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It is often said that mathematical modeling is an implementation of mathematics in real-world problems with the aim of better
understanding them, so we can say that mathematical modeling is linked to the solution of problems. Some of the essential
principles and procedures of mathematical modeling are discussed using formulas and equations. We investigate the stability and
convergence characteristics and demonstrate the suitability of di�erent mathematical methods in a set of numerical examples.�e
described methods in our paper are the best choices for the simulation of linear phenomena and are more e�cient for use with
high-order spatial discretization. We emphasized the importance of mathematical modeling technologies used in computational
tools. Our study shows that these new methods are more stable with lower errors.

1. Introduction

Various numerical methods are used to obtain the initial
value solution, and studies show great development on this
topic in this century. Other factors also amount to the reason
for the implementation of mathematical methods like
electronic computers needing e�cient numerical algorithms
in mathematical modeling. Many complex methods that are
driven by partial di�erential equations (PDE) evolve [1–3],
which requires the search for the appropriate numerical
solution to a system of ordinary di�erential equations
(ODEs) in a wide range of situations [4–6]. �e di�erential
equations contain derivatives, either ordinary or partial
derivatives, and along with an initial condition that deter-
mines the value of the unknown function at a certain point,
make up the initial value problem (IVP).�ese equations are
also used in semiconductor engineering, biology, chemistry,
physics, and economics to solve various problems in re-
search. �ere are several analytical approaches for deter-
mining the solution of di�erential equations [7, 8]. On the

other hand, analytical methods cannot always solve complex
di�erential equations. �erefore, it is important to make
numerical approximations.

�e advanced di�erential equation is solved by using
numerical techniques for which computer programming is a
very powerful tool. �e well-known Runge–Kutta (RK)
analysis is the most often used technique for integrating
these technologies of ODEs in real time [7–10]. RK methods
can be classi�ed in a variety of ways, such as the structure of
implicit or explicit, by convergence order, or the number of
steps [1]. �e complexity of the equation that must be solved
determines the numerical stability of various numerical
methods.

Figure 1 summarizes the ¡ow of ordinary equations used
to model real-time systems and the application of analytical
and numerical methods to solve these equations. An ex-
ample here is encapsulating the physical characteristics of a
parachutist descending, where g is gravitational constant, m
is mass, c is drag coe�cient, and dv/dt is an unknown
function/di�erential equation (rate equation).
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In the RK family, the most well-known member is the
classic Runge–Kutta method (RK4), and (1) presents the
initial problem as follows:

dy
dt
� f(t, y), y t0( ) � y0. (1)

In the above equation (1), y can be a scalar or vector
function that is not known at time t that we want to estimate.
dy/dt is the time rate at which y changes and t0 is the initial
time; hence, the corresponding y value is y0.

yn+1 � yn +
1
2
h k1 + 2k2( ),

tn+1 � tn + h,

k1 � f tn, yn( ),

k2 � f tn +
h

2
, yn + h

k1
2

( ),

k2 � f tn + h, yn + hk1( ).

(2)

�e k1 and k2 are known as stages of the RK method
which are shown in (2) and (3). �ey relate to various es-
timations of solutions for the slope. We note here that yn +
hk1 is the Euler step from (tn, yn) with stepsize h. Now, the
following equation shows an explicit second-order RK
method by supposing

y(t + h) � y(t) + h b1k̃ + b2k̃2[ ] + O h3( ),

k̃1 � f(t, y),

k̃2 � f t + c2h, y + ha21k̃1( ).

(3)

�erefore, the second-order RK supposition becomes

f t + c2h, y + ha21k̃1( ) � f(t, y)c2hft(t, y) + ha21fy(t, y)k̃1 + O h2( ),

· f(t, y)c2hft(t, y) + ha21fy(t, y)k̃1f(t, y) + O h2( ),

y(t + h) � y(t) + h b1f(t, y) + b2 ft t,y( ) + c2hft(t, y)ha21fy t,y( )f(t, y){ }[ ] + O h3( ),

· y(t) + b1 + b2( )hf t,y( ) + b2h
2 c2hft(t, y) + a21fy t,y( )f(t, y)[ ] + O h3( ).

(4)

�erefore, for four unknowns, we have three nonlinear
equations which lead to Euler’s method (�rst-order
method). Euler’s method is commonly used to build more
complicated approaches like the predictor/corrector method
and is sometimes also called the midpoint rule as follows:

yn+1 � yn + hk2,

k1 � f tn, yn( ),

k2 � f tn +
h

2
, yn +

h

2
k1( ).

(5)

As we know, the RK methods are a set of implicit and
explicit optimization methods in numerical analysis, in-
cluding the well-known Euler’s method, which is usually
used in temporal discretization for approximate solutions of
ODEs [1, 11]. Here, the di�erential equation is considered as
a formula that can be used to compute the slope of the
tangent line to the curve at any point once we determined
the location of that point. �e solution to the ODE at a time
tn : yn ≈ y(tn) is approximated by the value of yn. �e
explicit Euler’s method shows that the solution yn+1 is an
explicit function of yi for i≤ n. We must mention here that
there is no assurance about any curves’ concavity that will
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Figure 1: �e summary of steps in the application of ODEs to engineering problem solving, such as a parachutist descending.
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remain consistent. It may shift from concave-up to concave-
down. Because the real solution curve goes up and down,
there is no approximate way to estimate whether our next
point will be an over- or underestimate. To overcome this
deficiency, we have a clever Heun’s method to use.

2. Heun’s Method

Heun’s method is the improved (or modified) Euler method
and the second order of the RK method. -e modified Euler
method allows us to find a clear expression for y given a finite
number of elementary functions, x. It is possible to solve the
ODE for y and x given their initial values.

-e Euler’s method algorithm is as follows:

(1) Start
(2) Define function
(3) Determine x0, y0, h, and xn (here x0 and y0 are

initial conditions while h is interval and xn is re-
quired value)

(4) n� (xn− x0/h+ 1)
(5) From i� 1 ton start looping
(6) y� y0 + h× f (x0, y0), x� x+ h
(7) Print the y0 and x0 values
(8) If x< xn, assign x0� x and y0� y

If no, go to 9
(9) Loop i end
(10) Stop

We can use the algorithm and flowchart in a high-level
programming language to construct a program for Euler’s
method though this approach is not one of the best tech-
niques to solve ODEs.

Heun’s formula is used to solve the ODE which is given
in the initial state [10, 12]. Euler’s method is the foundation
of Heun’s method. As we discussed earlier, Euler’s method
fails to converge in the case of a concave-up curve because it
overestimates the next point. Heun’s method solves this
solution problem by taking two tangents on each side of the
curve. One tangent underestimates and the other overesti-
mates, and then, Heun’s method estimates the next point
from both tangents using Euler’s method. Using (6), we can
determine the numerical solution to the problem of initial
values using the following method:

y(i+1) � yi +
k1 + k2( 􏼁(h)

2
,

k1 � f xi, yi( 􏼁,

k2 � f xi + h, yi + k1h( 􏼁.

(6)

where k1 and k2 are under- and overestimates. -e step size
is denoted by h, and initial conditions are xi andyi. -e
accuracy of Euler’s method improves linearly as step size
decreases but the accuracy of Heun’s method improves
quadratically [10, 12–15].

3. Derivations

While using the elementary idea that the line’s slope equals
its rise over run, the parameters at the endpoint can be
calculated using the following symbolic development:

slopeleft � f xi, yi( 􏼁,

sloperight � f xi + h, yi + hf xi, yi( 􏼁( 􏼁,

slopeideal �
Δy
h

,

slopeideal �
1
2

slopeleft + sloperight􏼐 􏼑,

Δy � h slopeideal( 􏼁,

xi+1 � xi + h, yi+1 � yi + Δy,

yi+1 � yi + hslopeideal,

yi+1 � yi +
1
2h

slopeleft + sloperight􏼐 􏼑,

yi+1 � yi +
h

2
f xi, yi( 􏼁 + f xi + h, yi + hf xi, yi( 􏼁( 􏼁( .

(7)

Using Euler’s method, the next point in the numerical
solution is estimated roughly, and the initial estimation
could be predicted or corrected using this information.
-erefore, we can calculate the slope of the prediction line by
taking the average of the slopes of the left and right tangent
lines, at either end of the interval. -e values of the f (x, y)
on the right-hand side of Equation (7) can be determined
[16]. Following a rough estimate of the location of the next
solution point from Euler’s method, the coordinates may be
used to determine the slope of the tangent line at the right
end of the interval.

3.1. Modified Algorithm. -e initial or boundary conditions
must be given for both the algorithm and the flowchart, as
follows:

(1) Start
(2) Define function for slope calculation f (x, y)
(3) State variables
(4) Input value
(5) Find slope while using initial value
(6) Find new y, y� y0 +m0× h
(7) Increase value of x, which is x1� x0 + h
(8) Find new slope using x1 and y
(9) Calculate the mean of m0 and m
10) (Find y new and assign y new with y again
(11) From step 6, repeat until two consecutive y are equal
(12) Repeat step 5 until x� xn
(13) Print x and y corresponding
(14) Stop
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3.2.Flowchart. �enumerical solution of ODEs with Heun’s
method is simple from both the numerical and program-
ming points of view as compared to analytical techniques.
�e updated Euler’s method algorithm and ¡owchart are
described in Figure 2. �ey may be used to produce source
code in any high-level programming language.

In the case of complex problems, analytical methods
frequently fail; however, Heun’s method does not fail but
provides better solution accuracy and high speed. It also
improves Euler’s technique with a lengthy code where we
can pick a lower number of h to get high accuracy.

4. Piecewise Method

Nonlinear programming is used to solve a variety of opti-
mization issues in science and technology. Piecewise line-
arization methods are used in recent years to turn nonlinear
programming into linear programming or a mixed convex
programming problem to get the desired solution [16–19].
�e piecewise function is a hybrid function that is de�ned by
numerous subfunctions and each corresponding to a dif-
ferent interval of the main function domain or a subdomain.
Piecewise can describe the nature of the function rather than

F (x) = (x-y)/(x+y)

Input

Yp = y (1) +h*F (x(1), y (1))

itr = (xn-x (1))/h

Print x (1), y (1)

i = 1, itr

X (i = 1) = x (i)+h

For n = 1, 50

Yc = (n+1 = y (i+(h/2*(F (x (i), y (i))+F (x(i+1,yp))

Print n, yc (n+1)

P = yc (n+1)-yp

If abs (p<0.0001)

yp = yc (n+1)

Y (i+1) = yc (n+1)

Print x (i+1), yp

stop

start

yes

No

Figure 2: Modi�ed Euler’s method ¡owchart.
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just be a way of expressing it. In addition, the term piecewise
can also refer to any piecewise-defined function that applies
to each piece but may not be applicable for the whole
function. -e piecewise or continuous differentiable be-
havior of a function is that each piece is differentiable within
its domain, regardless of whether the whole function is
differentiable at the intersection. When functions are ana-
lyzed convexly, the notation of a derivative can be replaced
by that of the subderivative [17]. A function can indeed be
described as “piecewise linear” or “piecewise continuous” or
“piecewise differentiable” even if the pieces are not intervals.
Equation (8) shows a piecewise notation that expresses the
absolute value function as follows:

|x| �
−x, ifx< 0,

+x, ifx≥ 0.
􏼨 (8)

To turn negative values into positive, the first function -x
is used for all x values, and this invalidates the sign of the
input value. -e second function x is applied for all x values
which could be larger than or equal to zero.

4.1. Linear Piecewise. -e piecewise linear function is a
collection of quadratic functions, each defined on a set of
intervals of real numbers. A finite collection of such intervals
must exist if the domain of the function will either need to be
finite or be locally finite [20–23].

-ere are several contexts in which piecewise linear
functions are relevant. In general, the piecewise linear
function can be defined on any vector space or affine space
and simplicial complexes [18, 19, 24]. A linear function is not
simply a linear transformation, but in these contexts, it is an
affine linear function. -ere are two major subclasses of a
piecewise linear function, called continuous and convex. As
we can see from (9), every n-dimensional continuous
function, in general, will have the following formulas:

%Π􏽚 P P R
n+1

􏼐 􏼑􏼐 􏼑,

flx � min
􏽘 􏽚%Π

max
(a,b) 􏽚%Σ

a
→

· x
→

+ b,

Σ􏽚 P R
n+1

􏼐 􏼑,

f( x
→

) � max a
→

· x
→

+ b

( a
→

, b) 􏽚%Σ
.

(9)

5. Conclusion

We provided a class of numerical approaches for approxi-
mating the solutions of differential equations in this study
which are based on a modified version. When applied to
ODEs, these approaches yield a continuous approximate
solution that is accurate to order 2n at the nodes and to order
n+ 1 evenly over the interval. To extend the approaches to
delay differential equations, some a posteriori tweaks boost

the uniform accuracy to order 2n. Real-world issues are
subjected to numerical testing and compared with other
methodologies. Four methods have been presented for linear
system integration of ODEs, and those methods require less
memory and less computational effort than the low storage
methods. -e notations and formulations have been studied
in such a way that subsequent development of the theory of
differential equations will follow the structure of ODEs. We
also presented that when a nonstandard piecewise function
is used correctly, it produces fractional-order differential
equations that converge to the original equation as the
parameter leads to zero. Even though it was not developed
from quadrature, the method has been demonstrated to be
equivalent to quadrated-based methods. Nonuniform time
steps can be used to accomplish the approach.-e difference
equation may appropriately describe the dynamics of the
underlying fractional differential equation, as demonstrated
in the formulas.
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