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Segmentation of skin lesions from dermoscopic images plays an essential role in the early detection of skin cancer. However, skin
lesion segmentation is still challenging due to artifacts such as indistinguishability between skin lesion and normal skin, hair on
the skin, and re�ections in the obtained dermoscopy images. In this study, an edge attention network (ET-Net) combining edge
guidance module (EGM) and weighted aggregation module is added to the 2D volumetric convolutional neural network (Vnet
2D) to maximize the performance of skin lesion segmentation. In addition, the proposed fusion model presents a new fusion loss
function by combining balanced binary cross-entropy (BBCE) and focal Tversky loss (FTL). �e proposed model has been tested
on the ISIC 2018 Task 1 Lesion Boundary Segmentation Challenge dataset. �e proposed model outperformed the state-of-the-art
studies as a result of the tests.

1. Introduction

Melanoma, a deadly skin cancer, is predicted to be the �fth
most frequently diagnosed cancer for men (57,180 cases)
and women (42,600 cases) by 2022 [1]. In the United States,
treating skin cancers’ annual cost is $ 8.1 billion: about $ 4.8
billion for nonmelanoma skin cancers and $ 3.3 billion for
melanoma [2]. �e number of diagnoses and treatments for
nonmelanoma skin cancers in the USA between 1994 and
2014 reached 77% [3]. Approximately 90% of nonmelanoma
skin cancers of nonmelanoma are associated with ultraviolet
(UV) radiation from the sun [4]. Board-certi�ed derma-
tologists very often use dermoscopy, a noninvasive tech-
nique that can be helpful in diagnosing skin lesions.
Dermoscopy is a magnifying device that allows the appli-
cation of liquid between dermoscopy and the patient’s skin
or the use of cross-polarized light to make the epidermis
translucent, allowing the structures in the epidermis and

super�cial dermis to be visualized. Seeing very small skin
lesions that are not visible to the naked eye is essential in
deciding for a physician. Dermoscopy provides better per-
formance than traditional methods thanks to ABCD criteria
[5]. However, diagnosing the lesioned area with a dermo-
scopy device is time-consuming and challenging due to
artifacts such as skin hairs, blood vessels, and similarities and
contrast of light between ordinary and lesioned skin.
�erefore, deep convolutional neural networks (DCNN),
which will automatically identify images, have been used to
overcome this di§cult task. Such systems try to determine
lesion boundaries and make high-accuracy decisions based
on skin lesion segmentation [6–11].

Convolutional neural networks (CNNs) performed
higher for many segmentation tasks [12]. DCNNs require
large amounts of data for high performance. In addition,
there is no clear boundary between the lesion and the
surrounding skin. In addition, since the sizes and shapes of
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the lesions vary, it is not easy to have information about their
characteristics. In addition, ink marks and air bubbles are
other difficulties [13]. An edge attention Vnet (ET-Vnet)
model is proposed to overcome the artefacts in this study.
ET-Vnet combines two attention mechanisms to extract
information about the lesion boundary better. Specifically,
ET-Vnet contains two paths in its decoder, each embedded
with an attention module. In addition, BBCE and FTL
functions are combined as a novel approach to increase the
performance of the proposed model. Czajkowska et al. [14]
proposed a model consisting of two DeepLab v3+ models
with a ResNet-50 backbone and a fuzzy connectivity analysis
module for fine segmentation. Hu et al. [6] proposed a new
attention synergy network (AS-Net) to improve the dis-
criminative ability for skin lesion segmentation by com-
bining spatial and channel attention mechanisms. Arora
et al. [15] proposed a modified U-Net-based segmentation
model for automatic skin lesion segmentation.(e proposed
model used group normalization (GN) instead of batch
normalization (BN) in both encoder and decoder layers
[16, 17]. Besides, attention gates (AG), which focuses on
minute details in the skip connection, and Tversky loss (TL)
function, which provides higher success in class imbalances,
were used. Gu et al. [18] proposed an attention-based
modified U-Net (CA-Net) that comprehensively presents
based on U-Net architecture by adding multiple spatial
attention between layers and awareness of the most critical
spatial locations and channel scales. A new channel attention
module was used to further focus the proposed model on the
lesion area’s feature map. A scaling module has been pre-
sented to scale the images, highlighting the most prominent
feature maps. Goyal et al. [19] proposed an ensemble of
R–CNN and Deeplab V3C methods, to achieve high sen-
sitivity and specificity in lesion boundary segmentation
methods. (e proposed ensemble method ensemble-S
achieved better performance than FrCN, FCNs, U-Net, and
SegNet. Jiang et al. [20] proposed the CSARM-CNN (canal
and spatial attention residue module) model for automatic
skin lesion segmentation based on deep learning. Each
convolutional layer of CSARM has created a new attention
module by combining channel attention and spatial atten-
tion to make segmentation training more effective. (e
spatial pyramid pool acquires multidimensional input im-
ages. Finally, two different cross-entropy methods were
fused for higher segmentation training in the model, and the
final loss function was obtained. Lei et al. [21] proposed a
general adversarial network (GAN) to overcome automated
lesion segmentation challenges.(is network includes a fully
dense U-Net-based skip connection and double discrimi-
nation (DD) layers. (e proposed method (U-Net-SCDC)
uses lower resolution up-sampling convolutional layers that
preserve fine-grained information. In contrast, the DD
module increases training performance by controlling each
other in opposite directions.(us, the two different methods
work as if they try to find each other’s fault, focusing on their
wrong points. (erefore, using a conditional discriminatory
loss, it has been said that the model that checks each other
simultaneously provided superior performance compared to
other models.

Shan et al. [22] proposed a novel segmentation method
named FC-DPN. (e proposed method consists of the fully
convolutional (FCN) and dual-path network (DPN). DPN is
a model that enables the virtual feature maps of previous
layers to be reused by using residual and densely connected
ways. Sub-DPN projection blocks and sub-DPN processing
blocks have been added instead of dense layers in the fully
convolutional DenseNets (FC-DenseNets). It was stated that
this method allows FC-DPN to acquire more representative
and distinctive features to perform a more robust
segmentation.

Dosovitskiy et al. removed the CNN-based encoder and
replaced it with the vision transformer to improve the image
recognition performance of the network [23]. Sarker et al.
proposed a SLSNet network that reduces the computational
cost by using 1-D core factor deep learning networks for
sensitive skin lesion segmentation with minimal resources
[24]. Wu et al. [25] proposed a new feature adaptive
transformer network based on the classical encoder-decoder
architecture called FAT-Net.

(e organization of this manuscript is as follows. Section
2 provides information about image augmentation and
preprocessing. It also includes information about the pro-
posed method and evaluation metrics. In Section 3, details
about the computational analysis of the application are
given. In Section 4, we present the proposed model as-
sessment. In this section, the results of the proposed method
and other methods are presented comparatively. In Section
5, we analyzed and discussed our results and made various
suggestions. Finally, the conclusion is given in Section 6.

2. Materials and Methods

2.1. PreparingDataset. (e proposed model was trained and
tested in this study using the ISIC 2018 Lesion Boundary
Segmentation dataset. (e dataset used is provided by the
International Skin Imaging Cooperation (ISIC) archive
[12, 26]. (e images in the dataset consist of 8-bit RGB
dermoscopic images ranging in size from 767× 576 to
6682× 4401. (e dataset consists of 2594 training images
obtained from different institutes, including various diag-
nostic challenges.

2.2. Data Processing and Augmentation. Deep learning
models perform very poorly on datasets with low samples. A
large amount of samples is needed for training these models.
(e ISIC 2018 dataset used for training the model consists of
2594 images. First, 2594 images in the ISIC 2018 dataset were
divided into training (2075) and test (519) sets. (en, the
amount of data was increased by applying boundary data
augmentation with horizontal and vertical flips, random
rotation, random distortion, elastic transformation, and
scaling and clipping methods to the training samples ob-
tained. Here, better detection of fine-grained features at the
borders of the lesioned region was achieved with the border
data augmentation method. In the random rotation method,
augmented images are obtained from the original images by
rotating the original image horizontally and vertically across
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each row and column. With the applied data augmentation
methods, 72000 training images were obtained. It is aimed to
give more reliable and robust results by preprocessing the
training images. Contrast stretching applied in data aug-
mentation made the lesions more prominent. In addition,
the sharpening algorithm was applied to the data during the
contrast stretching. With sharpening and contrast stretch-
ing, the blurred edges of the lesion were made more
prominent. All images are resized to 512× 512 as the images
are of different sizes, and the suggested model is uniform.
Figure 1 shows examples of preprocessed and enhanced
images.

2.3. Proposed Method. Milletari et al. [27] proposed Vnet
architecture for volumetric and fully convolutional 3D
image segmentation. (e ET-Vnet 2D model is shown in
Table 1.

2.3.1. 7e Decoder Stage. Xavier weight initialization was
used for the weight initialization of themodel, and ReLUwas
used as the activation function for the layers [28]. In ad-
dition, ADAM was used as the optimizer [29]. In the ET-
Vnet 2D model, each convolution layer consists of 3× 3
convolutions with GN to normalize the features in the
channels [30].(e 512× 512×1 input image is fed to the first
block, as shown in Table 1. EGM highlighting low valence
features in featuremaps and ET-Net architecture withWAM
emphasizing high valence features were proposed by Zhang
et al. [31] for high-performance organ segmentation. (e
EGM and WAMmodules of the proposed architecture have
been applied to V-Net 2D. Here, the EGM module em-
phasizes low-value edge features in segmentation, while the
WAM module emphasizes high-value features, allowing the
proposed model to perform better segmentation. Also, the
convolution layers doubled from 32 to 512 per block [32].

2.3.2. 7e Encoder Stage. (e decoder stage takes only high-
value features from the encoder and upsamples them to the
input size in the decoder. As shown in Table 1, deconvo-
lution, which upsamples feature maps from the down-
sampling stage, is performed. A series of convolutional
operations are applied at the encoder stage to enlarge the
feature map from the encoder to the original low-resolution
predicted input image. It is aimed to achieve higher per-
formance segmentation of the network by synchronizing
and comparing the decoder and encoder, thanks to the
bypass connections from the encoder. In the decoder stages
of the proposed model, the same convolution blocks used in
the encoder are used in reverse. ReLU activation function is
used in each layer, as in the encoder. In the last layer, 1× 1
convolution using the sigmoid activation function is used,
since black and white image segmentation includes two
classes. Figure 2.

2.4. Evaluation Metrics. (e metrics used to score the
performance of the models in the ISIC 2018 challenge
competition were also used to test the performance of the

proposed model. (e first of these metrics is the Sørensen-
Dice coefficient (DSC), shown in equation (1). Dice is a
simple measure that measures the similarity of two samples.
(e Jaccard index (Jaccard) is used to calculate the similarity

(a) (b)

Figure 1: Image boundary augmentation. (a) Input image (b)
Ground truth.
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and diversity of sample sets, as defined in equation (2). We
can also define Jaccard as the intersection of the union of two
different sets. Accuracy (ACC), shown in equation (3),
represents the percentage of correct predictions out of all
predictions made by the model. Sensitivity (Sens), defined in
equation (4), measures the proportion of samples predicted
as true positive (TP) in the data set. Also, sensitivity can be
defined as recall. As shown in equation (5), specificity (Spec)
is a metric that calculates the proportion of correctly pre-
dicted nonlesional areas in an image. One drawback of the
dice coefficient (Dice) is that false positive (FP) and false
negative (FN) are equally weighted. While this increases the
precision, it decreases the recall rate.

For this reason, Dice causes degradation in test per-
formance in unbalanced datasets. (e way to deal with this
situation is to weigh FN more than FP. (e Tversky simi-
larity index is a generalization of the Dice coefficient that
provides flexibility to its problems in balancing FPs and FNs
as shown in equation (6).

Dice �
2∗TP

2∗TP + FP + FN
, (1)

Jaccard �
TP

TP + FN + FP
, (2)

Table 1: ET-Vnet 2D models’ details. Inputs (batch size, height, width, depth, Channels) : (4,512,512,1,1).

Layer Layers’ details Output size Activate/Norm/Weight initializer

Layer 1 Conv 3× 3 (4,512,512,1,32) GN, ReLU, XavierResNet block

Down 1 Filter 3× 3

(4,256,256,1,64)
GN, ReLU, XavierFilter 3× 3

Layer 2 Filter 3× 3 GN, ReLU, XavierResNet block

Down 2 Filter 3× 3

(4,128,128,1,128)

GN, ReLU, XavierFilter 3× 3

Layer 3
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Down 3 Filter 3× 3

(4,64,64,1,256)

GN, ReLU, XavierFilter 3× 3

Layer 4
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Down 4 Filter 3× 3

(4,32,32,1,512)

GN, ReLU, XavierFilter 3× 3

Layer 5
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Upsample 1 Filter 3× 3

(4,64,64,1,256)

GN, ReLU, XavierFilter 3× 3

Layer 6
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Unsample 2 Filter 3× 3

(4,128,128,1,128)

GN, ReLU, XavierFilter 3× 3

Layer 7
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Upsample 3 Filter 3× 3

(4,256,256,1,64)

GN, ReLU, XavierFilter 3× 3

Layer 8
Filter 3× 3

GN, ReLU, XavierFilter 3× 3
ResNet block

Upsample 4 Filter 3× 3

(4,512,512,1,32)
GN, ReLU, Xavier

Layer 9
Filter 3× 3
Filter 3× 3 GN, ReLU, XavierResNet block

Layer 10 ET-Net2D (4,512,512,1,1) + ET-Net2D GN, ReLU, Xavier3D single output Filter 1× 1
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Acc �
TN + TP

TN + TP + FN + FP
, (3)

Sens �
TP

TP + FN
, (4)

Spec �
TN

TN + FP
, (5)

TverskyIndex �
TP

TP + αFN + βFP
, (6)

where True Positive (TP) represents the correctly labeled
lesion pixels, False Positive(FP) represents the incorrectly

predicted lesion pixels, True Negative(TN) represents the
correctly predicted nonlesion pixels, and False Negative(FN)
represents the incorrectly predicted lesion pixels. In equa-
tion (6), α and β are adjustable parameters to increase the
weight of the recall rate in unbalanced datasets.

2.5. Balanced Focal Tversky Loss Function (BFTL). (e BFTL
loss function proposed in this study is developed from the
loss function proposed by Zhou et al. [33]. (e FTL loss
function is explained in equation (7) which effectively solved
the problems of Dice loss in class imbalances [34, 35]. (e
FTL function shown in equation (8) is presented as a so-
lution to data imbalances. In the proposed model, a loss
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Figure 2: ET-Vnet 2D models’ block diagram.
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function is proposed that both take care of pixel type losses
and solve data imbalances.

FTL � (1 − TI)
1
c

, (7)

LTwersky � 􏽘
Nb

c�1
1 −

􏽐
N
i�1picgic + ∈

􏽐
N
i�1 picgic + α􏽐

N
i�1 picgic + β􏽐

N
i�1 picgic + ∈

􏼠 􏼡

1/c

. (8)

(e Tversky index is adapted to a loss function (TL) in
[36] by minimizing 􏽐c1 − TIc.

(e BFTL function L is formulated in equation (9).

L � Lbbce + log(LTwersky), (9)

whereLbbce is the BBCE [37], unlike binary cross-entropy,
β weight is added to BBCE. Where β is the number of
negative samples/total number of samples. In other words, β
is the proportion of the dominant sample in a data set. 1− β
denotes the fraction of the other class. In addition, the

(a)

(b)

Figure 4: Test results for ISIC 2018 challenge 1000 test set.

Table 2: Performance scores of the proposed model with the latest models in the literature.

Methods
Performance metrics

Dice Jaccard Acc Sens Spec
DA-net 0.88 0.80 0.95 0.94 0.95
DRU-net [37] 0.86 0.76 — 0.88 0.92
Deeplabv3+ 0.87 0.79 0.95 0.94 0.94
CKDNet [38] 0.88 — 0.95 0.91 0.97
DAGAN [24] 0.89 0.83 0.93 0.95 0.91
FAT-net [31] 0.89 — 0.96 0.91 0.97
Attn_U-net +GN [18] 0.91 0.83 0.95 0.94 0.95
SE_U-net [18] 0.91 0.83 0.95 0.89 0.96
ET-vnet (ours) 0.91 0.83 0.95 0.95 0.96
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natural logarithm is applied to the FTL function to ensure
consistency between the loss functions.

3. Calculation

3.1. Application Details. A computer with Intel I5–8300H
processor and 32GB of RAM and Nvidia GTX 1080 ti
graphics card was used to train the proposed model. Besides,
the computer’s operating system is Windows 10–64 bit. (e
proposed deep learning model was created using the Python
3.6 programming language. In the proposed model, the
learning rate was determined as 1e− 3, and the lot size� 4 due
to the experiments. (e model’s training has been realized as
100,000 epochs, thanks to 72000 increased training images.
Vnet 2D and ResUnet 2D models were separately trained in

the increased data set from the ISIC 2018 data set. (e
graphical analysis of the tests performed is shown in Figure 3.

(e images of some samples from the proposed models’
test results, their true lines, and the predicted segmentation
result are shown in Figure 4. As can be seen from Picture 4,
when the predicted results are compared with the actual lines,
it is seen that the model exhibits very high performance.

3.2. Qualitative Analysis. (e proposed model’s segmenta-
tion and final results are shown in Figure 4. (e figure
demonstrates images obtained from the model with BBFTL
loss function. Each column of the figure shows a unique
introductory dermoscopic view. (e proposed model effi-
ciently analyses input images, mainly obtained through

(a) (b) (c)

Figure 5: Test results are based on 519 test sets obtained from the ISIC 2018 training set. (a) Input image. (b) Image mask. (c) Predicted mask.
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boundary data augmentation, and predicts complex lesion
boundaries with great precision.

3.3. Hardware Analysis. (e proposed model has been
compared to other cutting-edge models for many model
parameters, storage requirements, and extraction rates using
Nvidia Geforce GTX 1080 ti graphics. In addition, since the
data set is stable, there is no need for pretraining scoring.(e
training of the model took approximately 8 hours. In ad-
dition, the model’s estimation of the test data set took 52
seconds.

4. Prediction Results

(e proposed segmentation model was tested on ISIC 2018
Task 1 dermoscopic lesion images. (e BBFTL loss function
combining BBCE and FTL function is used as a new ap-
proach. One of the main factors in applying the border data
augmentation method is to enable the model to recognize
better the lesion borders that separate the lesioned area from
the skin.

4.1. Comparative Analysis with the Latest Models. Table 2
shows the comparative results of the proposed model with
other models in the ISIC 2018 dataset. (e proposed model
surpassed the latest literaturemethods in the tests in the 2018
dataset, scoring 0.91 points in the Dice score, 0.83 points in
the Jaccard score, and 0.95 points in the sensitivity, and the
other models achieved superior performance.

Figure 4 shows the comparative results of the proposed
model with other models in the ISIC 2018 dataset.

Figure 5 shows the visually estimated output of some of
the complex samples in the 519 test images separated from
training with the proposed approach. (e figure compares
the basic reality and predicted image based on the original
input image. Each row in the figure shows the test results of a
test input image in the data set. (e third column shows the
segmentation result predicted by the proposed fusion model
of the test input image presented in the first column.

5. Discussion

In the proposed model, we get the ET-Vnet 2D network by
fusing the EGM,WAM, and Vnet 2D networks from the ET-
Net 2D network. In addition, the ET-Vnet 2D network
training was completed in 8 hours. EGM andWAM from the
ET-Net 2D network significantly improved the performance
of the Vnet 2D network. Also, in the proposed model,
balanced binary cross-entropy and focal Tversky loss
functions are hybrids combined. (e proposed hybrid loss
function caused a slight prolongation of the training time.
But it enabled the model to give more robust results.

6. Conclusion

In this study, EGM and WAM modules, which are two
modules used in the ET-Net network, are combined with
Vnet 2D to create the proposed model—tested on ET-Vnet

2D ISIC 2018 Lesion Boundary segmentation dataset. (e
proposed model consists of data set preprocessing and data
augmentation, lesion identification, and prediction opera-
tions. In the dataset preprocessing stage, artifacts such as
color inconsistency, exposure problem, and visibility of
lesion borders are corrected. (e visualization of a limited
number of labeled skin lesions has been achieved sufficiently
to train the proposed model, mainly thanks to the border
and other data augmentation methods. In addition, a new
loss function is proposed by combining BBCE, which cal-
culates pixel type losses, and FTL, which is presented as a
solution to class imbalances. (e loss function proposed as a
novel approach significantly improves the performance of
the proposed model. (e proposed hybrid loss function is
thought to play a crucial role in challenging segmentation
tasks. (e data set’s Dice and Jaccard similarity metrics were
recorded as 0.95 and 0.83, surpassing the latest segmentation
techniques.(e proposedmodel will be tested in other organ
segmentations to prove its robustness in future studies.
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