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How cascade hydropower stations (CHSs) play the electricity market game is regarded as an important issue. )e majority of the
work to date has focused on short-term horizons and several simplifications in the hydropower system. If future prices are
expected to be higher than the current price, CHSs with large reservoirs allow the bidder to postpone energy production for a
longer time scale, such as several months or more, which generally matches with the regulation period of the reservoir. Rejecting
the assumption of simplifying the hydropower system (ASHS), the long-term bidding strategy of CHSs is discussed for a price-
maker based on the supply function equilibrium (SFE). )is study considers multiple price-makers, time-coupling, and the
characteristics of the hydropower system, with significant challenges.)e difference from the conventional model is that the long-
term optimal scheduling model of CHSs is added. Moreover, a new methodology is proposed, the equilibrium curve of the
uniform clearing price (UCP) is introduced, and the Nash equilibrium solutions are solved based on the nonlinear comple-
mentarity approach. In a simulated electricity market, the result can validate the feasibility of the model and adoptedmethodology
and the rationality of the results by taking certain CHSs with multireservoir as an example. )e negative influence of ASHS is
analyzed, which shows that the characteristics of the hydropower system should be fully considered in the long-term bidding
research. Future study aspects are also considered, which are presented as the key issues such as market assumptions
and randomness.

1. Introduction

As the new round of power system reform in China is
developed, market participants are faced with a series of
large-scale, highly complex, and nonlinear multiperson
decision-making problems. In an electricity market, inde-
pendent power producers (IPPs) exercise market power by
adopting certain strategic behaviors to earn greater profit.
Researchers focus on the investigation of the bidding
strategy in the short-term or day-ahead electricity market to
explore the bidding strategy of IPPs in the electricity market.
)e currently available methods include (1) a method to
forecast the market clearing price [1–4]; (2) a method based
on risk management [5, 6]; (3) a method to forecast and
estimate the strategies of competitors [7]; and (4) a method
based on game theory. Much research has been conducted

on the first method, which is applicable to IPPs as the price-
taker. In the electricity market, which is a typical oligopoly,
the method based on game theory confers more theoretical
advantages compared with other methods, so it is applicable
to IPPs as the price-maker. )e equilibrium models of ol-
igopolistic competition based on game theory include the
Cournot equilibrium model [8–10], Bertrand equilibrium
model [11], Stackelberg equilibrium model [12, 13], and SFE
model [14–18]. Among them, the SFE model is akin to the
bid-based pool (BBP) mode as is mainly used in the elec-
tricity market, so it is extensively studied. )e strategic
bidding problem for price-maker agents based on the
equilibrium model is usually formulated as a bilevel opti-
mization problem, which is in turn transformed into amixed
nonlinear complementarity problem (NCP) by applying
Karush–Kuhn–Tucker (KKT) complementarity conditions,
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known as mathematical programming with equilibrium
constraints (MPECs). )ere have been many solution
methods, such as interior point method with penalty term
[14, 19], heuristics and iterative procedures [15, 20, 21], and
the nonlinear complementarity approach [8, 22–27]. At
present, there has been much research into this topic
[8, 14–24, 28]. However, most of them are applied in the
electricity market with only thermoelectric systems and are
based on the market-wide equilibrium at a certain point in
time. Such scheduling decisions are generally decoupled in
time.

A pattern of cascade hydropower systems with the basin
development company as the main body has been formed in
China, in which CHSs have become important participants
in the competition in the electricity market. Since the res-
ervoir has the ability to store water (energy), it can be de-
cided whether to generate in the present or store water for
future use, which makes the operation of CHSs coupled in
time. CHSs allow the bidder to postpone energy production
through reservoir regulation if future prices are expected to
be higher than the current price. Furthermore, the inter-
connection between the CHSs makes the operation coupled
in space. )is means that the bidding strategy should
consider the characteristics of the hydropower system,
making strategic bidding among cascade hydropower
companies a large-scale multiperiod bilevel optimization.
)e strategic bidding problem solution is therefore more
subtle.

For the issue of bidding for hydropower and thermal
power based on the game theory, the dynamics of the hy-
dropower station bidding game were considered [29]. A
bilevel optimization problem to electricity generation
scheduling in the wholesale market environment is proposed
[30]. )e numerical example of a 15 bus energy power
system with thermal and hydropower plants is used to test
the applicability of the approaches. )e coalitional strategy,
forms, and coalitional conditions of CHSs were studied
based on coalitional game theory [31]. Moreover, it is
supposed that the output of hydropower stations is a qua-
dratic function of inflows and storage capacity. )e equi-
librium of a Cournot game between multiple firms that each
possesses a mixture of hydropower and thermal generation
resources was studied [8]. A price-taking fringe was in-
troduced as a new element, and a mixed linear comple-
mentarity model was established. A test case with 21
scenarios (i.e., three months and seven load levels) is pro-
posed to analyze the equilibrium characteristics under dif-
ferent market structures, which is still the equilibrium at a
single point in time. Moreover, the model simplified the
hydroelectric system with the maximum and minimum
output parameters.

)e above-mentioned research mainly studied the bid-
ding equilibrium at a single point in time and has made
simplified assumptions, but all ignored the time coupling of
hydropower systems, which is necessary for practical ap-
plications. A multiyear model of strategic hydroscheduling
was examined through the use of a stochastic dynamic
programming recursion technique [32]. A dual dynamic
programming approach to the numerical solution for a

medium-term optimal hydroschedule was used [33], and the
submodels at each stage are Cournot duopolies. But the
model only considers a single price-maker hydropower
company. Based on a review of the methodology adopted for
solving the problems of single-period and multiperiod
stochastic strategic bidding scenarios, a new methodology
for long-term strategic bidding of a price-maker hydro-
power-based company was proposed [34]. )e proposed
approach considers the uncertainty of inflow and the in-
terconnection between the CHSs. A deterministic residual
demand curve (RDC) and a piecewise linear approximation
of the expected future benefit function were proposed. )e
model is solved based on stochastic dual dynamic pro-
gramming; however, the model discussed in the present
work considers a single price-maker company and follows a
quantity-only bid approach, which is a particular case of a
more general market equilibrium model. Several reservoirs
are not aggregated into one “equivalent reservoir”, but the
production coefficients of hydropower stations were as-
sumed to be constant.)emidterm stochastic mixed-integer
linear programming model for a price-maker hydro-
producer with pumped storage in the day-ahead market was
proposed [7]. A yearly stochastic self-scheduling model is
presented because there is only one price-maker. )e pro-
posed approach considers the modification of the RDC
based on pumped storage characteristics and a three-stage
scenario tree with 90 scenarios to simulate uncertainty in
inflow and demand load. But similar to most models, the
output is considered a linear function of inflow.

Although these studies have considered time-coupling of
CHSs, they are not a market-wide equilibrium model, but a
single-firm profit-maximization model that focuses on the
self-scheduling of price-maker. )e short-term bidding
strategy for hydropower stations based on a static game was
studied [35], but by assigning weights to each generator, the
multiobjective programming problem was transformed into
a single-objective optimization problem to be solved ap-
proximately. An equilibrium model to determine the price
and quantity of strategic bids was studied in a day-ahead
electricity market, with predominantly hydropower stations
[20]. A new solution method is proposed, which replaces the
MPEC complementary condition with the strong dual
condition and solves the competition between several
leaders through a step-by-step iterative process, which we
expect to be a Nash equilibrium. Two price-makers are
considered, and each company has multiple thermal power
and CHSs, but the output is still calculated with a constant
production coefficient. )ere have been many reports based
on market-wide equilibrium, the vast majority of which
focused on short-term horizons.

All the aforementioned research simplifies the hydro-
power system: first, the production coefficient and the
available head of water at each hydropower plant are as-
sumed to be constant, which will make the total amount of
electricity for the same amount of water constant. However,
in actual operation, because of the same amount of water,
different operation modes have different total electricity, so
it is often necessary to ensure maximum power generation
by optimizing the operation of the reservoir. )is is mainly
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because the production coefficient is a nonlinear factor,
which is related to the available head of water, discharge
flow, and other factors; especially in the long-term opera-
tion, the range of variation in the available head is larger, as
is the variation in production coefficient. )is assumption
will lead to significant discrepancies in model output data.
At the same time, the difference between electricity quantity
and actual power generation will bring various risks. In the
period of low water level, because the actual water head is far
less than the fixed water head, the actual hydropower
generation is lower than expected, and there are perfor-
mance risks. In the period of high water level, because the
actual water head is much larger than the fixed water head
and the actual power generation is higher than the expec-
tation, abandoned water will occur. Second, the model
aggregates several hydropower stations into one “equivalent
hydropower station”, which is a numerical accumulation.
Each hydropower station is isolated from the others. )e
model does not consider various characteristics such as
upstream and downstream hydraulic connectivity and in-
terval inflow between CHSs, which is quite different from the
actual situation.

Hence, based on the aforementioned comments, the
main aims of the paper are to (1) build a long-term strategic
bidding model of CHSs based on the linear supply function
equilibrium (LSFE). )is model considers time-coupling, so
it is multiperiod. It also considers the market-wide equi-
librium resulting from the competition between multiple
price-makers on the quantity and price of electricity in an
electricity market with multiple types of generation sources;
(2) reject ASHS, be full considered the characteristics of the
hydropower system, such as changes in water head, the water
balance, overflow or surplus water flow, upstream and
downstream hydraulic connection and interval inflow, and
make a comparative analysis; (3) propose a solution
methodology and introduce the equilibrium curve of the
UCP.

2. Model Description and Formulation

Strategic bidding for price-maker agents is usually formu-
lated as a bilevel optimization problem for the electricity
market, in which the internal layer corresponds to the
minimization of the power purchase cost of the independent
system operator (ISO) under the mechanism of a UCP; the
external layer represents the maximizing the profits to all
bidders. )e inner layer problem can be modeled by a
competitive equilibrium model. )e BBP mode is still the
most widely used transaction mode in the actual electricity
market, and the competition of power producers is more
akin to the competition of supply function. Each power
producers submit an incremental supply function to ISO to
quote. )is paper adopts the LSFE model to simulate an
electricity market. In terms of long-term bidding games
among hydropower generators, a multiperiod dimension is
added due to hydraulic and electric connections between
periods. Moreover, due to changes in inflows and outputs in
different periods, the market equilibrium of the internal

layer also varies synchronously, so the model is more
complex.

2.1. Market Clearing Model. In the electricity market with
UCP, ISO determines the power purchase plan and the UCP
according to the objective of minimizing power purchase
cost based on the predicted future load curve. It is supposed
that there are n strategic IPPs in an electricity market, and
the game between these IPPs is a static noncooperative game
with complete information. It is supposed that, without
considering transmission constraints and network losses,
only constraints on the outputs of generator units and
electricity price in the electricity market are considered; thus,
the model for market clearing in the period t is given by

Min 􏽘
n

i�1
Pit · qit, (1)

s.t. 􏽘
n

i�1
qit � D t, Pt( 􏼁

� Lt − δtPt,

(2)

qi,min ≤ qit ≤ qi,max, (3)

pmin ≤Pt ≤pmax, (4)

qit ≥ 0, (5)

where qit and Pit denote the output and bidding price of the
IPP i in period t; D(t, Pt) denotes the demand function for
power load in period t; Lt represents the predicted value of
load demand in the period t as obtained by ISO prediction;
δt (δt ≥ 0) represents the price elasticity coefficient of the
load demand; Pt refers to the market electricity price in
period t; qi,min and qi,max denote the min and max output of
the IPP i in period t; pmin and pmax denote the price floor and
price cap of the electricity market.

It is supposed that IPP i makes a tender offer to ISO
based on LSFE so Pit � βitqit + cit, in which βit ≥ 0. βit and cit
are parameters pertaining to linear supply function of the
IPP i in the period t. Generally, the parameter βit is defined
as the decision variable of the strategy used by IPPs.

2.2. ProfitMaximizationModel. According to the principles
of microeconomics, all parties in the game aim to maximize
their own benefit; that is, they are expected to maximize their
own profit by calculating their own bidding functions;
therefore, the long-term decision model for any IPP based
on profit maximization is expressed as follows:

max πi � max􏽘
T

t�1
Pt · qit − ciqit( 􏼁, (6)

where πi denotes the amount (in CNY) of annual profit-
ability through IPP i (other parameters are as defined above).
It is supposed that IPP i features a linear function of variable
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operation cost: ci � aiqit + bi, in which ai and bi are pa-
rameters pertaining to the variable cost.

Based on equations (1) to (5) and equation (6) for n IPPs,
the long-term bidding game of IPPs is formed.

2.3. Profit Maximization Model for CHSs. In terms of
multiple periods and stations, CHSs present a close hy-
draulic connection; the same water use for power generation
corresponds to multiple different combinations of outputs,
and the market equilibrium also varies. It is therefore
necessary to ensure the overall equilibrium of the market in
multiple periods within the operating period during the
long-term bidding game. Equation (6) is transformed into
equations (7) to (15).

)e long-term optimal operation model for CHSs based
on profit maximization is given by

Max πi � Max 􏽘
T

t�1
Pt − bi( 􏼁 · Aij · Qij,t · Hij,t · Mt􏼐 􏼑. (7)

)e constraint on the water balance is

Vij,t+1 � Vij,t + Rij,t − Qij,t − Sij,t􏼐 􏼑 · Δt, ∀t ∈ T. (8)

)e constraint on water storage in reservoirs is

Vij,t,min ≤Vij,t ≤Vij,t,max, ∀t ∈ T. (9)

)e constraint on discharge flow from reservoirs is

Qij,t,min ≤Qij,t ≤Qij,t,max, ∀t ∈ T, (10)

Sij,t ≥ 0, ∀t ∈ T. (11)

)e constraint on the output of a station is

Nij,t � Aij · Qij,t · Hij,t, (12)

Nij,min ≤Nij,t ≤Nij,max, ∀t ∈ T. (13)

)e constraint on the total output of CHSs is

􏽘

k

i

􏽐
m

j

qij,t ≤ Ltmax. (14)

)e constraint on the electricity price is

Pmin ≤Pt ≤Pmax. (15)

Nonnegative constraint: all the above variables are
nonnegative (≥0).where Aij denotes the output factor of the
jth hydropower station of the IPP i; Qijt and Hij,t separately
refer to the discharge flow (m3/s) and the mean average net
head of water (m) during power generation at the hydro-
power station in period t; Mt is the duration (in hours) of
period t; T denotes the total number of periods within the
operating period (if that lasts for one year and the calculation
is undertaken on a monthly basis, then T�12); Vij,t refers to
the initial water storage (m3) of the reservoirs; Rij,t and Sij,t

represent reservoir inflow (m3/s) and surplus water flow
(m3/s) to the hydropower station in period t, respectively;Δt

is the duration (s) of the calculation period; Vij,t,min,
Vij,t,max, Qij,t,min, and Qij,t,max represent the minimum and
maximum water storages (m3) of reservoirs as well as the
minimum discharge flow (m3/s) and the allowable maxi-
mum discharge flow (m3/s) of the hydropower station in
period t, respectively; Nij,min and Nij,max separately denote
the minimum operating output and the rated installed ca-
pacity (MW) of the hydropower station; Nij,t and Ltmax
denote the output (MW) of the hydropower station in period
t and the maximum adjustable load of the electricity market
in period t, respectively. If the total output of these CHSs
exceeds the adjustable load demand of the market, surplus
water is generated; Pmin and Pmax separately refer to the
lowest and the highest electricity prices in the electricity
market, with i � 1, 2, . . . , k; j � 1, 2, . . . , mi.

Moreover, three conversion formulae for the water level
of reservoirs with storage capacity, tail water level at a
hydropower station with a certain discharge flow, and the
water level for a given available head of water are as follows:

L
up
ij,t � fij Vij,t􏼐 􏼑, (16)

L
down
ij,t � fij

′ Qij,t + Sij,t􏼐 􏼑, (17)

Hij,t � L
up
ij,t − L

down
ij,t − ΔHij, (18)

where L
up
ij,t, fij(·), Ldown

ij,t , and fij
′ (.) refer to the water level

(m) of reservoirs of the jth hydropower station of IPP i in
period t, the water level–storage capacity curve of the station,
the tailwater level (m) of the station in period t, and the
nonlinear relationship between the tailwater level and the
discharge flow in the lower reaches of the station, respec-
tively; ΔHij represents the head loss (m) during power
generation at the hydropower station, with ΔHij > 0.

It can be seen from equation (8) and equations (16) to
(18) that the storage capacity and head of water are both an
implicit function of flows for power generation. Assuming
that Hij,t � xij(Qij,t and Vij,t � yij(Qij,t), the decision
variable of the bidding strategy for CHSs is shifted from
outputs to flows for power generation.

2.4.MultiperiodBilevelOptimizationProblem. Equations (1)
to (5), equation (6) for n-k thermal power plants, and
equations (7) to (18) for k CHSs constitute a long-term
bidding strategy model of price-maker CHSs based on the
LSFE equilibrium, which is a multiperiod bilayer optimi-
zation problem.)e bidding strategy of each IPP is related to
the strategy of its competitors. In order to achieve Nash
equilibrium, it is not allowed to solve the bidding strategy of
each IPP separately but must solve the bidding strategy
problems of all IPPs simultaneously.

3. Proposed Methodology

)emodel involves many different types of IPPs, with many
equality or inequality constraints, taking the form of implicit
functions for multiple variables. )erefore, the equilibrium
problem of large-scale electricity market is sophisticated
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mathematical programs. Together with the requirement for
overall equilibrium for multiple hydropower stations in
multiple periods among CHSs, the model is difficult to solve.
It is necessary to optimize and decompose the model as
described below:

3.1. TimeDecoupling andTimeCoupling. For thermal power,
wind power, and solar photovoltaic power stations as well as
run-of-the-river hydropower stations (or hydropower sta-
tions with a regulation capacity less than the duration of the
chosen time period), the outputs in different time periods
are independent. )is means that the bids made at one given
period had no effect on the following periods; that is, the
problem was decoupled in time. )e maximization of the
long-term profits means profit maximization in each period.

As previously mentioned, a time-coupling characteristic
is inherent to the problem of CHSs because of the existence
of water reservoirs, which enable them to transfer available
energy from one period to subsequent ones. So the profit
maximization at each period is time coupled.

3.2. Price-Takers and Price-Makers. For generator units
(such as run-of-the-river hydropower stations, wind power,
and solar photovoltaic power stations) with a constant and
low marginal cost, it is common to apply a low bidding price
to realize the possible maximum output to guarantee con-
sumption and reduce the risk of surplus water, surplus wind,
and surplus photovoltaic power in the long-term schedule.
)ese units are price-takers: it can be thought that com-
petition occurs on the basis of the adjustable load on the
system excluding outputs from the aforementioned gener-
ator units [8, 36]; that is, a bidding game occurs between
hydropower stations with regulation capacity and thermal
power plants as price-makers.

3.3. 7e Effect of Output Regulation of CHSs on the UCP.
)e short-term bidding strategy and long-term bidding
strategy of CHSs are different. Due to the existence of the
reservoir, CHSs can be scheduled according to the bidding
result in the day-aheadmarket, without abandoning water or
performing the contract risk. It can become the marginal
unit and participate in the bidding game like a thermal
power unit to reach the market equilibrium. However, the
long-term bidding strategy is more complicated because of
the seasonality of the inflow and the limited regulation
ability of the reservoir, as well as the full and empty periods
of the reservoir. In general, the marginal cost of hydropower
station is constant and low, and the loss of profit from
abandoning water often exceeds the gain from higher
electricity prices. )erefore, it is assumed that CHSs are
generally not taken as marginal units to determine directly
the price, but as units below the marginal unit to indirectly
affect the price by regulating the output of unit during the
long-term bidding game.

)e mechanism of influence is described as follows: it is
supposed that the equilibrium curve of the UCP is given by
P � B(L), and the corresponding UCP of the load La of the

system is expressed as Pa � B(La). If the output of CHSs
(located below the marginal units) is increased by ΔN
(ΔN � La − Lb), which is equivalent to the adjustable load
on the system being reduced from La to Lb, the UCP is given
by Pb � B(Lb), and thus, the electricity price decreases. On
the contrary, if the output of the CHSs decreases by ΔL,
implying that the adjustable load on the system increases by
ΔL and the electricity price increases, as shown in Figure 1.
On this basis, the functional relationship between the
electricity price and the output (load) when CHSs participate
in the long-term game of the electricity market is established
thus.

Pt � B Lt
′ + ΔN( 􏼁, (19)

where Lt
′ denote the adjustable load of the system after

excluding output from stations of price-takers in period t.
Hence, when the equilibrium curve of UCP is known, the

different electricity prices corresponding to different outputs
of CHSs can be solved, and the correlations of the inflow,
output, load, and electricity price can be established, and it is
possible to transform the problem of the long-term bidding
game of CHSs based on LFSE into a long-term optimal
operation problem of CHSs in the case that the electricity
price changes with the output.

Based on the characteristics whereby CHSs are permitted
to change the UCP by regulating outputs, the electricity
market bidding is divided into two parts. )e first part is the
bidding between thermal power plants, as price-maker. )e
second part is the bidding between CHSs and all thermal
power plants. In this way, a bilevel optimization problem is
divided into two independent problems to be solved step-by-
step, thus decreasing the complexity of the problem and
difficulty of calculation. )e first step is to calculate the
equilibrium curve of the UCP excluding CHSs; the second
step is to solve the long-term optimal operation problem of
CHSs based on the equilibrium solution curve.

3.4. 7e Equilibrium Curve of the UCP Excluding CHSs.
)e bidding game of the electricity market without CHSs is
usually the strategic bidding problem of thermal power as
the price-makers. )is is a one-period, bilevel optimization
problem, and the scheduling decision is decoupled in time.
Based on the static game of complete information, the
equilibrium solution of the quantity of the bidding parties
and the UCP can be obtained by specifying the load demand.
According to different load demands, the equilibrium curve
of the UCP at each period can be obtained. When the
number and installed capacity of thermal power units, as the
price-makers, change with factors such as the new units put
into operation, maintenance, shutdown, and decom-
missioning, the equilibrium curve of UCP will change. )e
influence of these factors should be considered in each
period of long-term bidding scheduling.

)e market equilibrium solution excluding CHSs, in-
cluding the equilibrium solution of the UCP, can be derived
by solving equations (1) to (5) and equation (6) for n − k

IPPs.)erefore, the equilibrium curve of UCP describing the
relationship between load demand and UCP equilibrium
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solution can be derived. )e calculation is conducted by
using a nonlinear complementarity approach and the im-
proved Levenberg–Marquardt algorithm [32, 37–39].

3.4.1. Nonlinear Complementarity Approach. By applying
the KTTcomplementarity condition of each participant, this
bilayer optimization problem is transformed into a mixed
NCP. )ere are many ways to solve the mixed NCP. In
theory, the heuristic iterative algorithm cannot guarantee
that the solution obtained by convergence is the Nash
equilibrium solution, and the convergence of the algorithm
cannot be guaranteed either. Direct solution methods are
mainly aimed at the linear complementarity problem (LCP),
and corresponding commercial LCP software packages are
used to solve it [8, 25]. When the model becomes more
complex and NCP occurs, the interior point method and the
nonlinear complementarity approach are usually used [22].
)e interior point method requires the initial value and
iteration value to be in the positive octant, and additional
conditions are required. Compared with other methods, the
nonlinear complementarity approach is chosen because of
its advantages in the following aspects: reduction of the
difficulty of solution, more convenient calculation, and
wider applicability and is more suitable for solving large-
scale and complex equilibrium problems [26].

By introducing the generalized Lagrange multiplier, the
equivalent KKT complementarity conditions for profit
maximization of IPPs are obtained, and then, the KTT
complementarity condition of each IPPs is transformed into
a group of nonlinear algebraic equations by using the
nonlinear complementary function
ψ(a, b) � a + b −

������
a2 + b2

√
. )us, multiple MPECs are

transformed into multiple ordinary nonlinear programming
problems with standard constraint qualification [27].

3.4.2. 7e Improved Levenberg–Marquardt Algorithm.
)e nonlinear complementary function is nondifferentiable
and nonsmooth at the origin (0, 0), which leads to the
nonexistence of its gradient. When solving the above
equations, semismooth algorithms should be used. Com-
pared with other algorithms, the improved

Levenberg–Marquardt algorithm considers the search di-
rection of the Newton method and gradient method at the
same time, and the algorithm has better stability perfor-
mance and faster convergence speed, which is more suitable
for solving large-scale NCP problems.

Definition 1. Let g: Rn⟶ R is a function under the local
Lipschitzian condition and Dg is the set of all differentiable
points of g, then the subdifferential zBg(x) of g is defined as
follows:

zBg(x) � h ∈ R
n×1

|h � lim
xk∈Dg,xk⟶ x

∇g x
k

􏼐 􏼑
⎧⎨

⎩

⎫⎬

⎭, (20)

where ∇g(xk) is the gradient of g at a differentiable point xk.
If g is differentiable at point x, then zBg(x) is equal to
∇g(x). )e convex closure of zBg(x) is the generalized
gradient.

)e main calculation steps are as follows.

Step 1. Initialize parameters, set the computational preci-
sion ε, and the initial point x0.

Step 2. Calculate the search direction Δxk.
Select any Hk ∈ zBE(xk) and solve for Δxk according to

the following equation:

H
k

􏼐 􏼑
T
H

k
+ σk

I􏼒 􏼓Δxk
� − H

k
􏼐 􏼑

T
E x

k
􏼐 􏼑 + r

k
, (21)

where σk is the algorithm parameter, and σk ≥ 0; rk is a
variable vector whose norm is small enough.

Step 3. Calculate the iteration step size hk.
In this paper, the iterative step size is determined by

minimizing the merit function using the line search method.
hk � 2− i, i ∈ 0, 1, 2, . . . , n{ }, and i take the minimum

value satisfying the following equation:

Φ x
k

+ 2− iΔxk
􏼐 􏼑≤Φ x

k
􏼐 􏼑 + β2− i∇ΦT

x
k

􏼐 􏼑Δxk
, (22)

where the merit function Φ(x) � 1/2E(x)TE(x), and
β ∈ (0, 0.5).

Step 4. Variable iteration.
Iterate according to the following formula:

x
k+1

� x
k

+ h
kΔxk

, (23)

Step 5. Iteration termination criterion.
When ‖∇Φ(xk)‖≤ ε, meeting the accuracy requirements,

the iteration ends.

3.5. Long-TermBidding Problem of CHSs:7e Improved POA.
Compared with other optimization algorithms, the POA is
chosen because of its advantages in the following aspects:
reduction of the calculation of dimensions, faster conver-
gence speed, less parameter adjustment, and excellent
practicality [40]. )e POA has been improved several times
and successfully applied to reservoir scheduling [41–43].

System marginal cost curve

Electricity price
Uniform clearing price equilibrium curve

System loadLa

Pa

Lb

Pb

Figure 1: )e effect of output regulation of CHSs on the UCP.
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)e essence of the POA is to decompose a multistate
decision problem into a series of two-stage subproblems.
Firstly, the variables of other stages are fixed, and the de-
cision variables of the selected two-stage are searched for
optimization and then optimized stage by stage. )e opti-
mization result of this round is taken as the initial condition
of the next round of optimization, and a new round of
optimization is started until the convergence condition is
satisfied.

)e improved POA proposed in this paper mainly has
the following two improvements:

(1) Variable step size search: Considering the accuracy
and time of searching for the optimal solution, a
larger step length is adopted at the beginning of
searching for the optimal solution, and the step size
is gradually reduced according to the level of iter-
ation accuracy until the global optimal solution is
found.

(2) Consider market constraints, namely cascade total
output constraints and price constraints: In each
two-stage optimization process, it is necessary to
judge whether the total output of the steps exceeds
the adjustable load of the system, and water must be
abandoned if the total output exceeds the adjustable
load of the system. To judge whether the electricity
price derived from the equilibrium curve of the UCP
exceeds the price cap or the price floor of the
electricity market, the maximum and minimum
allowable values will be taken if the price exceeds the
price cap or the price floor.

4. Case Study

4.1. Description of the Case Study. We simulate the com-
petitive behavior of a regional electricity market with
multiple types of generation resources. )e total installed
capacity of the electricity market is 7,900MW, of which
25.6% are hydropower stations with regulating capacity,
namely A1 hydropower station and A2 hydropower station,
both belonging to the same IPP, and is the price-maker. Six
thermal power stations, including five coal units and one
gas-fired one, belong to different IPPs and are all the price-
makers. Run-of-the-river hydropower station group, wind
farms group, and photovoltaic power station group are
composed of many different IPPs, and they are all price-
takers. )e installed capacities of the regional electricity
market and their main parameters are listed in Table 1.

IPP Amanages two hydropower stations with reservoirs,
which lie on the upper and lower reaches of the same river
basin. Hydropower station A1 has an incomplete annual
regulating capacity, with the dead water level of 540m and
the normal water level of 600m; hydropower station A2 also
has an incomplete seasonal regulation capacity, with the
dead water level of 370m and the normal water level of
380m. )is is a multireservoir joint optimal operation
problem. Monthly inflow was selected from the data of
typical normal flow year in the river basin; the operating
period started at the beginning of June and ran to the end of

the following May, and the calculation was conducted on a
monthly basis. )e initial and final water levels of the op-
erating period were both set as the respective dead water
levels.

)e system loads and the adjustable loads of the system
are different from month to month, as shown in Figure 2.
)e adjustable load of the system is the system load minus
the output of power stations of price-takers such as run-of-
the-river hydropower station group, wind farms group, and
photovoltaic power station group. Assuming that during the
operating period, all IPPs in the electricity market partici-
pate in the market competition every month, and the in-
stalled capacity, number of competitors, and operation cost
parameters are the same, and the same equilibrium curve of
the UCP excluding CHSs is adopted every month.

4.2. Case Study Results. According to the model for SFE
consisting of equations (1) to (5) and (6) for n − k thermal
power plants, the equilibrium curve of the UCP excluding
CHSs is deduced by using the nonlinear complementarity
approach and the improved Levenberg–Marquardt algo-
rithm; that is,

Pt � B Lt
′( 􏼁 � 0.000014155L

′2
t + 0.01839Lt

′ + 260.35, Lt
′ ≥ 0.

(24)

According to equations (7) to (18) and (24), the result of
the long-term bidding game of CHSs based on SFE was
calculated by using the improved POA, as shown in Table 2,
Figures 3, and 4. For the convenience of comparison, the
bidding game was conducted based on the optimal operation
result obtained by using the objective functions of maxi-
mizing annual power generation (Figure 5).

As shown in Figure 5, when the objective function is to
maximize the annual power generation, the CHSs sched-
uling process is as follows: for the leading reservoir A1, the
highest operating water level, that is, the normal water level,
will be maintained from the beginning of October to the end
of April of the following year. In May, the water level of the
reservoir A1 will be decreased and fell to the dead level at the
end of May. From the beginning of June to the end of
September, the water level of the reservoir A1 will be raised
from the dead water level to the normal water level. )e
maximum annual power generation of the CHSs can be
achieved through the above long-term operation schedule
that keeps the water level as high as possible.

If ASHS is accepted and a fixed production coefficient of
the CHSs is adopted, the power generation cannot be op-
timized. When the inflow is fixed, the power generation is
fixed. In this case, the annual power generation of the CHSs
that accept ASHS is 11.41% less than those that reject ASHS,
and the deviation ratio of monthly output ranges from
-18.3% to 1.1%. Moreover, since it is maintained at a high
water level most of the time, the monthly output after
accepting ASHS is generally lower than that reject ASHS,
and the higher the average water level, the greater the de-
viation ratio. Only the monthly output in June was 1.1%

Mathematical Problems in Engineering 7



higher than that of reject ASHS, which was caused by the
lowest average water level in June.

However, when the CHSs participate in the electricity
market game as price-maker, the long-term optimal

operation scheme of the CHSs will be fundamentally
changed, and if the assumption of the simplified hydropower
system is accepted, it will also bring large losses and risks in
the long-term bidding game of CHSs.

Table 1: Installed capacities of the regional electricity market and their main parameters.

Power station Installed capacity (MW) Maximum output (MW) Minimum output (MW) ai bi
Hydropower station A1 1,386 1,386 0 0 60
Hydropower station A2 640 640 0 0 60
Coal-fired unit 1 1,000 1,000 100 0.102 179
Coal-fired unit 2 1,000 1,000 100 0.104 185.3
Coal-fired unit 3 600 600 50 0.208 191.6
Coal-fired unit 4 600 600 50 0.212 196.2
Coal-fired unit 5 300 300 50 0.432 206.7
Gas-fired unit 6 600 600 50 0.448 268.6
Run-of-the-river hydropower station group 1,200 1,200 0 0 50
Wind farm group 214 214 0 0 30
Photovoltaic power station group 360 360 0 0 20
Sum 7,900
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Figure 2: )e curve of the system loads and the adjustable system loads.

Table 2: Result of the long-term bidding game of CHSs based on SFE.

Time
period

Hydropower station A1 Hydropower station A2
Average
output of

CHSs (MW)

UCP
(CNY/
MW·h)

Hydro generation
of CHSs (MW·h)

Profit of CHSs
(×106 CNY)Inflow

(m3/s)

Water level at
the end of the
period (m)

Interval
inflow
(m3/s)

Water level at
the end of the
period (m)

May 331.5 540 9.6 370 1,138.1 344.74 846,765 291.91
June 383.1 540.01 11.1 380 847.3 371.85 610,060 226.85
July 910.9 599.82 26.2 380 1,696.7 310.82 1,262,362 392.37
August 726.4 597.88 20.9 380 1,975.6 300.44 1,469,837 441.6
September 776.6 599.99 22.4 379.99 2,026.0 281.38 1,458,704 410.45
October 641.8 600 18.5 380 1,785.9 285.41 1,328,728 379.24
November 288.4 600 8.3 380 828.4 392.05 596,426 233.83
December 221.2 600 6.4 379.99 640.5 465.21 476,556 221.7
January 198.9 600 5.7 380 577.4 465.84 429,610 200.13
February 186.7 597.44 5.4 380 581.6 391.76 390,868 153.13
March 193.1 600 5.6 379.99 522.1 411.86 388,433 159.98
April 184.7 575.82 5.3 380 831.4 370.13 598,589 221.55
Sum 9,856,938 3,332.74
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As shown in Table 2 and Figure 3, the CHSs sched-
uling process is as follows: the amount of power gener-
ation of the CHSs is determined by the inflow, and the
dead water level of the reservoir A1 will be maintained in
June, so as to reserve water storage capacity for subse-
quent flood mitigation and ensure that the monthly UCP
in the flood season is relatively average, because if the
discharge flow in the subsequent months of the flood
season is too large, the UCP will be too low, and the profit
of CHSs will decrease instead. At the end of September,
the water level of the reservoir A1 will be raised to the
normal water level. From the beginning of October to the
end of January of the following year, the water level of the
reservoir A1 will be kept at the normal water level. From
the beginning of April to the end of May, the water level
of the reservoir A1 gradually decreased from the normal
water level to the dead water level. From February to
March and from August to September, there is a process
in which the water level of the reservoir A1 is first de-
creased and then increased, in order to obtain an optimal
value in the multiperiod equilibrium.

In summer, the system load is the highest in the year,
especially in July and August, but this is also the high-flow
season for hydropower, which means more hydropower
available output and the lowest UCP of the year. Wind
power and photovoltaic outputs are greatly affected es-
pecially on rainy days. At this time, the energy structure
of the grid is dominated by hydropower.

In winter, the system load is higher in the year, only
lower than the load in summer, except in February. At this
time, the inflow of hydropower is reduced month by month
due to the decline of rainfall and the decrease in tempera-
ture, which means that the hydropower available output is
also gradually reduced. Although the output of wind power
and photovoltaic power is more than that in summer, the
complementary influence is limited, and these factors ulti-
mately result in the highest UCP of the year. Affected by the
Chinese New Year, the system load in February was the
lowest in the year. Due to the decline in demand, the UCP
also decreased.

)e negative correlation between the UCP and the
output of CHSs shows that the UCP changes dynamically
with variations in the output of CHSs and the system load in
the market game, as shown in Figures 2 and 4. It can be seen
that this bidding model based on SFE can better respond to
the demand imposed by the electricity market and more
effectively participate in electricity market competition, thus
realizing an overall equilibrium across multiple periods.

If ASHS is accepted, compared with rejecting ASHS, the
annual power generation and profit will be reduced by 10.8%
and 13.8%, and the deviation ratio of monthly output will
range from -46.8% to 22.5%, which is a large deviation.
)erefore, if IPPs use the model results that accept ASHS to
bid, it will bring significant economic losses and perfor-
mance risks.

As shown in Figure 6, during the period from July to
April of the following year, the reservoir is operating at a
high water level, and the deviation of monthly output is
negative; that is, the actual available output is higher than the
model result. )is means that in order to reduce profit losses
and abandon water, it is necessary to sell unscheduled power
generation that exceeds the model results in the short-term
electricity market. )is will further lower the UCP in the
short-term market. )e superposition of the two will bring
about a greater loss of profit. At the same time, due to the
higher expected electricity price, there is a risk of bid failure.

InMay and June, the reservoir is operating at a low water
level, and the deviation of the monthly output is positive;
that is, the actual available output is lower than the model
result. )is means not only to sell the power generation in
the long-term market at a lower price but also to purchase
the power generation in the short-term market at a higher
price to fulfill the contract.

)erefore, in the long-term bidding, the impact of
various main factors of the hydropower system should be
fully considered, such as changes in water head, the water
balance, overflow or surplus water flow, upstream and
downstream hydraulic connection, and interval inflow. )is
will make the model more realistic and the model results
more reasonable and more accurate.

530

540

550

560

570

580

590

600

610

0

500

1,000

1,500

2,000

2,500

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

W
at

er
 le

ve
l: 

m

O
ut

pu
t:M

W

Month

Output
Water level

Figure 3: Output and water level based on SFE.
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5. Conclusions

)e long-term bidding of CHSs as price-maker was explored
based on game theory and the model for SFE, which made
the market-wide equilibrium from a certain point in time to
a certain longer time range. )rough analysis of the major
deviations and risks brought about by ASHS, it was shown
that the characteristics of the hydropower system should be
fully considered in the long-term bidding. )e model was
more complicated than the conventional model because it
rejected ASHS and considered multiple price-makers, time
coupling, and the characteristics of the hydropower system.
)e correlation among inflows, outputs, loads, and UCPs
was established for CHSs through the model. In this paper,
based on the characteristics of hydropower, thermal power,
and other conventional types of power stations, a new
methodology was proposed, the equilibrium curve of the
UCP was introduced, and the market-wide equilibrium
during the dispatching period was solved based on the
nonlinear complementarity approach. Finally, the feasibility
of the model and methodology and the rationality of the
results are confirmed by way of a practical case study.

In terms of future work, we highlight three possible areas
of investigation: the first is to consider more hydropower
companies as price-makers. )e second extension is to
consider stochastic inflows, and the stochasticity of inflows is
an important consideration in the operation of hydro-
resources. Finally, the third relates to market-related as-
sumptions. )e present study was conducted on the
assumption of noncooperative behavior with complete in-
formation: in reality, market information is generally in-
completely asymmetric, and participants also tend to collude
and form alliances.
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