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In order to realize intelligent identi�cation of rail damage, this paper studies the extractionmethod of complete damage ultrasonic
B-scan data based on the density-based spatial clustering of applications with noise algorithm (DBSCAN). Aiming at the problem
that the traditional DBSCAN algorithm needs to manually set the Eps and Minpts parameters, a KMNN-DBSCAN (K-median
nearest neighbor DBSCAN) algorithm is proposed. �e algorithm �rst uses the dataset’s own distribution characteristics to
generate a list of Eps andMinpts parameters and then determines the optimal Eps andMinpts through an optimization strategy to
achieve complete self-adaptation of the two parameters of Eps andMinpts. In order to further improve the clustering performance
of the algorithm, the partition idea is introduced, and the partition KMNN-DBSCAN algorithm is proposed to solve the problem
that the clustering results of the DBSCAN algorithm are inconsistent with the actual categories on datasets with uneven density.
�e experimental results show that the KMNN-DBSCAN algorithm has higher clustering accuracy and silhouette coe�cient (SC)
for the D037 dataset ultrasound information group (UIG) division; compared with the KMNN-DBSCAN algorithm, the proposed
partition KMNN-DBSCAN algorithm has higher clustering accuracy, F-Measure, and SC values. �e partition KMNN-DBSCAN
algorithm achieves accurate division of all damage UIG on the damaged B-scan data with large density di�erences, and completes
the e�ective extraction of complete damage data.

1. Introduction

Ultrasonic rail ¡aw detection vehicles are widely used in rail
damage detection with the advantages of high detection
sensitivity, good directionality, and accurate defect posi-
tioning [1]. �e ultrasonic rail detection vehicle collects the
damage B-scan data based on the multichannel ultrasonic
probe, and the technicians classify the damage based on the
damage B-scan data [2]. Rail damage identi�cation is mainly
divided into two parts: complete damage data extraction and
damage identi�cation. E�ective extraction of damage data is
an important prerequisite for accurate damage identi�cation
[3]. Complete damage data extraction refers to dividing the
adjacent ultrasonic echo points in physical locations to-
gether to form an ultrasonic information group (UIG). UIG
is the complete damage data and is the smallest unit of

damage identi�cation [4]. �e original B-scan data are
stored in the form of data stream, which is di�cult to extract
manually. In this paper, the clustering algorithm is used to
complete the damage data extraction.

Clustering algorithms are divided into partition-based
clustering, hierarchical-based clustering, model-based
clustering, and density-based clustering according to dif-
ferent clustering criteria [5]. �e partition-based clustering
must determine the �nal classi�cation of the dataset before
clustering, and the number of damages in the B-scan data �le
is uncertain, so the partition-based clustering is not suitable
for rail damage classi�cation [6]. �e hierarchical-based
clustering is only suitable for �nding spherical or spherical
clusters, while UIG is irregular in shape, so this method is
not suitable for UIG division [7]. �e model-based clus-
tering algorithm assumes that the input dataset has a
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potential probability distribution, and the clustering effect
will be affected if the assumptions do not hold [8]. However,
the distribution of B-scan data is random, so the model-
based clustering algorithm is not suitable for UIG division of
B-scan data. 0e density-based clustering algorithm uses
density as the clustering criterion and can find clusters of any
shape without presetting the number of clustering results.
0e representative algorithm is DBSCAN (density-based
spatial clustering of applications with noise), which can filter
out abnormal points as noise while clustering [9]. 0e
DBSCAN algorithm satisfies the requirement that the
number of damaged rails in ultrasonic B-scan data is un-
known, the damage shape is irregular, and the noise needs to
be filtered out. However, the traditional DBSCAN algorithm
has two flaws. 0e first is that the neighborhood radius Eps
and the minimum density threshold Minpts need to be
manually set, which is prone to clustering failure.0e second
is that the traditional DBSCAN algorithm has errors when
clustering datasets with large density differences. In view of
the above two problems, some scholars have improved the
DBSCAN algorithm. For example, the literature [10] pro-
posed that the distance value corresponding to the region
where the distance distribution curve of the input dataset
“steepened” was taken as Eps. 0is method provides a
criterion for determining Eps based on the characteristics of
data distribution, which has certain guiding significance for
the selection of Eps, but it needs to determine the “steep-
ened” area through manual observation. 0e literature [11]
proposes the AF-DBSCAN algorithm, which uses polyno-
mial fitting to fit the distance curve corresponding to a
certain K value in the input dataset, solves the inflection
point of the fitted curve, and takes the maximum distance
corresponding to the inflection point as the optimal value of
Eps. However, the discussion on the selection of K value is
lacking in the text. 0e literature [12] proposes the SA-
DBSCAN algorithm, which uses inverse Gaussian fitting to
fit the probability distribution curve of the dataset, and takes
the distance value corresponding to the peak point of the
distribution curve as the value of Eps. Under the same Eps,
the noise points are the least when the correspondingMinpts
are taken as the optimal value of Minpts. However, the SA-
DBSCAN algorithm achieves complete adaptation of the two
parameter values, but the algorithm makes assumptions
about the distribution of the input dataset and is not ap-
plicable to all datasets. 0e literature [13–15] improves the
DBSCAN algorithm based on the idea of grid division to
achieve good clustering effect on datasets with uneven
density distribution. However, the mesh size setting of the
parameter adaptive algorithm based on mesh division lacks
theoretical guidance and is difficult to set manually.

In view of this, this paper proposes a new parameter
adaptive DBSCAN algorithm KMNN-DBSCAN, which
automatically determines the optimal clustering parameters
based on the distance distribution characteristics of the
input dataset, and realizes the fully adaptive selection of Eps
and Minpts parameters. After that, the partition idea was
introduced to improve the KMNN-DBSCAN algorithm, and
the partition KMNN-DBSCAN algorithm was proposed.
0e partition KMNN-DBSCAN algorithm is proposed to

solve the problem of errors in the traditional DBSCAN
algorithm when clustering datasets with large density dif-
ferences, and realizes the effective extraction of complete
damage data.

2. Algorithm Principle

2.1. Principle ofDBSCANAlgorithm. 0eDBSCAN (density-
based spatial clustering of applications with noise) algorithm
is a clustering algorithm based on high-density connected
regions, which can filter out noise points while discovering
any cluster. 0e related concepts of DBSCAN algorithm are
as follows:

(1) 0e Eps neighborhood of element points: for a
certain element point p in a given dataset D, the Eps
neighborhood of p refers to the set of all element
points in the area with p as the center and Eps as the
radius, denoted as Eps(p). Eps(p) expression is as
follows:

Eps(p) � q ∈ D|distance(p, q)≤Eps , (1)

where distance (p, q) is the Euclidean distance be-
tween the element point p and the element point q in
the dataset D.

(2) Density: DBSCAN defines the number of element
points contained in the Eps neighborhood of an
element point as the density of the point, and the
expression is as follows:

Density � Num(Eps(p)). (2)

(3) Core point: if the Eps neighborhood of an element
point contains the number of element points greater
than or equal to the given minimum density
thresholdMinpts, the point is called a core point, and
the expression is as follows:

Num(Eps(p))≥Minpts. (3)

(4) Boundary point: if the number of element points
contained in the Eps neighborhood of an element
point is less than the given minimum density
threshold Minpts, the point is called a boundary
point, and the expression is as follows:

Num(Eps(p))<Minpts. (4)

(5) Direct density reachability: for any two element
points p and q in dataset D, if q is in the Eps
neighborhood of p, and p is the core point, then point
q is said to be directly density reachable from point p.

(6) Density reachable: for a set of element points p1,
p2,. . ., pi,. . .,pn in dataset D, where p� p1, and q� pn.
An element point q is said to be density-reachable
from point p if it is directly density-reachable for any
pi+ 1 to pi.

(7) Density connection: for an element point r in the
dataset D, if the element point p and the element
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point q are both density-reachable from point r, then
point q is said to be density-connected from point p.

(8) Cluster (C): for a nonempty subset C of the input
dataset, if C meets the following conditions, C is
called a cluster.

(1) For any element point q, there is an element point p
belonging to C. If q is density-reachable from p, then
q belongs to C.

(2) For any two element points in C, they are density
connection.

Noise point: the element point that does not belong to
any cluster is called noise point, denoted as noise, and the
expression is as follows:

noise � o ∈ D|∀i: o ∉ Ci{ }. (5)

�e clustering principle of DBSCAN algorithm is the
maximum density connected sample set derived from the
density reachability relationship [16].

2.2. Principle of KMNN-DBSCAN Algorithm. �e core of
KMNN-DBSCAN is to generate a list of Eps and Minpts
parameter pairs based on the distance distribution charac-
teristics of the dataset. �e parameters are optimized based
on the Eps and Minpts parameter lists, and the optimal
parameter pair is obtained, so as to realize the complete
adaptation of the Eps and Minpts parameters of DBSCAN.
�e algorithm ¡ow of KMNN-DBSCAN is shown in
Figure 1.

�e steps of the KMNN-DBSCAN algorithm are as
follows:

Step 1. Generate a list of Eps parameter values.
�e Eps parameter list is generated by the K-median
nearest neighbor (KMNN) algorithm. �e main
principle of this algorithm is to �rst calculate the
K-nearest neighbor distance matrix of the input dataset
and then �nd the median of the K-nearest neighbor
distances of all element points, and constitute the
K-median nearest neighbor set. Take the K-median
nearest neighbor set as the Eps parameter list, and the
speci�c steps are as follows:

(1) Calculate the distance distribution matrix Distn× n
Distn×n � dist(i, j)|1≤ i≤ n, 1≤ j≤ n{ }, (6)

where n is the number of element points in the
input dataset D, dist(i, j) is the Euclidean distance
between element point i and element point j, and
Distn× n is the distance matrix.

(2) Calculate the K-nearest neighbor distance matrix
KNNn×n

KNNn×n � sort Distn×n( ). (7)

Arrange each row of the distance distribution
matrix in ascending order to obtain the K-nearest
neighbor distance matrix KNNn× n. �e ith row of

KNNn× n represents the distance between the ele-
ment points closest to the ith element point 1∼n,
and the K-th column (K� 1,2,...,n) represents the
K-nearest neighbor distance corresponding to all
element points. Where the �rst column is the
distance from the element point to itself, the �rst
column of KNNn× n is all zero.

(3) K-median nearest neighbor (KMNN) distance set
KMNN1× n

Find the median of each column of KMNN1× n, and all
the medians form the K-median nearest neighbor
distance set KMNN1× n. Take the K-median nearest
neighbor distance set KMNN1× n as a list of Eps pa-
rameter values, where the Eps value corresponds to the
K.
Step 2. Generate a list of Minpts parameter values.
Generates a list of Minpts parameter values using the
median method and a given list of Eps parameter
values. For the current Eps parameter list, the number
of element points contained in the Eps neighborhood of
all element points under di�erent Eps is obtained in
turn. �e median of the number of element points
contained in the Eps neighborhood of all element
points is taken as theMinpts value corresponding to the
current Eps value. �e Minpts values corresponding to
all Eps values are obtained to form the Minpts pa-
rameter list, and the Minpts values correspond to the
Eps values. Di�erent K corresponds to di�erent Eps,
Minpts parameter value pairs.

start

Input dataset D

Calculate the distance
distribution matrix Distn×n

Calculate the K nearest neighbor
distance matrix KNNn×n

K-median nearest neighbor
distance set KMNN1×n as a list

of Eps parameters

Solve all Eps in turn to contain
the number of element points,

and take the median to generate
a list of Minpts parameters

Eps, Minpts
parameter pair

Does the number of
clustering results converge?
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clustering results?

Record the optimal
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Figure 1: KMNN-DBSCAN algorithm ¡ow.
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Step 3. Eps and Minpts parameter pair optimization.

�e Eps and Minpts parameter value pairs corre-
sponding to di�erent K values are selected in turn as the
clustering parameters of the DBSCAN algorithm, and the
number of clustering results under the Eps and Minpts
parameter values corresponding to di�erent K values is
obtained. �is paper considers that when the number of
clustering results does not change for three consecutive
times, the number of clustering results is stable, and the
current number of clustering results is recorded as the
optimal number of clustering results. After the number of
clustering results is stable, we continue the above op-
erations until the number of clustering results changes.
�e interval from the optimal number of clustering re-
sults to the change of the number of clustering results is
called the stable area. For the stable area corresponding to
all the Eps and Minpts parameter value pairs, the ex-
pected EPS andMinpts are obtained respectively, and EPS
and Minpts are taken as the optimal Eps and Minpts
value.

2.3.PartitionKMNN-DBSCANAlgorithmPrinciple. In order
to solve the problem that the traditional DBSCAN algorithm
has errors in the clustering results on datasets with large
density di�erences, the idea of partitioning is introduced to
improve the KMNN-DBSCAN algorithm [17], and the
partition KMNN-DBSCAN algorithm is proposed. �e
implementation steps of the partition KMNN-DBSCAN
algorithm are as follows:

Step 1. Partition the input dataset.
Project the element points of the input dataset on theX-
axis and the Y-axis, respectively, to obtain the distri-
bution of the input dataset on the X-axis and the Y-axis.
�e partition points are selected at the places where the
density is the most sparse among di�erent density
centers, and sub-datasets with di�erent densities are
obtained.
Step 2. Perform cluster analysis on sub-datasets
separately.
KMNN-DBSCAN is used to adapt the parameters to
the sub-datasets, respectively, and the local optimal
parameters are used to cluster the sub-datasets to
obtain the clustering results of the sub-datasets.
Step 3. Merge local clustering results.

Merge the clustering results of the sub-datasets and �-
nally get the clustering results of the original datasets.

�e ¡ow chart of the partition KMNN-DBSCAN algo-
rithm is shown in Figure 2.

3. Ultrasound Information Group (UIG)
Division Experiment

As shown in Figure 3, the complete damage data extraction
for the original B-scan data includes the division of UIC and
UIG, and UIG is the complete damage data.

3.1. Ultrasound Information Combination (UIC) Division.
Ultrasonic steel rail ¡aw detection vehicle adopts ultrasonic
probe wheel as sensor. �e ultrasonic probe wheel has built-
in ultrasonic sensors with four angles: 0°, 37°, straight 70°,
and oblique 70°. Di�erent angle sensors are used to detect
di�erent areas of the rail, and the combination of di�erent
ultrasonic sensor channels is used to detect di�erent types of
damage. If UIC is not divided, it will a�ect the complete data
extraction of damage [18].

Figure 4 shows the detection range of ultrasonic sensors
with di�erent angles. �e ultrasonic propagation range of
the 0° probe is from the rail surface to the rail bottom, and
the detection range is the projection area of the rail waist.
�e 0° probe is usually used to detect the level of crack from
the rail surface to the rail bottom. �e detection range of the
37° probe is from the rail surface of the rail waist projection
area to the lower part of the rail waist. �e 37° probe is
usually used to detect the crack of the screw hole of the rail

start

Input original dataset

Divide the original
dataset into multiple

sub-datasets

Pick an unprocessed
sub-dataset

�e sub-dataset is
divided into UIC by
KMNN-DBSCAN

algorithm

All sub-datasets processed?

Merge all sub-dataset
UIC split results

End

N

Y

Figure 2: Flowchart of the partitioned KMNN-DBSCAN
algorithm.
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waist. �e detection range of the straight 70° probe is the
central area of the rail head, which is generally used to detect
nuclear damage in the middle of the rail head. �e detection
range of the oblique 70° probe is the area on both sides of the
rail head and is generally used to detect the lateral holes on
the inner and outer sides of the rail head.

As shown in Figure 4, there are related cases for sensors
with di�erent angles (such as 0° and 37° ultrasonic sensors),
and there are also unrelated channels (such as 37° and
oblique 70° ultrasonic sensors). If no distinction is made, the
division of subsequent UIG will be a�ected, thereby a�ecting
the e�ect of injury judgment. Table 1 shows the ultrasonic
sensor combinations corresponding to seven common rail
damages. From Table 1, it can be seen that di�erent ultra-
sonic sensor combinations are used to detect di�erent
damages.

In this paper, the raw B-scan data are divided into UIC
according to the ultrasonic sensor channel and position
correlation, combined with the combination of ultrasonic
sensor channels corresponding to each damage type. �e
UIC division results are shown in Figure 5.

3.2. KMNN-DBSCAN Algorithm Applied to Ultrasonic In-
formation Group (UIG) Division. In order to verify the ef-
fectiveness of the KMNN-DBSCAN algorithm in this paper,
the KMNN-DBSCAN algorithm is applied to the D037 UIC
dataset for UIG division. �e division results of the KMNN-
DBSCAN algorithm are compared with those of the SA-
DBSCAN and AF-DBSCAN algorithms. D037 is the 0° and
37° channel UIC data of the damage B-scan data collected in
an experiment. �e dataset contains 830 two-dimensional

Raw B-scan
data stream

Ultrasound
Information
Combination

(UIC) Division

Ultrasound
Information

Group
(UIG) division

Complete
damage data

Figure 3: Complete damage data extraction process.

37° probe straight 70° probe Slanted 70° Probe0° probe

screw
hole

screw
hole

screw
hole

screw
hole

Figure 4: Detection range of ultrasonic sensors at di�erent angles.

Table 1: Ultrasonic sensor combination corresponding to common rail damage.

Damage location Damage type Corresponding ultrasonic sensor combination
Rail surface Oblique downward defect 37° probe
Rail head Inner transverse hole Slanted 70° probe
Rail head Central nuclear injury Straight 70° probe
Rail head Outer lateral hole Slanted 70° probe
Rail waist Intact screw hole 0°, 37° probe
Rail waist Horizontal cracks in screw holes 0°, 37° probe
Rail waist Oblique crack in screw hole 0°, 37° probe
Rail bottom Cross-hole 0° probe

Raw B-scan data

Straight 70°
channel 

Oblique 70°
channel 0°, 37° channel 0° channel

Figure 5: B-scan data UIC division.

Mathematical Problems in Engineering 5



ultrasonic echo data. Figure 6 shows the corresponding
B-scan of the D037 dataset. 0e D037 dataset contains 0
damaged UIGs; that is, the D037 dataset contains 10 clusters.

Figure 7(a)–7(c) are the UIG division results of the D037
dataset by the SA-DBSCAN algorithm, the AF-DBSCAN
algorithm, and the KMNN-DBSCAN algorithm. All

elements with the same point type form a cluster class,
elements with different point types represent different
clusters, and noise points are points that do not belong to
any cluster.

0e UIG division results and evaluation indexes of
different clustering algorithms are shown in Table 2.

Figure 6: D037 dataset corresponds to B-scan.
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Figure 7: UIG division results of different parameter adaptive algorithms. (a) SA-DBSCAN. (b) AF-DBSCAN. (c) KMNN-DBSCAN.
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Among them, F-Measure reflects the ability of the al-
gorithm to identify valid data points, and the larger the F
value, the stronger the ability of the algorithm to identify
valid data points [19]. 0e silhouette coefficient compre-
hensively reflects the compactness within the class and the
separation between the classes. 0e value range of SC is [−1,
1]. Within the value range, the larger the value of SC, the
better the clustering result [20].

Judging from the correct number of clusters in Table 2,
the number of clustering results of the KMNN-DBSCAN
algorithm is the closest to the real number of clusters in the
D037 dataset, and the number of correct clusters is also the
most, indicating that the KMNN-DBSCAN algorithm has
the highest UIG division accuracy. From the F-Measure in
Table 2, the F values of the AF-DBSCAN algorithm, the SA-
DBSCAN algorithm, and the KMNN-DBSCAN algorithm
are all above 0.9, indicating that the three algorithms have a
strong ability to identify valid element points. According to
the SC index in Table 2, the SC value of the UIG division
result of the KMNN-DBSCAN algorithm is significantly
higher than that of the comparison algorithm, indicating
that the clusters divided by KMNN-DBSCAN have more
compact elements within the cluster and more dispersed
between different clusters, which shows that the UIG

division of the KMNN-DBSCAN algorithm is more
reasonable.

By comparing the UIG division results of the KMNN-
DBSCAN algorithm and the comparison algorithm in terms
of the number of clustering results, the number of correct
clusters, F-Measure, and SC indicators, it can be seen that the
KMNN-DBSCAN algorithm proposed in this paper not only
has strong identification efficiency. 0e ability of element
points, and the accuracy and rationality of ultrasound in-
formation group division are better.

3.3. Partition KMNN-DBSCAN Algorithm Applied to Ultra-
sound Information Group (UIG) Division. 0e D037 dataset
contains a total of 10 rail damage UIG. 0e KMNN-
DBSCAN algorithm divides the D037 dataset into 7 clusters
and fails to correctly divide all the ultrasound information
clusters. 0is is because the densities of the UIG⑧∼⑩ and
the UIG ①∼⑦ in the D037 dataset are quite different. 0e
KMNN-DBSCAN algorithm uses the same clustering pa-
rameters to process the datasets with large density differ-
ences, resulting in the UIG ⑧∼⑩ is divided into noise. To
solve this problem, this paper proposes a partition KMNN-
DBSCAN algorithm. In order to verify the effectiveness of

Table 2: UIG division results and evaluation indexes of different clustering algorithms.

Algorithm name Eps Minpts Actual number
of classes

Number of
clustering results

Number of
correct clusters F-Measure SC

AF-DBSCAN 23.4 30.1 10 7 6 0.905 0.442
SA-DBSCAN 16.5 12.0 10 3 1 1 0.468
KMNN-DBSCAN 22.9 42.7 10 7 7 0.957 0.855
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the partition KMNN-DBSCAN algorithm, the algorithm
was used in the D037 UIC dataset to divide ultrasound in-
formation groups, and the specific process is as follows:

(1) Partitioning the D037 dataset based on the density
distribution characteristics of the dataset.
0e D037 data points are projected on the X-axis and
the Y-axis, respectively, and the spatial distribution
characteristics of the data element points of the D037
dataset on the X-axis and the Y-axis are shown in
Figure 8.

As shown in Figure 8, the density of the D037 dataset
is continuous on the X-axis, and there are two dense
regions on the Y-axis, and the two densities are quite
different. Where the density is the most sparse be-
tween the two density centers, D037 is divided into
two sub-datasets of D0371 and D0372.

(2) 0e D0371 and D0372 datasets are divided into UIG by
KMNN-DBSCAN.
Figure 9 shows the results of KMNN-DBSCAN di-
viding the D0371 and D0372 datasets by UIG.
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Figure 9: Sub-dataset KMNN-DBSCAN UIG division results. (a) D0371 dataset KMNN-DBSCAN UIG division results. (b) D0372 dataset
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It can be seen from Figure 9 that the KMNN-
DBSCAN algorithm is used to adapt the parameters
of the two sub-datasets D0371 and D0372, respectively,
and the local optimal parameters are used for the
division of the local UIG. Both sub-datasets realize
the UIG accurate division.

(3) Merge the results of sub-dataset UIG division.

After completing the local clustering of each sub-dataset,
all local clustering results should be merged to obtain the
overall clustering result of the original dataset. By combining
the division results of the UIG of the above two sub-datasets
D0371 and D0372, the result of dividing the UIG of the original
input dataset D037 by partition KMNN-DBSCAN is shown
in Figure 10.

Table 3 shows the comparison results of the UIG division
of D037 by partition KMNN-DBSCAN and KMNN-
DBSCAN. Judging from the number of clustering results and
the number of correct clusters in Table 3, the partitioned
KMNN-DBSCAN algorithm divides all UIGs of the D037
dataset correctly. From the F-Measure in Table 3, the
F-Measure value of the partitioned KMNN-DBSCAN

algorithm is 1, which indicates that the partitioned KMNN-
DBSCAN algorithm has identified all valid data points. From
the SC index in Table 3, the SC value of the UIG division
result of the partitioned KMNN-DBSCAN algorithm is
significantly higher than that of the KMNN-DBSCAN al-
gorithm. 0is shows that the clusters divided by the parti-
tioned KMNN-DBSCAN have more compact elements in
the cluster and more dispersed between different clusters;
that is, the partitioned KMNN-DBSCAN algorithm UIG
division is more reasonable.

4. Conclusion

In this paper, according to the characteristics of damage
B-scan data, the density-based DBSCAN clustering algo-
rithm is selected to study the extraction method of complete
damage B-scan data. 0e main conclusions are as follows:

(1) A parameter adaptive DBSCAN algorithm KMNN-
DBSCAN is proposed, which solves the defect that
the traditional DBSCAN algorithm needs to man-
ually set the clustering parameters. KMNN-
DBSCAN algorithm generates the list of Eps and
Minpts parameter values according to the distance
distribution characteristics of the input dataset,
determines the optimal Eps and Minpts according to
the relationship between the clustering results of the
algorithm and the K under different parameter
values, and realizes the complete adaptation of the
two parameter values of Eps and Minpts.

(2) 0e KMNN-DBSCAN algorithm is applied to the
D037 dataset for UIG partitioning. 0e experimental
results show that, compared with SA-DBSCAN al-
gorithm and AF-DBSCAN algorithm, KMNN-
DBSCAN algorithm has stronger ability to identify
valid element points and performs better in the
accuracy and rationality of UIG division.

(3) 0e proposed partition KMNN-DBSCAN algorithm
solves the problem that the traditional DBSCAN
algorithm has errors in the clustering of datasets with
uneven density distribution. 0e partition KMNN-
DBSCAN algorithm is applied to the D037 dataset for
UIG division.0e experimental results show that the
partition KMNN-DBSCAN algorithm can effectively
realize the accurate UIG division, further improve
the correctness and rationality of UIG division, and
realize the effective extraction of complete damage
data.

According to the principle of the partition KMNN-
DBSCAN algorithm, the time complexity of the algorithm in
this paper is relatively high. 0erefore, how to effectively
reduce the time complexity of the algorithm is the focus of
our next work.

Data Availability

0e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 10: Partition KMNN-DBSCAN algorithm for UIG division
of D037 dataset.

Table 3: Division results and evaluation indexes of UIG by par-
tition KMNN-DBSCAN algorithm and KMNN-DBSCAN
algorithm.

Algorithm
name

Actual
number
of classes

Number of
clustering
results

Number
of correct
clusters

F-Measure SC

KMNN-
DBSCAN 10 7 7 0.957 0.855

Partition
KMNN-
DBSCAN

10 10 10 1 0.961
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