the litchi dataset.

Feature map Original values Update values
Small (12,16) (19,36) (40,28) (5,7) (6,10) (8,12)
Medium (36,75) (76,55) (72,146) (10,16) (12,20) (16,24)

Large (142,110) (192,243)
(459,401)

(20,32) (32,48)
(54,80)
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Additionally, the more fruit contained in the image, the
more complex the background. ,e litchi in the image were
also smaller and blurrier, leading to the features not being

easily extracted. In dense scenes, the correct recognition rate
of the original YOLOv4 model was greatly reduced. How-
ever, the correct recognition rate of the proposed improved

(a)
WL

HL

(b)

W

H

δ2

δ1

(c)

Figure 4: Image cropping diagram.
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Table 3: Model test results.

Model Precision (%) Recall (%) F1 mAP (%)
Lit-YOLO 89.29 82.47 0.85 85.45
Yolov4 76.25 81.56 0.79 80.31
Fast R-CNN 83.34 72.58 0.77 67.29

Table 4: Model image detection comparisons.

Model Number of fruit Number of correctly identified Correctness rate (%)
Lit-YOLO 1732 1584 91.45
Yolov4 1732 1460 84.30

Figure 6: YOLOv4 and Lit-YOLO detection results in sparse scenes.
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model does not change much at any litchi density. ,e
correct rate was 2.88% greater than the YOLOv4 prediction
in sparse scenes. ,e correct rate was 3.55% greater than the
YOLOv4 prediction in normal scenes. In dense scenes, the
correct rate was 9.41% greater than the YOLOv4 prediction.
,us, the improved model was effective for the detection of a
large number of densely distributed targets in a large scene.
It also met the demand for real-time detection of litchi fruit
in litchi orchards.

4. Conclusions

Intelligent monitoring of litchi orchards based on the IoT
and artificial intelligence technology can be used for real-
time data collection from litchi fruit trees and of fruit
growth, to carry out intelligent planting decisions to increase

litchi orchard production by eliminating traditional orchard
operations and management practices. ,ese are important
developmental direction for litchi orchards. To improve the
real-time recognition and detection of litchi fruit, this study
proposed an improved Lit-YOLO model based on the deep
learning YOLOv4 model. ,e K-means++ clustering algo-
rithmwas first used to obtain the anchor data suitable for the
litchi dataset. A 32-fold downsampled network was removed
from the original network, and a 4-fold downsampled
feature map was produced for predicting small targets.
Sliding windows with overlaps were cropped from the
original map before being inputted into the model, and they
were inputted separately into the model for prediction.
Finally, the overlapping prediction frames were filtered
using the NMS algorithm. With 400 scene images (320
images in the training set and 80 images in the test set)

Table 5: Comparison of detection results at different fruit densities.

Density of fruit in
the image

Number of
images

Number of
fruits

Lit-YOLO YOLOv4
Identification

number
Identification rate

(%)
Identification

number
Identification rate

(%)
Sparse 15 522 478 91.57 463 88.69
Normal 12 901 834 92.56 802 89.01
Dense 8 1148 1052 91.64 944 82.23

Figure 7: YOLOv4 and Lit-YOLO detection results in normal scenes.

Figure 8: YOLOv4 and Lit-YOLO detection results in dense scenes.
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detected, the improved Lit-YOLO model has a recognition
rate of over 91% in both scenes, having more and less
numbers of fruit. ,e model was robust for the detection of
densely distributed small targets in large scenes. ,e rec-
ognition of obscured litchi was also more accurate than the
original model. Accurate and reliable fruit recognition may
provide local information for robotic picking. It also allows
for yield prediction and proper marketing planning. ,e
improved methodology of the new model may be applied to
the detection of other small fruit with dense distributions in
a natural environment.
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