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&e fault signals of planetary gears are nonstationary and nonlinear signals. It is difficult to extract weak fault features under strong
background noise. &is paper adopts a new filtering method, fractional Wavelet transform (FRWT). Compared with the tra-
ditional fractional Fourier transform (FRFT), it can improve the effect of noise reduction. &is paper adopts a planetary gear fault
diagnosis method combining fractional wavelet transform (FRWT) and two-dimensional convolutional neural network (2D-
CNN). Firstly, several intrinsic mode component functions (IMFs) are obtained from the original vibration signal by AFSA-VMD
decomposition, and the two components with the largest correlation coefficient are selected for signal reconstruction. &en, the
reconstructed signal is filtered in fractional wavelet domain. By analyzing the wavelet energy entropy of the filtered signal, a two-
dimensional normalized energy characteristic matrix is constructed and the two-dimensional features are input into the two-
dimensional convolution neural network model for training. &e simulation results show that the training effect of this method is
better than that of FRFT-2D-CNN.&rough the verification of the test set, we can know that the fault diagnosis of planetary gears
can be realized accurately based on FRWT and 2D-CNN.

1. Introduction

As an important part of rotating machinery and equipment,
planetary gears usually operate in a high-speed and high-
power environment. &ey are widely used in aircraft
manufacturing, coal mining machinery, wind power gen-
eration, ship manufacturing, and other industries. It is very
easy to appear in the long-term operation process, smooth
vibration phenomenon. Since the 1980s, many serious ac-
cidents have been caused by the fault of rotating equipment
around the world, causing huge economic losses. About 80%
of the faults occurred on the planetary gears [1]. &erefore,
how to accurately diagnose the fault of planetary gears has
important research significance.

At present, many achievements have been made in the
research on fault diagnosis of planetary gears. Yu Jun and
others proposed a planetary gear fault identification
method that combines a stacked denoising autoencoder
(SDAE) and a gated recurrent unit neural network
(GRUNN) to solve the problem of low planetary gear fault
recognition rate [1]. Gao Hongying and others proposed a

planetary gear fault identification method combining
complementary set empirical mode decomposition
(CEEMD) and chaotic particle swarm kernel extreme
learning machine (CPSO-ELM), which reduces the influ-
ence of external disturbances on planetary gear fault di-
agnosis [2]. Wang Zhenya and others proposed a fault
diagnosis method based on optimized variational modal
decomposition and multidomain manifold learning of the
salvia group, which solved the problem of difficult feature
extraction and identification of planetary gears [3]. Li
Haiping proposed an intelligent diagnosis method com-
bining Fast Fourier Transform (FFT) and Deep Confidence
Network (DBN) to improve the accuracy of planetary gear
fault diagnosis [4]. Li Yuheng proposed a fault diagnosis
method that combines the ensemble empirical mode
(EEMD) and the symmetrical differential energy operator
to achieve accurate diagnosis of planetary gears and ac-
curately obtain the fault characteristic frequency value of
planetary gears [5]. Zhang et al. proposed a fault diagnosis
method based on time-frequency characteristics and PSO-
SVM, and verified that the method can quickly and
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accurately identify the fault type of planetary gears from
nonstationary signals [6]. Wang et al. proposed a gear fault
diagnosis method based on multicriteria fault feature se-
lection and heterogeneous integrated learning classifica-
tion, which improved the accuracy and robustness of
diagnosis [7]. Aiming at a kind of multimode process with
hidden degenerate faults, a fault prediction algorithm based
on the combination of multi-PCA model and fault re-
construction technology is proposed, which can well solve
the fault prediction problem of multimode process data [8].

In order to realize the planetary gear fault diagnosis
under strong background noise, this paper adopts the
planetary gear fault diagnosis method combining frac-
tional wavelet transform and two-dimensional con-
volutional neural network. Firstly, the planetary gear
fault signal is denoised by fractional wavelet transform.
Secondly, use wavelet packet to extract the one-dimen-
sional normalized energy value of the filtered signal, and
convert the obtained one-dimensional energy value into
a two-dimensional energy feature map. Finally, use a
two-dimensional convolutional neural network to es-
tablish a fault diagnosis model to achieve accurate
identification of different faults under different working
conditions.

2. The Theoretical Basis of Fractional
Wavelet Transform

2.1. Discrete Wavelet Transform. In signal processing, the
continuous wavelet is discretized. After the discretization,
the continuous wavelet and its corresponding wavelet
transform become the discrete wavelet transform. &e
discrete wavelet transform [8] is the second of the dis-
placement and scale of the continuous wavelet transform.
&e power is discretized, which is essentially binary
wavelet transform. In order to reduce the complexity of
wavelet coefficients, the wavelet coefficients are taken at
some discrete points, and the scale is discretized first. In
order to reduce the wavelet transform coefficients of the
remainder, we set the wavelet system. In order to reduce
the wavelet transform coefficients of the remainder, we
limit the values of a and b of the wavelet coefficient
ψa,b(t) � 1/

��
a

√
ψ(t − b/a) to some discrete points and first

discretize the scale, that is, let a � a
j
0a0 > 0. At this time,

the corresponding wavelet function is a
− j/2
0 ψ[a

− j
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j, since the width of ψ(a
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&e discrete wavelet transform is

WT a
− j
0 t − kb0  �  f(t)ψ

a
j

0 ,kb0
(t)dt

j � 0, 1, 2, . . . . . . , k ∈ z.

(2)

&e continuous wavelet transform at a � 2j(j ∈ z) is
called discrete binary wavelet transform, and its expression
is

ωj 2j
, b ≤f(t),

ψ2j,b(t)≥ 2− 1/2
 f(t)ψ∗

t − b

2j
 dt.

(3)

2.2. Discrete Fractional Fourier Transform. &e fractional
Fourier transform is

Xp(u) � 
+∞

− ∞
Kp u, u′( x u′( du′. (4)

KP(u, u′) � Aα exp[jπ(u2 cot α − 2uu′ csc α + u′
2 cot α)]

is called the kernel function of FRFT, Aα �
���������
1 − j cot α


,

α � pπ/2, p≠ 2n, n is integers.
According to the definition given by formula (4), the

formula of Ozaktas sampling fractional Fourier transform
can be obtained as

XP(u) � Aα 
+∞

− ∞
exp jπ u

2 cot α − 2uu′ csc α + u′
2 cot α  

x u′( du′.

(5)

In formula (5),

Aα �
exp(− jπsgn(sin α)/4 + jα/2)

|sin α|
1/2 ,

α �
pπ
2

.

(6)

When the order pε[1, − 1], formula (6) is decomposed
into the calculation process of the following formulas:

g u′(  � exp − jπu′
2 tan

α
2

  x u′( , (7)

g′(u) � Aα 
∞

− ∞
exp jπβ u − u′( 

2
 g u′( du′, (8)

Xp(u) � exp − jπu
2 tan

α
2

  g′(u). (9)

Here, g(u′) and g′(u) are just two intermediate results
β � cscα, − π/2≤ α≤ π/2. Discretize equations (7)–(9) to
obtain the numerical calculation method of discrete frac-
tional Fourier transform [9].

2.3. Fractional Wavelet Transform. &e scale factors a � ak
0,

k ∈ z (where a0 > 1) and the time shift factor Δb � ak
0b0 in

the continuous fractional wavelet transform expression are
discretized and sampled in the displacement domain, and
the value corresponding to the sampling point can be
expressed by the discrete fractional wavelet transform
formula.

Discretize the scale factors a � ak
0, k ∈ z to get
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When a � a0
0 � 1, the expression of discrete fractional

wavelet transform is

DFRWTf(k, n) �〈f(t),ψp: k,n(t)〉 � 
+∞
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f(t)ψp: k,n(t)dt

� 2− k/2
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(11)

&e reconstruction of the fractional wavelet transform is
the inverse process of the decomposition process of the
fractional wavelet. In the known k-th layer, the fractional
wavelet coefficients are c′km 

m∈z and d′km 
m∈z, and the

original signal is c0n  through the reconstruction. Vα
k k∈z is

the multiresolution analysis, which can be seen from the
relationship between ψp: k,n(t), ϕp: k,n(t), and the function
projection:
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Equation (13) is the reconstruction process of traditional
discrete wavelet coefficients. Firstly, the fractional coeffi-
cients c′km and d′km of the k layers are modulated, and then one-
dimensional wavelet inverse transformation is performed in
the wavelet domain to obtain ck+1

n , and then ck+1
n is mod-

ulated into the fractional wavelet domain to obtain c′k+1
n , and

so on, to restore the original signal c0n  step by step.

2.4. Realization Process of Fractional Wavelet Transform.
With a one-dimensional signal f(x), using the definition of
fractional wavelet transform proposed by Menlovevic, the

realization process of one-dimensional fractional wavelet
transform can be obtained as follows:

(1) Input one-dimensional signal f(x)

(2) Select the appropriate fractional order change range
p, and use the minimum output energy to search for
the best transformation order

(3) Perform p-order fractional Fourier transform on the
input signal f(x) to obtain a signal in the fractional
domain
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(4) Perform wavelet decomposition on the obtained
signal in the fractional domain to obtain a signal in
the fractional wavelet domain

(5) Perform wavelet reconstruction on the signal in the
fractional wavelet domain to recover the signal in the
fractional domain

(6) Perform − p-order fractional Fourier transform on
the signal in the fractional domain to recover the
filtered signal [10, 11]

&e realization process of fractional wavelet transform is
shown in Figure 1 [8].

3. Wavelet Energy and Two-Dimensional
Convolutional Neural Network

3.1. Feature Extraction Process Based on Wavelet Energy.
&e main steps are as follows:

(1) &e signal is decomposed by n-layer wavelet packet,
the j-th layer has 2n frequency band signals, and then
2n features of the n-th layer are extracted.

(2) In order to improve the denoising ability of the
signal, select the low-frequency coefficients and
high-frequency coefficients of each frequency band
decomposed in (1) to reconstruct the signal, denoted
as f.

(3) Solve the energy Ei,j of each signal, and the calcu-
lation formula for the energy value of each frequency
band is as follows:

Ei,j tj  �  fi,j tj 



2
dt � 

m

k�1
xj,k




2

j � 0, 1, 2, . . . , 2i
− 1.

(14)

Here, x is the decomposition coefficient of the
wavelet packet, Ei,j(tj) is the energy value of the j-th
node in the i-th layer after the signal x(t) undergoes
wavelet decomposition, k � 1, 2, . . . , Nc, and xj,k is
the wavelet packet reconstruction coefficient of fi,j

[12].
(4) Construct feature vector.

In the process of wavelet decomposition, the energy of
each layer is equal to the total energy, and the total energy of
the signal is

Esum � Ei

� 
j

Ei,j. (15)

&e wavelet packet energy of each frequency band is

Mi,j �
Ei,j

Esum
. (16)

&e wavelet packet energy feature vector is

Wn � Mn,0, Mn,1, . . . , Mn,2n− 1 . (17)

3.2. Structure of a Two-Dimensional Convolutional Neural
Network. &e current typical two-dimensional convolu-
tional neural network structure is composed of input layer,
convolution layer, pooling layer, fully connected layer, and
output layer. &e network structure of LeNet − 5 is shown in
Figure 2. &e input of the convolutional neural network is
mainly in the form of a two-dimensional grayscale image or
a color image. Its output layer uses the Softmax classifier to
output the classification and recognition results of a two-
dimensional grayscale image or a color image. In other
image processing fields such as target detection, other forms
of network output layers need to be set up [13, 14].

&e convolutional layer is composed of multiple con-
volutional neurons. &e parameters of the convolutional
neuron are obtained by using the backpropagation algo-
rithm. &e convolutional layer is a key part of the entire
convolutional neural network, which is mainly used for
input data to extract different features [15]; the process of
convolution operation is composed of continuous convo-
lution and discrete convolution.

&e process of discrete convolution operation is as
follows:

y(n) � x(n)∗ h(n) � 
N− 1

i�0
x(i)h(n − i). (18)

When the image convolution operation is performed, it
is the operation between the image pixels. &e pixels of the
image can be understood as a matrix, and the pixels are not
continuous. &e process of the convolution operation is the
selected convolution kernel and the image. Input for

input signal

p-order fractional Fourier 
transform

Wavelet transform

Signal processing

Wavelet reconstruction

-p-order fractional Fourier 
transform

output signal

Figure 1: &e basic process of fractional wavelet transform.

4 Mathematical Problems in Engineering



convolution operation: Assuming that the two-dimensional
image input is I(i, j) and the two-dimensional convolution
kernel is K(m, n), the image convolution operation process
can be expressed as

S(i, j) � (I∗K)(i, j) � 
m


n

I(m, n)K(i − m, j − n). (19)

Convolution operation is alternating, so

S(i, j) � (K∗ I)(i, j) � 
m


n

I(i − m, j − n)K(m, n). (20)

Here, m, n is the size of the convolution kernel. After the
feature is extracted by the convolution operation, the offset
operation needs to be performed after the convolution
operation. &e calculation formula is as follows:

x
i
j � f 

i∈Mj

x
i− 1
j ∗ k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠. (21)

Here, xi
j is the first feature map output by the first layer;

f(x) is the activation function used by the convolutional
layer; kl

ij is the convolution matrix used by the convolution
kernel; and b is the offset of the convolution operation.

&e pooling layer is also commonly referred to as the
downsampling layer. &e pooling layer can reduce the
training time of themodel, improve the robustness of feature
extraction, and avoid overfitting of the model. &ere are
usually three ways of pooling: average pooling process,
maximum pooling process, and random pooling process. In
actual applications, the pooling process is dominated by
maximum pooling.

Maximum pooling calculation formula is

pi � Max
k∈Mj

ai(k) . (22)

In the actual application process, the classifier needs to
be trained in the fully connected layer. &e commonly used
classifier is the Softmax classifier. &e fully connected
process is shown in the following formula:

y
k

� f w
k
x

k− 1
+ b

k
 . (23)

In formula (23), yk is the output of the fully connected
layer; wk is the weight value; xk− 1 is the input of the fully
connected layer; bk is the bias term; f(x) is the classification
function; k is the network layer number.

In image classification, Softmax is generally used as the
classifier. If there are K classifications, the output of Softmax
can be expressed as

σ(x)i �
e

zi


k
j e

zj
, i � 1, 2, . . . , k. (24)

3.3. Procedure. In order to accurately classify planetary gear
faults in a complex actual industrial environment, this paper
proposes a planetary gear fault diagnosis method based on
FRWTand 2D-CNN. A flowchart can be drawn as shown in
Figure 3.

&e specific steps are as follows:

(1) Use fractional wavelet transform to separately
denoise the gear fault signals

(2) Use Shannon entropy to extract energy from the
signal after noise reduction and calculate the nor-
malized energy value

(3) Convert the obtained wavelet energy value into a
two-dimensional matrix feature sample set

(4) Initialize the two-dimensional convolutional neural
network and use the sample set to extract the
characteristics of the signal

(5) Train and establish a two-dimensional convolutional
neural network model to identify planetary gear
faults

4. Experimental Verification

4.1. Introduction to the Experimental Sample Set. &e plan-
etary gear fault experiment data used in this article is col-
lected by the QPZZ-II mechanical fault simulation and test
platform produced by Jiangsu Qianpeng Diagnostic Engi-
neering Co., Ltd. &e test platform includes drive motors,

INPUT
32×32

C1: feature maps
6@28×28

C3: f. maps 16@10×10

S2: f. maps
6@14×14

C5: layer
120 F6: layer

84
OUTPUT

10

S4: f. maps 16@5×5

Convolutions ConvolutionsSubsampling Subsampling
Full connection

Full connection

Gaussian connections

Figure 2: Schematic diagram of LeNet-5 structure.
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planetary gears, rolling bearings, speed control equipment,
etc. &e fault components used in the entire test platform
include planetary gear pitting fault, broken tooth fault, wear
fault, and other faults. &e sampling frequency of the ex-
perimental data is 5120Hz. A total of 10 fault samples under
fault states were selected, 1700 samples were selected for
each fault, and the number of sample points for each sample
was 512. Among them, the ratio of the number of training
samples to the number of test samples is 10 : 7, and the
specific sample classification is shown in Table 1.

4.2. FRWT Filter Analysis

4.2.1. Determination of the Optimal Order of FRWT.
First, the minimum output energy is used as the objective
function to optimize the optimal order. &e order opti-
mization process of pitting fault reconstruction signal,
broken tooth fault reconstruction signal, and wear fault
reconstruction signal is shown in Figure 4. It can be clearly
seen from Figure 4 that the minimum value of the FRFT
output energy of the pitting fault (Dianshi880-1) recon-
structed signal is 11670, and the corresponding order is
1.57; that is, the best order is 1.57; in the broken tooth fault
(Duanchi1500) the minimum value of the FRFT output
energy of the reconstructed signal is 20020, and the cor-
responding order is 1.646; that is, the best order is 1.646;
the minimum value of the FRFT output energy of the
reconstructed signal FRFT for wear fault (Mosun880-1) is
50360. At this time, the corresponding order is 1.558; that
is, the best order is 1.558. &e output energy value and the
corresponding optimal order of the remaining faults are
shown in Table 2.

4.2.2. Determination of the Number of FRWT Wavelet Bases
and Decomposition Layers. In the fractional wavelet
transform, when the selected wavelet base and the number of

decomposition layers are different, the noise reduction effect
of the signal will be different.&erefore, the wavelet bases are
selected as db1 ∼ db4 and sym1 ∼ sym4, respectively, and
the number of decomposition levels is 1 to 5, and the optimal
wavelet base and decomposition level are selected by cal-
culating the output signal-to-noise ratio (SNR) of the
denoising signal. &e specific results are shown in
Figure 5–Figure 7. &e wavelet basis and decomposition
layer settings for each fault are shown in Table 3.

4.2.3. FRWTand FRFT Filtering Effect Analysis. &e pitting
fault reconstruction signal, wear fault reconstruction signal,
and broken tooth fault reconstruction signal are, respec-
tively, subjected to FRFT filtering and FRWT filtering, and
the filtering results of each fault signal are shown in Figure 8,
Figure 9, and Figure 10. Using the found optimal fractional
order p � 1.57, 1.646, and 1.558, the pitting reconstruction
signal, broken tooth reconstruction signal, and wear re-
construction signal are, respectively, subjected to fractional
Fourier transform filtering. &e filtering results are shown in
Figure 8(b), as shown in Figure 9(b) and Figure 10(b), and
then perform wavelet transform on the signal after the
fractional Fourier transform in the corresponding fractional
domain and finally carry out the transformed signal,p
� − 1.57, − 1.646, − 1.558-order fractional Fourier transform
to obtain the corresponding output signal time domain
diagram as shown in Figure 8(c), Figure 9(c), Figure 10(c).

In order to analyze the influence of the fractional order
on the signal filtering effect, this paper calculates the output
signal-to-noise ratio of the two filtering methods, respec-
tively. &e input signal-to-noise ratio of the pitting fault
(Dianshi880-1) signal is -12.25 dB; the broken tooth fault
(the input signal-to-noise ratio of Duanchi1500) signal is
-13.15 dB; the input signal-to-noise ratio of wear fault
(Mosun880-1) signal is -16.47 dB. &e comparison result is
shown in Figure 11.

It can be seen from Figure 11 that the output signal-to-
noise ratios (SNR) of FRWT for pitting faults, wear faults,
and broken teeth faults are all greater than the output signal-
to-noise ratio (SNR) of FRFT. According to the larger output
signal-to-noise ratio (SNR), the signal will be distorted. &e
smaller the degree and the noise interference, the better the
filtering effect of FRWT compared to the filtering effect of
FRFT.

4.3. Wavelet Packet Extraction Features. Set the decompo-
sition level of the wavelet packet to 8, which will generate a
total of 256 frequency bands, and use the wavelet basis db 3
to decompose the fault vibration signals of 10 gears into
eight layers, and generate a total of 256 wavelet packet
components. &en use Shannon entropy to extract the
wavelet energy, and then process the energy of the frequency
band, that is, obtain the sum of the norm squares of each
node of each layer of neurons, and finally obtain the nor-
malized energy amplitude of each node. &e corresponding
normalized energy value of each frequency band is shown in
Figure 12.

Gear vibration signal

Filter

Filtered signal

Two-dimensional 
features

Model training

Diagnostic model

Fractional wavelet 
transform

Wavelet energy entropy

Two-dimensional 
Convolutional Neural 

Network

Figure 3: Fault diagnosis flowchart of planetary gear.
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Among them, the characteristics of each sample are 256
frequency band energy spectra, and the characteristics of
1700 samples are converted into a matrix form with a two-
dimensional form with a dimension of 16∗16. Figure 13
shows the converted two-dimensional frequency band en-
ergy characteristic distribution. Finally, the One − hot code
is used to set the label category for each type of fault.

4.4. Training and Classification of Fault Models. &e specific
parameter selection for experimental verification is as fol-
lows: the number of layers of the two-dimensional CNN
network is set to 6 layers, the convolutional layer and the
pooling layer are each two layers, the number of convolution
kernels in the first layer is 8, and its size is 3∗ 3. &e number
of convolution kernels in the second layer is 16, and its size is

Table 1: Sample set.

Data set name Fault type Number of training set samples Number of test machine samples Label
Mosun880 Wear 1000 700 1
Mosun880-1 Wear 1000 700 2
Mosun880-2 Wear 1000 700 3
Mosun880-3 Wear 1000 700 4
Dianshi880 Pitting 1000 700 5
Dianshi880-1 Pitting 1000 700 6
Dianshi880-2 Pitting 1000 700 7
Dianshi880-3 Pitting 1000 700 8
Duanchi1500 Broken tooth 1000 700 9
Normal880 Normal 1000 700 10

Pitting fault

Broken tooth fault

×104

×104

×104

Wear fault

5

5.1

5.2

En
er

gy
 v

al
ue

1.52 1.54 1.56 1.58 1.6 1.621.5
Order

2

2.01

2.02

En
er

gy
 v

al
ue

1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.691.6 1.7
Order

1.17

1.18

1.19

En
er

gy
 v

al
ue

1.52 1.54 1.56 1.58 1.6 1.621.5
Order

Figure 4: FRWT order optimization.

Table 2: Fault input signal-to-noise ratio, FRWT optimal order, and energy value.

Fault type Enter SNR (db) Best order Minimum energy
Mosun880 − 13.58 1.1 35250
Mosun880-2 − 20.65 1.42 62135
Mosun880-3 − 25.47 1.25 70259
Dianshi880 − 10.02 1.291 9875
Dianshi880-2 − 15.63 1.432 13026
Dianshi880-3 − 20.87 1.45 16548
Normal880 − 10.25 1.31 7458
Dianshi880-2 − 15.63 1.432 13026
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4∗ 4; the batch size is 10, and the maximum number of
iterations is 1500; the pooling layer uses the maximum
pooling method, and its size is 2∗ 2; using Dropout regu-
larization reduces overfitting. Extract the wavelet energy
values of the signals after FRFT filtering and FRWT filtering
to construct a two-dimensional feature matrix as input;
randomly select 1000 samples of each type of fault as the
training set for model training, and 700 samples as the test
set for the two-dimensional convolutional neural. &e
training model of the network is verified, and the training
error curve is shown in Figure 14.

From the analysis in Figure 14, it can be seen that, re-
gardless of whether the fractional Fourier transform or the
fractional wavelet transform is used, when the number of
iterations is less than or equal to 120, the training error of the
two is equal; when the number of iterations is 120, the

training error is 0.6667. &e effect is extremely poor; when
the number of iterations is greater than 120, the training
error of the fractional wavelet transform filtering signal is
obviously smaller than the training error of the fractional
Fourier transform filtering signal; when the number of it-
erations is 1500, the training error of the fractional wavelet
transform filtering method is 0.01623, and the training error
of the fractional Fourier transform filtering method is
0.06514, that is; the training error of the fractional wavelet
transform filter signal is significantly smaller than the
training error of the fractional Fourier transform filter
signal. It can be seen that the training effect of FRWT+2D-
CNN is better than that of FRWT+2D-CNN.

&e classification results of each fault in the test set
using the FRWT+2D-CNN and FRFT+2D-CNN models
are shown in Figure 15 and Figure 16. &e abscissa is the
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Figure 5: &e relationship between the signal-to-noise ratio of the pitting signal and the wavelet basis and the number of decomposition
layers.
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Table 3: Wavelet basis and decomposition layer settings for each fault.

Fault type Wavelet base Decomposition layer
Mosun880 db4 4
Mosun880-2 db4 4
Mosun880-3 db4 4
Dianshi880 db4 5
Dianshi880-2 db4 5
Dianshi880-3 db4 5
Normal880 db3 4
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Figure 8: Time domain diagram of pitting signal filtering. (a) Pitting corrosion reconstruction signal. (b) FRFT filtered signal. (c) FRWT
filtered signal.
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Figure 9: Time domain diagram of broken tooth signal filtering. (a) Tooth reconstruction signal. (b) FRFT filtered signal. (c) FRWT filtered
signal.
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Figure 10: Time domain diagram of wear signal filtering. (a) Wear reconstruction signal. (b) FRFT filtered signal. (c) FRWT filtered signal.
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Figure 12: &e relationship between the number of frequency bands of each fault and the normalized energy value.
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predicted category label of the test set; the ordinate is the
actual label category of the test set; the value of the di-
agonal position is the classification accuracy of each of the
10 types of faults; the position outside the diagonal is the
type of fault.

Comparing Figures 15 and 16, it can be found that when
FRWT+2D-CNN classifies and recognizes faults, only two
samples are misclassified; that is, type 3 faults are mis-
classified as type 4 faults, and type 7 faults are wrong. &e
fault is classified as the 8th type of fault; when FRFT+2D-
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Figure 13: Feature distribution of some samples of the FRWT filtered signal.
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CNN classifies and recognizes the fault, except for the 5th
type of fault, the other fault types are all misclassified, and
the number of misclassified samples for each type of fault is
greater than 1. &erefore, when classifying faults based on
FRWT+2D-CNN, each type of fault can be accurately
identified to the greatest extent possible.

In order to fully verify the stability and accuracy of the
diagnosis method proposed in this article, this article ran-
domly conducts 15 simulation tests on the two diagnosis
methods (FRFT+2D-CNN, FRWT+2D-CNN), and the
classification accuracy of each test is as shown in Figure 17.
&e average accuracy of the diagnosis models of the two
classification methods is shown in Table 4.

By analyzing Figure 5, 20, it can be seen that the clas-
sification accuracy of the two diagnostic methods FRFT+2D-
CNN and FRWT+2D-CNN basically remains stable, and the
classification accuracies of FRFT+2D-CNN and FRWT+2D-
CNN are both within 3%. With fluctuations up and down,
from a macroperspective, the classification accuracy of

FRWT+2D-CNN is higher than that of FRFT+2D-CNN. It
can be seen from Table 4 that when the number of training
samples, the number of test samples, and the number of
trials are equal, the average accuracy of FRWT+2D-CNN
classification is higher than the average accuracy of
FRFT+2D-CNN classification. &erefore, in the fault diag-
nosis of planetary gears, the classification method of
FRWT+2D-CNN is obviously better than the fault classi-
fication method of FRFT+2D-CNN.

5. Conclusion

(1) &is paper adopts the FRWT-based planetary gear
vibration signal filtering method. &e simulation
results show that both the fractional wavelet trans-
form and the fractional Fourier transform can
achieve the denoising effect of the signal; the
denoising effect of the fractional wavelet transform is
better than fractional Fourier transform:&e energy-
based fractional Fourier transform algorithm is
better than the peak search-based fractional Fourier
transform algorithm.

(2) &is paper adopts a two-dimensional convolutional
neural network model, and the signals after the
fractional Fourier transform and the fractional
wavelet transform are filtered, and the one-dimen-
sional wavelet energy value is normalized and
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Figure 15: FRWT+2D-CNN test set classification label.

Table 4: &e average accuracy of classification by different
methods.

Diagnosis
method

Training
samples

Test
sample

Number of
experiments

Average
accuracy

FRFT+2D-
CNN 1000 700 15 93.53

FRWT+2D-
CNN 1000 700 15 98.36

Mathematical Problems in Engineering 13



converted into a two-dimensional feature matrix for
diagnosis model training. &e simulation results
show that the two-dimensional convolutional neural
network can effectively realize fault classification and
recognition. In addition, the accuracy of planetary
gear fault classification based on FRWT and 2D-
CNN is better than the accuracy of planetary gear
fault classification based on FRFT and 2D-CNN.
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