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A distributed double-layered dynamic matrix control is proposed for large-scale systems. In the scheme, a large-scale system is
�rst decomposed into several low-dimensional subsystems, and then a double-layered dynamic matrix control algorithm with
distributed structure is developed for these subsystems. �e distributed open-loop prediction equation of each subsystem is
formed based on the predicted output of each local subsystem and e�ects of its interconnecting neighbor subsystems. Due to
simultaneous optimization, at each prediction, the coupling e�ects of neighbor subsystems are not available in time. �us, the
assumed value is utilized instead. In the economic optimization stage, con�icts may occur among di�erent economic optimization
goals. Utopia-tracking strategy is introduced to optimize multiple steady-state targets. �en, the obtained steady-state target
values are taken as reference values and tracked in subsequent dynamic control. �e actual control move for each subsystem is
�nally calculated. �e proposed algorithm is tested on Shell heavy oil fractionator benchmark, and the e�ectiveness is dem-
onstrated by comparing with the typical double-layered dynamic matrix control algorithm.

1. Introduction

With the advantage of handling various constraints ex-
plicitly [1, 2], model predictive control (MPC) has become a
standard method for solving the constrained multivariable
control problem. Utilizing MPC, the production process can
be operated on the boundaries of some important con-
straints, and the economic e�ciency improves greatly. Re-
cently, predictive control has been successfully applied to
thousands of process control systems and achieved great
economic e�ciency.

In most modern industrial process control techniques,
steady-state target calculation (SSTC) is incorporated into
MPC to �nd the optimal set-point automatically; thus, a
double-layered MPC is established [3–6]. In [7], the double-
layered zone predictive control strategy was proposed to
overcome the performance degradation caused by the me-
chanical wear. In [8], a method to guarantee the feasibility of
optimization problem was presented for dynamic control
tracking the steady-state targets. In the double-layered ar-
chitecture, the economic optimization and dynamic control

are separately working at di�erent rates. Moreover, the
o�set-free control is achieved even in the presence of dis-
turbance [9, 10]. �erefore, the double-layered control has
become the most e�ective and promising advanced indus-
trial control technology.

However, it is challenge for the double-layered MPC to
be applied to large-scale systems. As the size of the controlled
process increases, the inherent computational complexity
and communication limitation make it di�cult for MPC to
seek a satisfactory solution within an acceptable computa-
tional burden. Usually, the large-scale system is �rst
decomposed into low order interconnected subsystems, and
then a distributed control scheme is designed based on the
subsystems [11–16]. In the distributed architecture, the
interconnection in�uences among subsystems should be
considered [11, 13, 17–19]. Besides, in practical application,
many physical limitations such as input saturation, the
physical limitation of actuators, and external disturbances
also need to be considered. In [15], a distributed optimal
control was proposed for the interconnected large-scale
system with external disturbances and input constraints,
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where by utilizing an adaptive dynamic programming
technique, the worst-case disturbance policy and con-
strained-input optimal control policy can be approximate
synchronously. An event-triggered feed-forward control
policy was proposed in [16] to transform the control of large-
scale systems into equivalent event-triggered control of
isolated subsystems. By designing a novel event-triggering
condition, three neural networks are eliminated for each
subsystem, so that the computational complexity and re-
source are reduced. A distributed noncooperative MPC was
proposed in [20], where input and state constraints are
considered and convergence of the closed-loop control
system is proved. According to the optimization problem
and the types of information exchange among subsystems,
the distributed MPCs are often classified as cooperative
[21–23] and noncooperative [19, 20, 24]. In cooperative
distributed MPC, all subsystems solve a global optimization
problem and exchange information with each other. While
in noncooperative MPC, each subsystem solves a local
optimization problem and exchanges information iteratively
with its neighbor subsystems and finally achieves Nash
optimal solution [12, 24]. In [24], an efficient distributed
MPC based on Nash optimality is presented for the large-
scale system, which mainly aimed at reducing the compu-
tational burden in model predictive control. Moreover, as
reviewed in [6], both distributed and hierarchical control
architectures are proposed for large-scale systems. In [25],
the cooperative distributed MPC is extended to the hier-
archical structure so as to reduce the communication fre-
quency among subsystems. A novel distributed MPC
algorithm for large-scale systems proposed in [26] is very
similar to the MPC algorithms employed in industry, where
each subsystem needs the reference trajectories only of the
variables of its interconnected neighbors.

Motivated by the above mentioned, in this paper, a
distributed double-layered dynamic matrix control (DMC)
is proposed for large-scale systems. In the distributed
structure, when some economic objectives are in conflict at
the economic optimization stage among different subsys-
tems, it is tough to solve the optimal steady-state target
values. Multiobjective optimization strategy is introduced to
solve this knotty problem. A typical method for solving the
multiobjective optimization with conflicting cost functions
is to construct its Pareto front and then choose the ap-
propriate point as the optimal value [27]. However, this
method is computationally heavy and impractical in real-
time application. Besides, an ideal set-point varies with
changing operating conditions; thus, the corresponding
steady-state targets need to update at each iteration, which
makes it more complicate to calculate the steady-state target
values. In [28], the steady-state compromise solution was
proposed to avoid the computation of Pareto fronts in real-
time environments. )erefore, by adopting this strategy, the
steady-state target of each subsystem in the distributed
double-layered DMC can be solved effectively.

)is paper is organized as follows Section 2 presents the
open-loop prediction model of each subsystem in the dis-
tributed scheme, where the estimation of coupling effects of
neighbor subsystems is utilized. )e error correction

between the actual value and the prediction value is included
in the open-loop dynamic prediction equation. Section 3
analyzes the feasibility of the local optimization of each
subsystem. )e optimal steady-state target values are cal-
culated based on the improved Pareto optimality. Section 4
designs the dynamic control for the distributed system and
then calculates the control move and sent to the plant and
implemented. Section 5 demonstrates the effectiveness of the
proposed distributed double-layered DMC algorithm by
applying it to Shell heavy oil fractionator benchmark and
comparing with the centralized double-layered DMC
algorithm.

2. Distributed Open-Loop Prediction Model

Consider a large-scale system with ny outputs and nu inputs,
its dynamics is described by the following finite step re-
sponse (FSR) model:

∇y(k)
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(1)

where N is the modeling horizon. y ∈ Rny and u ∈ Rnu are
the controlled variable and manipulated variable, respec-
tively. f ∈ Rnf is the disturbance variable. ∇y � y − yeq,
where yeq denotes the value of y at the equilibrium. For
simplicity, ∇ is omitted. Su

i and S
f
t are the step response

coefficient matrices of the manipulated variable and dis-
turbance variable, respectively. For all t≥ 0, Su

N+t � Su
N,

S
f
N+t � S

f
N.

2.1. Decomposed Systems. Let system equation (1) be
decomposed into M interconnected subsystems, where each
subsystem a, a ∈ M,M � 1, 2, . . . , M{ } has ua ∈ Rna as input
vector, i.e., u � (u1, . . . , uM) and 􏽐

M
a�1 nua � nu. Similarly, it

has ya ∈ Rny as output vector, i.e., y � (y1, . . . , uM), and
􏽐

M
a�1 nya

� ny. In the decomposition, step response coeffi-
cient matrices Su11 ∈ Rn1×n1 , . . . , SuMM ∈ RnM×nM of M sub-
systems are diagonal blocks of Su. While the nondiagonal
blocks of Su (i.e., Sual , a≠ l) represent the interconnection
influences among subsystems. Sual ≠ 0 means that the input
of subsystem l affects the dynamics of subsystem a.
)erefore, the FSR model of each subsystem a ∈ M is
expressed as follows:

∇ya(k) � 􏽘
N−1

t�1
S

ua

t Δua(k − t) + S
ua

N ua(k − N)

+ 􏽘
l∈Na

􏽘

N−1

t�1
S

ual

t Δul(k − t) + S
ual

N ul k − N′( 􏼁⎡⎣ ⎤⎦

+ 􏽘
N−1

t�1
S

f
t Δf(k − t) + S

f

Nf(k − N),

(2)
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where ya ∈ Rnya , ua ∈ Rnua are the output and input vectors
of subsystem a, respectively. N denotes the modeling ho-
rizon for the large-scale system. Nc denotes the control
horizon. l ∈Na denotes the neighbors of subsystem a, which
excludes a, namely, Na � 1, 2, . . . , a − 1, a + 1, M{ } denot-
ing the collection of the subsystem a’s dynamic neighbor
subsystems. Sual represents the interconnection influence on
subsystem a from neighbor subsystem l. f ∈ Rnf is the
disturbance variable.

2.2. Distributed Open-Loop Prediction. A large-scale system
is decomposed into M dynamically coupled subsystems, and
the distributed control is established based on the subsys-
tems.)e following symbols are used to distinguish different
prediction information:

u(k + t | k) is the real prediction of input
􏽢u(k + t | k) is the assumed predictive value of input
u∗(k + t | k) is the optimal predictive value of input

For interconnected subsystems, the open-loop predic-
tion output of subsystem a is affected not only by the input of
local subsystem a itself but also by some information
stemming from its neighbors. For free prediction, the local
input of each subsystem does not change from time k on-
wards, that is, Δua(t|k) � 0 for all t≥ k. However, the inputs
ulto the neighbor subsystems keep changing. Due to com-
munication delay, the inputs from its neighbors cannot be
obtained immediately. )e assumed value is used. Here, the
assumed predictive input Δ􏽢ul(t|k) of each subsystem l at
time k is chosen by the following formula:

Δ􏽢ul(t|k) �
Δu∗l (t|k − 1) , t � k, . . . , N − 1,

Δul(t), t � 1, 2, . . . , k − 1.
􏼨 (3)

Suppose that the inputs from time k onwards do not
change, Δu(k + t − 1|k) � 0 (1≤ t≤p), the corresponding
prediction of y(k + p) is called free prediction, denoted as
yfr(k + p|k), where the superscript ″fr″means free. In the
distributed structure, the free prediction of each subsystem a

is established by assuming that the input of local subsystem
is unchanged from time k, whereas the inputs from neighbor
subsystems may vary. )us, the free prediction of subsystem
a can be expressed as follows:

y
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)e free prediction at time k − 1 is
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Suppose that f(k) is measurable and will remain un-
changed in the future. )en, one has

y
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(6)

Suppose that the control horizon of neighbor subsystem
l is Nc. M coupling inputs from neighbor subsystem
l, l ∈Na will keep changing from time k onwards.
According to equation (3), substituting the assumed values
into equation (6), the one-step prediction error is obtained
by

􏽘
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(7)

As shown in equation (4), the influences of intercon-
nection inputs from neighbors are considered in free pre-
diction y

fr
a (k + p|k) and then the real prediction for

subsystem a can be calculated by

ya(k + p|k)

� y
fr
a (k + p|k) + 􏽘

p

t�1
S

ua

t Δua(k − t + p|k).
(8)

Seen from equation (8), at time k, the real output pre-
diction is determined by only the effect of subsystem a itself.
)us, the coupling influences from neighbors can be
neglected in the subsequent controller design. Notice that, in
equations (6) and (8), the prediction step p satisfies
p≤ 0.001. By taking S

f
0 � 0, it is allowed to take p≤ 0.001.

)en, we have yfr(k|k) � y(k|k)≠y(k).
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Feedback correction is added to equation (8) and then
the open-loop prediction yol

a is obtained. Here, the super-
script “ol” denotes open-loop. Based on equation (6), the
open-loop prediction of subsystem a can be calculated by

y
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(9)

At time k> 0, the actual input Δua(k − 1) of each
subsystem a is measurable. Suppose ya(k) is measurable.
)e open-loop prediction error is obtained by
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ei ∈ Ei � 􏽐i∈Na

S
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i εl, and ei can be considered as a bounded
disturbance. )e feedback correction ϵa(k) is added into the
open-loop prediction equation to compensate the prediction
errors. Let N′ � N + Nc, the submodel of subsystem a can
be written in vector form as follows:
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Notice that the assumption yol
a (k + N′|k − 1) � yol

a (k +

N′ − 1|k − 1) is utilized in deducing equation (11).
For a stable process, the feedback correction is time-

invariant, that is, ei(k + t|k) � ϵi(k), for t≥ 0. )en, the
open-loop steady-state prediction of each subsystem can be
expressed as

y
ol
a,ss � y

ol
a k + N′ + t|k( 􏼁, t≥ 0. (12)

When replacing k with k − 1 in equation (12), Equation
(11) is still highly consistent with equation (12). In this case,
the final open-loop dynamic prediction is equivalent to the
steady-state prediction. )us, the open-loop prediction
equation can predict the dynamics of each subsystem
effectively.

3. Calculating Steady-State Target Values
Based on Improved Pareto Optimality

For the control of industrial process, the manipulated
variables and controlled variables do not always hit the
desired external targets given by the real-time optimization
(RTO). In order to ensure that the manipulated variables
operate as close to the desired set-point as possible, steady-
state optimization is incorporated into the DMC algorithm,
thus the double-layered DMC algorithm is formed, in which
the optimal set-point is calculated by steady-state target
calculation (SSTC). SSTC involves two stages: the first stage
aims at to analyze the feasibility of the solution which
satisfies various constraints and the second one is economic
optimization stage, which is designed to seek the optimal
steady-state target values.

Based on equation (8), the steady-state prediction
equation for each subsystem a can be calculated by

ya,ss(k) � S
ua

N′δua,ss(k) + y
ol
a,ss(k), (13)

where δua,ss denotes the increment variable of the steady-
state target of u for subsystem a,
δua,ss(k) � ua,ss(k) − ua(k − 1). ya,ss denotes the steady-
state target value of controlled variable y for subsystem a.

3.1. Handling the Constraints in SSTC. In practice, some
operation requirements and physical restrictions need to be
met. )e constraints imposed on controlled variables and
manipulated variables include soft constraints and hard
constraints. In general, the hard constraints cannot be vi-
olated, while the soft constraint can be relaxed appropriately
according to the situations. Besides, some variables have
their own external target (ET) values given by the real-time
optimization control engineers or operators.

)e steady-state target of each manipulated variable
needs to satisfy the corresponding hard magnitude
constraints:

ua ≤ ua,ss(k)≤ ua, k≥ 0, (14)

where u denotes the lower bound of u and u denotes the
upper bound of u.
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In dynamic control module, the increment of manip-
ulated variable has rate constraint
|Δua(k + j|k)|≤Δu(0≤ j≤M − 1) and then δua,ss should
further satisfy

δua,ss(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤MΔua, k≥ 0, (15)

where δuss(k) � uss(k) − u(k − 1) denotes steady-state tar-
get increment of u at time k. Δu denotes the maximum
allowable absolute change rate of u.

Combining equations (14) and (15), the hard constraint
of δua,ss is

ua
′ ≤ δua,ss(k)≤ ua

′(k), k≥ 0, (16)

where

ua
′ � max ua − ua(k − 1), −MΔua􏼈 􏼉,

ua
′ � min ua − ua(k − 1), MΔua􏼈 􏼉.

(17)

)e steady-state target of the controlled variables in each
subsystem needs to satisfy the engineering limits, referred to
as hard magnitude constraints as follows:

y0,h
≤ya,ss(k)≤y0,h, k≥ 0, (18)

where y0,h denotes the lower engineering limit and y0,h

denotes the upper engineering limit.
Besides, the controlled variable target of each subsystem

has to satisfy the operating limit:

y0 ≤ya,ss(k)≤y0, k≥ 0, (19)

where y0 denotes lower operating limit of y and y0 denotes
upper operating limit of y.

)e engineering limits are more stringent than the
operating limits y0,h

≤y0 and y0, h ≥y0.
Substituting the steady-state prediction equation (13)

into equation (19), we yield
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)en, we have
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(22)

)e ETs of ui,ss and yj,ss are denoted as ui,t and yj,t,
respectively. i ∈ It, j ∈ Jt, It and Jt represent the corre-
sponding set of all the ETs of ui,ss and yj,ss. Denote the
expected allowable range of ui,t(k) as ui,ss,range. )e limits of
ET values for ui,ss can be taken as follows:

ui,ss(k) � ui,t(k) +
1
2
ui,ss,range − ui(k − 1), i ∈ It,

ui,ss(k) � ui,t(k) −
1
2
ui,ss,range − ui(k − 1), i ∈ It.

(23)

)en, for uj,ss(k), check the following soft constraint:

ui,ss(k)≤ δui,ss(k)≤ ui,ss(k), i ∈ It. (24)

Denote the expected allowable range of yj,t(k) as
yj,ss,range. )e limits of ET values for yj,ss are given by

yj,ss(k) � yj,t(k) +
1
2
yj,ss,range − y

ol
j,ss(k), j ∈ Jt,

y
j,ss

(k) � yj,t(k) −
1
2
yj,ss,range − y

ol
j,ss(k), j ∈ Jt.

(25)

If the external target of yj,ss(k) is considered, the fol-
lowing soft constraints need to be further satisfied, that is,

S
u
N′δuss(k)≤y(k), j ∈ Jt,

S
u
N′δuss(k)≥ y(k), j ∈ Jt.

(26)

Unifying all the ETs into the constraint of δuss, the
corresponding constraint for ui,t(k) is denoted as

δui,ss(k) � ui,t(k) − ui(k − 1), i ∈ It. (27)

For yj,t(k), the constraint is

S
u
N′ ,jδuss(k) � yj,t(k) − y

ol
j,ss(k), j ∈ Jt. (28)

3.2. Feasibility Analysis. For each subsystem a, the feasible
solution of the economic optimization is determined by its
constraint conditions including hard constraints and soft
constraints, where the hard constraints are classified into
manipulated variable constraints (equation (16)) and hard
controlled variable constraints (equation (18)):

I

−I

S
u
N′

−S
u
N′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δua,ss(k)≤

u′(k)

−u
′
(k)

yh(k)

−y
h
(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

)e soft constraints do not have to be satisfied. In
practical application, priority strategy is usually introduced
to handle soft constraints. All soft constraints are prioritized
according to importance. )e rule for handling the soft
constraints is that the soft constraints with higher priority
are processed first and that with lower priority later. Soft
constraints that are previously processed (possibly relaxed)
are treated as hard constraints in subsequent priority pro-
cessing. Some soft constraints are relaxed properly so that all
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the constraints at the same priority are compatible. For
convenience, at each rank of priority, either equality con-
straints or inequality constraints are dealt with. For the
optimization problem with r rank of priorities, the con-
straint handled at the (r − 1) th priority can be denoted as

C
(r− 1)δua,ss(k)≤ c

(r− 1)
(k), (30)

C
(r−1)
eq δua,ss(k)≤ c

(r−1)
eq (k). (31)

Constraint equations (30) and (31) are treated as hard
constraints in the r th priority. )e following two cases are
considered:

(i) If the r th rank of priority is the desired value of
external target, relax the r th equality constraint and
then the considered constraints are as follows:

C
(r− 1)δua,ss(k)≤ c

(r− 1)
(k), (32a)

C
(r−1)
eq

􏽥C
(r)

eq

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦δua,ss(k) �
c

(r−1)
eq (k)

􏽥c
(r)
eq (k) + ε(r)

eq (k)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (32b)

(ii) If the r th rank of priority is the desired upper bound
or lower bound of target value, relax the r th rank of
inequality constraint and then the considered con-
straints are as follows:

C
(r− 1)

􏽥C
(r)

⎡⎣ ⎤⎦δua,ss(k)≤
c

(r− 1)
(k)

􏽥c
(r)

(k) + ε(r)
(k)

⎡⎣ ⎤⎦,

ε(r)
(k)≥ 0,

(33a)

C
(r)
eq δua,ss(k) � c

(r−1)
eq , (33b)

where ε(r)
eq (k) and ε(r)(k) are the slack variables.

In order to seek a smaller |ε|, either LP or QP is
invoked. In each rank of priority, if more than one
soft constraint needs to be relaxed, correspondingly,
there are multiple ε’s need to be optimized. Suppose
given them equal importance. )en, an equal con-
cern error ε is assigned to each slack variable ε. For
the upper bound constraints of controlled variables,
ε � y

h
− y0, and for the lower bound constraints,

ε � y0 − y
h
, and ε � 1/2ETrange for the ETconstraints

or equality constraints. If some ε� 0, the corre-
sponding soft constraint cannot be relaxed and then
the corresponding soft constraint can be removed.
Set

ε(r)
eq � ε(r)

eq+(k) − ε(r)
eq−(k), ε(r)

eq+(k)≥ 0, ε(r)
eq−(k)≥ 0, (34)

then the slack variables ε(r)
eq+(k) and ε(r)

eq−(k) can be
obtained by solving the following LP:

minε(r)
eq+,ε(r)

eq−δua,ss(k)
􏽘

dr+1

τ�1
ε(r+1)

eq,τ􏼐 􏼑
− 1

× ε(r)
eq+,τ(k) + εr

eq−,τ(k)􏼐 􏼑

s.t. (32)–(34),

(35)

where τ indicates the τ th element of ε(r)
eq (k) and

d(r+1)
eq denotes the dimension of ε(r)

eq (k).

3.3. Economic Optimization Stage of SSTC Based on Pareto
Optimality. In the economic optimization stage, an eco-
nomic cost function representing the profit/loss is con-
structed based on the change of uss(k) and yss(k). Suppose
the steady-state change of input variable is bounded by

−Ui(k)≤ δi,ss(k)≤Ui(k). (36)

)en, minimizing the increment variable |δui,ss(k)| is
equivalent tominimizing its constraint boundUi(k). Having
analyzed the feasibility, all the hard constraints and the
relaxed soft constraints are simplified into the following
formula:

u
� i

′(k)≤ δui,ss(k)≤ u′i(k), i ∉ Jt,

y
j
(k)≤ S

u
j,N′δuss(k)≤yj(k), j ∉ Jt,

S
u
j,N′δuss(k) � yj,ss(k) − y

ol
j,ss(k), j ∈ Jt,

δui,ss(k) � ui,ss(k) − ui(k − 1), i ∈ It.

(37)

By invoking LP, the economic optimization problem of
each subsystem a is written as

minδua,ss(k),Ui(k)Ja � 􏽘
i∉Imm⋃ It

hiδua,ss(k)⎡⎢⎢⎢⎢⎣

+ 􏽘
i∉Imm

hiUi(k)⎤⎥⎥⎥⎦,

s.t. (19), (24), (26)–(28),

i ∈ Imm,

(38)

where hi is the weighting coefficient.
Notice that δua,ss calculated by equation (38) is local

optimal for each subsystem itself, but not for the whole
large-scale system. In this distributed control, if some
economic objectives of different subsystems are in conflict,
the steady-state target value δua of each subsystem is not
necessarily optimal for the whole large-scale system. Define
the steady-state target vector as ua,ss � [u1,ss, u2,ss, . . . , uM,ss].
According to the economic optimization problem of each
subsystem, the global optimization problem can be chosen as

min J
􏽘

� min 􏽘
a∈M

Ja δua,ss􏼐 􏼑, (39)
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where [J1(δu1,ss), J2(δu2,ss), . . . , JM(δua,ss)] represents the
performance index of each subsystem. )eir cost functions
are assumed to be Lipschitz continuous. Seen from (39), it is
a typical multiobjective optimization problem. )e Pareto
optimality strategy is utilized to handle the multiobjective
problem with conflicting cost functions in [29]. )e Pareto
optimal solution is obtained by Definition 1.

Definition 1. (steady-state Pareto solution [29]). A feasible
solution (δu

p
a,ss) of multiobjective optimization problem

(39) is said to be Pareto optimal if and only if there exists no
other feasible solution (δu

f
a,ss) such that

Ja(δu
f
a,ss)≤ Ja(δu

p
a,ss),∀a ∈ M, and Ja(δu

f
a,ss)< Ja(δu

p
a,ss) for

at least one index a ∈ M.
)e surface of the Pareto solution set is usually called the

Pareto frontier. In practice, it is time-consuming to con-
struct the Pareto frontier. Since the optimal point selected
along the Pareto frontier will change with the conditions, the
ideal Pareto optimum may be unreachable. )e utopia-
tracking MPC [28] is utilized to handle this problem.

Definition 2 (steady-state Utopia point [30]). )e steady-
state utopia point is the ideal optimal solution (δuL

a,ss) under
the condition of Ja(δuL

a,ss), with a ∈ M. δuL
a,ss is given by

solving the following problem:

minδuL
a,ss

Ja δua,ss􏼐 􏼑, s.t.(13), a ∈ M (40)

where the utopia cost of each subsystem a is denoted as JL
a .

Considering the conflict of economic goals among
subsystems, the utopia value is not reachable. Here, a
compromise solution is used instead, which is the closest
point from the Pareto frontier to the utopia value. )e
compromise solution is defined as δuC

a,ss, which can be easily
calculated by the following distance problem:

minδua,ss Ja δua,ss􏼐 􏼑 − J
L
a

�����

�����p
,

s.t.(13), a ∈ M.
(41)

Equation (41) is regarded as the steady-state utopia-
tracking problem [28]. )e schematic of the utopia-tracking
approach is shown in Figure 1.

Notice that for the single-objective case, the compromise
solution coincides with the utopia point, that is,
J1(δu1,ss) � JL

1 .
)e compromise solution δuC

a,ss calculated by equation
(41) is taken as the steady-state target value of subsystem a.
Substituting into equation (13), the set-point of ya,ss is
obtained. )en, the steady-state value (δua,ss � δuC

a,ss, ya,ss)

is sent to dynamic control.

4. Distributed Dynamic Control

In the dynamic control, update the actual control move at
each time step so that the output predicted value closely

tracks the steady-state value ΔuC
a,ss. For each subsystem a,

Yol
a,N(k|k) is given. Combining the real prediction equation

(8) and the open-loop dynamic prediction equation (11), the
closed-loop prediction equation of each subsystem a is
obtained:

Ya,N(k|k) � Y
ol
a,N(k|k) + SaΔ􏽥ua(k|k), a ∈ M (42)

where

Ya,N(k|k) �

ya(k + 1|k)

ya(k + 2|k)

⋮

ya(k + N|k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Δ􏽥ua(k|k) �

Δua(k|k)

Δua(k + 1|k)

⋮

Δua k + Nc − 1|k( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Sa �

S
ua

1 0 · · · 0

S
ua

2 S
ua

1 ⋱ ⋮

⋮ ⋱ ⋱ 0

S
ua

Nc
· · · S

ua

2 S
ua

1

⋮ ⋮ ⋮

S
ua

N · · · S
ua

N−Nc+2 S
ua

N−Nc+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(43)

Sa is called the dynamic matrix. N is the prediction horizon,
and Nc ≤N≤N′. Equation (42) is the closed-loop predic-
tion equation.

In order to ensure the output to track the steady-state
targets as close as possible, meanwhile suppress the con-
trolled variable increment δua,ss, the cost function is chosen
as

Ja(k) � 􏽘

N

i�1
ya(k + i|k) − ya,ss(k)

����
����
2
Qi(k)

+ 􏽘

Nc−1

j�0
Δua(k + j|k)

����
����
2
Λ,

(44)

where the weighting matrix Λ is given off-line.
Qi(k) � diag qi1(k)2, qi2(k)2, . . . , qi,ny

(k)2􏼚 􏼛, updated
online.

Besides, an additional constraint to limit δuC
a,ss(k) is

added to the dynamic control optimization problem:

LΔ􏽥ua(k|k) � δu
C
a,ss(k), (45)

whereL � [I I · · · I]. In addition, the inequality constraints
including manipulated variable magnitude, manipulated
variable increment, and controlled variable magnitude
constraints are considered:
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Δua(k + j|k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Δua, 0≤ j≤M − 1,

�u≤ ua(k − 1) + 􏽘

j

l�0
Δua(k + l|k)≤ �u,

0≤ j≤M − 1,

y�a,0′ ≤y
ol
a (k + i|k) + SiΔ�ua(k|k)≤ �y0′(k),

1≤ i≤N,

(46)

where Si denotes the i th row of dynamic matrix S:

ya,0′(k) � max ya,0, ya,ss(k)􏽮 􏽯,

y�a,0′(k) � min y
� a,0

, ya,ss(k)􏼨 􏼩.
(47)

At time k, the following optimization problem of each
subsystem is firstly solved:

min
Δ􏽥ua(k|k)

Ja(k), s.t.(45), (46), a ∈ M. (48)

If the optimization is infeasible, slack variables εdc(k)

and εdc(k) are added into the cost function and then the
optimization problem is modified to

Ja
′(k) � 􏽘

N

i�1
ya(k + i|k) − ya,ss(k)

����
����
2
Qi(k)

+ 􏽘
M−1

j�0
Δua(k + j|k)

����
����
2
Λ + εdc(k)

����
����
2
ω

+ εdc(k)
����

����
2
ω,

(49)

where εdc(k) and εdc(k) are slack variables. )e related
constraints on slack variables are as follows:

εdc(k)≤y
a,0
′(k) − y

a,0,h
, 1≤ i≤N, (50)

εdc(k)≤ya,0,h − ya,0′(k), 1≤ i≤N. (51)

By adding the constraints equations (50) and (51), the
optimization problem with slack variables is expressed as
follows:

minεdc(k),εdc(k),Δ􏽥ua(k|k)Ja
′(k),

s.t.(45), (46), (50), (51).
(52)

Equations (48) and (52) are standard quadratic problem
(QP). By solving equations (48) or (52), Δ􏽥u∗a(k|k) is ob-
tained. )en, ua(k|k) � ua(k|k − 1) + Δ􏽥u∗a(k|k) is sent to
each subsystem and implemented.

Remark 1. In this paper, the considered distributed struc-
tured matrix dynamic control (DMC) is a heuristic algo-
rithm. )e dynamic is described by the finite step response
(FSR) model, which is not accurate. )e model error is
compensated in a feedback correction term.)e stability has
not been stressed in the study of DMC since it was proposed
by Garcia in 1986. )e distributed double-layered DMC
provides a solution for the predictive control of complex
industrial systems with multiobjects and multilayered rates.

)e authors in this paper focus on the economic efficiency
and computation burden, while the ingredients for proving
stability such as the terminal constraint set, terminal cost
function, and feedback control law are not mentioned. On
the other hand, the optimization problem, in this paper, is
solved by linear programming (LP) or quadratic pro-
gramming (QP); therefore, the global optimal can be
obtained.

5. Case Study

)e distributed double-layered DMC algorithm is applied to
the Shell benchmark problem for simulation investigation.
In the operation of Shell heavy oil fractionator, the con-
trolled variables and manipulated variables need to meet
various requirements. As shown in Figure 2, there are three
product extraction ports and three side cyclic refluxes. )e
product concentrations coming out of the top and side
extraction ports are determined by the economics and
operating requirements. For the cyclic refluxes, the product
separation is performed by removing heat. )e exchange
heat flows back to reboil the columns in other parts of the
plant. An enthalpy controller is added to regulate heat re-
moval in the bottom while the heat exchanges of the other
two refluxes are taken as the disturbances to the column.

A three-input-three-output model was presented in [31]
for the heavy oil fractionator:

y1

y2

y3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � G
u
(s)

u1

u2

u3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + G
d
(s)

d1

d2
􏼢 􏼣, (53)

where

G
u
(s) �

4.05e
− 27s

50s + 1
1.77e

− 28s

60s + 1
5.88e

− 27s

50s + 1

5.39e
− 18s

50s + 1
5.72e

− 14s

60s + 1
6.90e

− 15s

40s + 1

4.38e
− 20s

33s + 1
4.42e

− 22s

44s + 1
7.20

19s + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G
d
(s) �

1.20e
− 27s

45s + 1
1.44e

− 27s

40s + 1

1.52e
− 15s

25s + 1
1.83e

− 15s

20s + 1

1.14
27s + 1

1.26
32s + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(54)

where the manipulated variables are the top extraction u1,
the side extraction u2, and the enthalpy controller for the
bottom of the column u3. d1 andd2 are the middle reflux and
the top reflux, respectively. )e controlled variables include
top product concentration y1, side product concentration
y2, and bottom reflux temperature y3. All the variables are
normalized, and the unit of time is minute.
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As seen from Figure 2, by applying the interconnection
decomposition, the transfer function Gu(s) in equation (53)
can be decomposed into the following three subsystems:

Subsystem 1: 4.05e− 27s/50s + 1

Subsystem 2: 5.72e− 14s/60s + 1
Subsystem 3: 7.20/19s + 1

In the distributed structure, the coupling effects from
neighbor subsystems are considered in the control of each

Compromise

Utopia

  

Pareto Frontier

J1
L

J2
L J2

J1

Figure 1: Schematic of the utopia-tracking approach.
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Figure 2: Shell heavy oil fractionator.
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subsystem. )e sampling period is 4minutes. )e finite step
response model of each subsystem can be obtained by

ya(k) � 􏽘

N−1

i�1
S

ua

i Δua(k − i) + S
ua

N ua(k − N)

+ 􏽘
l≠a

􏽘

N−1

i

S
ual

i Δul(k − i) + S
ual

N ul(k − N)⎡⎣ ⎤⎦

+ 􏽘
N−1

i�1
S

d
aΔ d(k − i) + S

d
Nd(k − N),

(55)

where a � 1, 2, 3 denotes the number of the subsystem. S
ua

i

and S
ual

i are the step response coefficient matrices on ma-
nipulated variables for local subsystem a and neighbor
subsystem l, respectively. Denote S

ua

N and S
ual

N as the steady-
state step response coefficient matrices.

Based on the open-loop prediction of each subsystem a,
the corresponding steady-state prediction is obtained by

ya,ss(k) � S
ua

N δua,ss(k) + y
ol
a,ss(k), (56)

where δua,ss denotes the steady-state increment of manip-
ulated variable.

)e constraints on manipulated variables and controlled
variables are specified by ua � [−0.5, −0.2, −0.35];
ua � [0.5, 0.2, 0.35]; Δua � δua,ss � [0.1, 0.1, 0.1];
y

j,h
� [−0.4, −0.4, −0.4]; yj,h � [0.4, 0.4, 0.4]; y

j,0 � −0.5;
yj,0 � 0.5, j � 1, 2, 3. )e external targets of
y1,ss, y2,ss, and u3,ss are 0.5. By invoking LP, the steady-state
target value of each subsystem a is solved by the following
optimization problem:

min
δua,ss

,U2(k)
Ja � 􏽘

i�1,3
hiδui,ss(k) + h2U2(k). (57)

Due to the conflicts of the optimization goals of different
subsystems, the steady-state target value of each subsystem
δua,ss

cannot be achieved at the same time. )e utopia-
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Figure 3: Closed-loop responses of subsystem 1.
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tracking strategy [28] is adopted to solve the multiple op-
timization problem with conflicts. According to equations
(40) and (41), the compromise solution of steady-state target
is calculated. In the dynamic matrix control, by utilizing QP,
the actual control move for each subsystem is obtained.

)e first investigation is carried out with the perfor-
mance of the proposed distributed double-layered DMC
algorithm with constant disturbance. At time 55≤ k≤ 90, the
value of disturbance is [0.15; 0.2]. In the distributed algo-
rithm, the prediction and the control horizon for distributed
double-layered DMC are 8 and 5, respectively. )e
weighting matrices in dynamic control are selected as
Λ � diag 1; 4; 1{ }, Q � diag 4.0; 0.67; 1.0{ }. Take u1(−1) � u2
(−1) � u3(−1) � 0, y1(0) � y2(0) � y3(0) � 0. )e closed-

loop system responses of three subsystems are shown in
Figures 3–5, respectively.

It can be observed that the proposed distributed dynamic
prediction model can predict effectively the output of each
subsystem at future time. In the distributed structure, the
steady-state values of each subsystem obtained by Pareto-
tracking satisfy all the constraints. When the calculated
control move is implemented in each subsystem, even in the
presence of disturbance, the corresponding output can be
settled to the optimal steady-state value, which indicates that
the control is offset-free. Meanwhile, all the outputs and
control moves satisfy the physical constraints and opera-
tional restrictions. )e results indicate that the proposed
distributed double-layered DMC algorithm is effective.
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Figure 4: Closed-loop responses of subsystem 2.
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Next, we will step into the study of the performance of
the proposed algorithm. A comparison with the proposed
distributed double-layered DMC algorithm and the cen-
tralized algorithm is carried out. In both of these algorithms,
constant disturbance is considered, respectively. At time
55≤ k≤ 90, the value of disturbance is [0.15; 0.2]. For the
centralized algorithm, by tuning parameters, N � 8, Nc � 5,

the tracking performance is best. )e simulation results are
shown in Figure 6, and the performance is quantified in
Table 1. As seen from Figure 6, though the output of each
subsystem starts with a slight bigger error from the steady-
state target, as the iteration goes on, there is an obvious
improvement in the tracking performance of the distributed
algorithm compared with that of the centralized algorithm.
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Figure 5: Closed-loop responses of subsystem 3.
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As indicated by the time-consuming in Table 1, the proposed
distributed algorithm requires much less computation time
than the centralized one. As seen from Table 1, there is a
(7.06 % increase in RMSE) improvement in tracking per-
formance as a whole.

6. Discussion and Conclusion

A distributed double-layered DMC scheme for the large-scale
system is presented, where the coupling effects from inter-
connected subsystems are considered in the distributed open-
loop prediction equation of each subsystem. )e distributed
economic optimization problem is treated as a multiple
objective optimization problem. )en, the utopia-tracking
strategy is adopted to calculate the optimal steady-state target
values of each subsystem. )e proposed distributed double-
layered DMC algorithm is demonstrated through simulation
studies. )e results show that the computational burden is
significantly reduced, and the tracking performance is im-
proved. )is algorithm can also be extended to the control of
other industrial processes.
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