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This paper focuses on the stabilization problem for the linear parabolic system using the backstepping method. The exponentially
stability results for considered parabolic system are derived in two cases with Dirichlet and Neumann local terms. Also, the
boundary conditions for the problem is assumed to be mixed or Robin-type boundary conditions. The main aim is to achieve the
stability of the considered system using the backstepping method with help of Volterra integral transformation. The explicit
solutions of kernel functions in integral transformation is obtained by using Laplace transform and designed a boundary control
law to the closed-loop system. Finally, the effectiveness and applicability of the derived results are validated through a single-

species pattern generation model.

1. Introduction

The partial differential equations (PDEs) describe the several
mathematical models of real-life physical problems such as
propagation of heat or sound, chemical reactors, fluid flows,
signal processing, population genetics, and many others. The
important idea of this work is to study the exponential
stability of parabolic systems with mixed or Robin boundary
conditions using the backstepping method and boundary
control law. This approach provides significant design
freedom, a better insight to the key features such as com-
putable transient performance, and ability to handle un-
certainties to a certain level. However, it is noted that the
well-posedness of explicit solution to kernel equation and
appropriate design of the stable target system are the main
points to be focused in the process. The considered model
has wide range of applications including travelling wave-
trains model with oscillatory kinetics, linearizing a tubular
chemical adiabatic reactor, single-species pattern genera-
tion, and so on. The main aim of this work is to derive some
novel results on stabilization of parabolic systems with
Dirichlet and Neumann local terms. The stabilization of
various types of systems got much attention of the

researchers in the existing literature; see [1-3] and references
therein.

The boundary control for parabolic PDEs [4-6], for
hyperbolic PDEs [7, 8] and especially for nonlinear PDEs
[9-11] is widely studied using the backstepping method. This
method is introduced in [12, 13] by constructing an integral
operator which maps the solution of heat equation onto
solution of linear parabolic equation with analytical coef-
ficients. Earlier, Triggiani started the results for boundary
feedback stabilization of PDE [14], and Seidman [15]
addressed the results on exact boundary control of parabolic
equations. Later, the backstepping technique has been de-
veloped by Kokotovic [16] and Lozano and Brogliato [17] for
designing stabilizing controls for a special class of nonlinear
dynamical systems. The backstepping method is an efficient
one to eliminate the destabilizing term while the control is
acting only from the boundary [18]. The works in [19-21]
addressed the well-posedness of the formulation of parabolic
problem under dynamic boundary conditions, stabilization
of an unstable heat equation, reaction diffusion-ODE system
on convex domains, and heat equation with a heat source at
intermediate point, respectively, and boundary control of
linear PDEs is extended to plants with nonconstant
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diftusivity/thermal conductivity which has been studied in
[22]. The backstepping analysis using the nonnegative
semigroup theory for reaction diffusion equation with state
delay is investigated in [23].

The backstepping method has been used in real-life
models such as the late-lumping control for three different
types of PDE such as heat equation, wave equation, and two
linear coupled hyperbolic PDEs [24]. A nonlinear feedback
controller using backstepping design is addressed in [25]; the
results are derived to prove the global asymptotic stabili-
zation of the 1D nonlinear PDE model of unstable burning
in a solid-propellant rocket. The results on radially varying
reaction coeflicients under revolution symmetry conditions
on a sphere for unstable linear reaction diffusion equation
using boundary control has been solved in [26]. Recently,
Ghaderi and Keyanpour [27] studied the backstepping
boundary control approach for multidimensional coupled
parabolic PDEs.

One-dimensional diffusion-reaction PDE with exotic
boundary condition is established in [28] using folding
transformation. The combination of the backstepping
method and circle criterion to study the stability process for
the pool boiling system is established in [29]. Fixed-time
stabilization for reaction diffusion system and stabilization
of reaction diffusion PDE with delayed distribution actua-
tion are studied in [30, 31]. Recently, the finite-time bounded
control problem for coupled parabolic PDE-ODE systems
with time-varying and time-invariant boundary distur-
bances were obtained in [32]. Besides, a new general decay
rate to the wave equation with memory-type boundary
oscillations has been established in [33]. Recently, Ghattassi
and Laleg [34] analysed the heat transfer in a membrane
distillation-based desalination modeled by an advection
reaction diffusion coupled at the boundary. The state
feedback and output feedback for fixed-time stabilization of
a linear parabolic distributed parameter system with space-
dependent reactivity is studied in [35]. A generalization of
the scalar gradient extremum seeking algorithm, which
maximizes static maps in the presence of parabolic PDEs, is
presented in [36]. The stabilizability of linear partial integro-
differential equations with local term at left end was studied
in [37-39]. From the above motivation, the boundary sta-
bilization for the parabolic system with a local term at the
right end is presented in this paper.

First, an exponentially stable target system for the
considered unstable parabolic system is derived with help of
Volterra integral transformation. The role of integral
transformation is to build a change of variables which ab-
sorbs the destabilizing terms acting in the domain and allows
the boundary control to remove their effect completely with
help of backstepping approach. Furthermore, the explicit
solution of kernel function of hyperbolic type in the integral
transformation is obtained using Laplace transform. Finally,
the invertibility of integral transformation is proved to
conclude the stability of the closed-loop system through the
stability of target system. The main contribution of the paper
is listed as follows:
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(i) The state feedback boundary control design for
system with Dirichlet and Neumann local terms
(right boundary) is studied

(ii) Main advantage is that the results for mixed and
Robin-type boundary conditions can be easily de-
rived from the proposed conditions

(iii) As an application to practical problems, the pro-
posed control design is implemented to a single-
species pattern generation model.

The paper is organized as follows. Notations and some
preliminaries are given at the end of Section 1. The con-
sidered linear parabolic system with Dirichlet and Neumann
local terms is described in Sections 2 and 3, respectively,
which also presents the uniqueness of solution, exponential
stability results, and the invertibility of the Volterra integral
transformation. A practical application is discussed in
Section 4 to show the effectiveness of the proposed results.
Finally, some concluding remarks are given in Section 5.

L1. Notation and Preliminaries. LP(Q) is space of mea-
surable functions for which the pth power of the absolute
value is Lebesque integrable, 1 < p < co; for example, L* (Q2)
is the Hilbert space of square integrable function u(x,1),
x € (a,b) and t>0. WrP(Q) is Sobolev space which is
defined as {u € LP (Q): D*u € L? (Q), V|a| <k}, for exam-
ple, W2 (Q) = H' (Q). €(Q) is set of all real valued con-
tinuous functions defined on the space Q. > (a, b) is the set
of all twice continuously differentiable function in the do-
main (a,b). u,(x,t) and u,(x,t) denote the first-order
partial derivatives of u(x,t) with respect to ¢ and x, and
u,,(x,t) denotes the second-order partial derivative of
u(x,t) with respect to x.

2. Stabilization of the Parabolic System with
Dirichlet Local Term

The diffusion equation is a parabolic PDE; in physics, it
describes the macroscopic behavior of many micro-particles
in Brownian motion (resulting from the random movements
and collisions of the particles). These systems have found
many applications ranging from chemical and biological
phenomena to medicine, genetics, physics, finance, weather
prediction, and so on. Consider the linear parabolic system
as follows:

w; (x, 1) — ew,, (x,t) = cqw(1,¢),
(1-a)w(0,t) —aw, (0,t) = U(¢), (1)
(1-Pw(l,t)+pw,(1,t) =0,

where x € (0,1) is a spacial variable, >0 is the time, the
state variable w(x,t) € & describes density/concentration
of a substance, second term on the left-hand side describes
the “diffusion” with diffusion coefficient £>0, ¢, is an ar-
bitrary constant which comes in the coeflicient of Dirichlet
local term, a € [0,1] and fB € (0,1] are the constant
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coefficient for boundary conditions and U (¢) is the actuation
control input placed in the left boundary. The initial con-
dition for considered system is w(x,0) = w, (x). Figure 1
represents the process of the considered system (1).

Remark 1. It is noted that the values a, § =0, o, = 1, and
o, € (0,1) represent Dirichlet, Neumann, and Robin
boundary conditions, respectively. Also, 8 = 0 has not been
taken into account as it affects the local term, that is,
w(1,t) = 0, which vanishes the Dirichlet local term in (1).

The parabolic system (1) with the sources of instabilities
term ¢; when U (t) = 0 is unstable. Then, we have to recover
the instability term using the backstepping method and by
designing appropriate control law. For this, we consider the
following Volterra integral transformation in an upper
triangular domain which is given by

1

u(x,t) =w(x,t) - J p(x, yw(y, t)dy, (2)

where p(x,y) € ©?(0,1) is kernel function to be found.
Now, applying transformation (2) in (1), we get an expo-
nentially stable target system as

System

wixt) — ew, (x,1) = cyw(1,£) =0
(1 -a)w (0,t) — aw,(0,t) = U(t)
(I-PByw (L,t) - Bw(L,1) =0

Output

w(x, 0) = wy(x)

Controller

FiGure 1: Block diagram of system (1).

u, (x,1) — ey, (x,t) =0,
(1-a)u(0,t) —au,(0,t) =0, (3)
(1 _ﬁ)u(lat) +ﬂux(1)t) = 0’
where >0, a € [0,1], f€ (0,1], and u(x,t) € 2 with
initial condition u(x, 0) = 1, (x).

Next, we take the compatible condition of initial con-
dition in (1) as follows:

1 1
(1 = )w, (0) — aw, (0,0) = ap (0, 0)w, (0) + (1 — ) JO 200, yYw, (dy —a JO p..(0, y)wy (y)dy, (4)

(1-PBw,(1) + pw, (1,0) = 0.

Definition 1. The system of PDE u, — Au = f (u), where
u: QO — R and Q € (a,b) x (0,00) with an initial value
u(x,0) = uy(x) is said to be exponentially stable at the
equilibrium u = 0 if there exist constants M >0 and a>0

such that
e (x, ) < Me™ “flu (,0)ll,  V£>0, (6)

where | - | denotes any convenient vector norm.
Lemma 1 (see [40]). Let u € WY ([a,b], %) be a scalar

function.
Poincare inequality:

b b
j lu(x,t)Pdx < (b - a)u’ (a,t) + (b - a)’ J iy (x, )| dx.
(7)
Poincare-Friedrichs inequality:
b
J lu(x,t)Pdx < (b - a)i’ (b,t) + (b - a)u’ (a, 1)

\ (8)
+(b-a)? J |ua, (x, )} dx.

Now, our main aim here is to prove the exponential
stability of considered system (1) and design the boundary

(5)

control input which will be achieved through main results
given below.

2.1. Uniqueness of the Solution of (1). In this section, first, we
derive the boundary control input for system (1) using
backstepping transformation and then prove the exponential
stability of system (3).

Theorem 1. For any «c,, there exist a function
p(-) € €*(0,1): {0<x<y<1} such that wy(-) € L*(0,1);
with compatibility conditions (4) and (5), the closed-loop
system (1) with feedback controller,

1
U(t) = ap(0,0)w(0,¢t) + (1 - «) Jop(o, yw(y, H)dy
(9)
1
-« Jopx(o, w(y,t)dy, ae€[0,1].

has a unique solution w(x,t) in € ([0, 00); L* (0, 1)).

Proof. First, we will show that system (1) is transferable to
exponentially stable system (3) by deriving the explicit so-
lution for kernel function. Here, we derived the kernel
equation and its explicit solution. First, we differentiate
transformation (2) with respect to x and t:
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1-8
u, (x,t) = w, (x,t) + ¢ 3 p(x, Nw(1,t) + p(x, x)ew, (x,t) + py(x, Dew(1,1)
(10)
1 1
-mﬂ&@wwﬁ—Jpwummw%mw—Jpwwhwﬁﬂw,
1
(i) =, (5,0) + plx ) - [ poxyw(n0dy ()
d 1
Uy (%,8) = Wy, (X, 1) + ap(x, Xw(x,t) + p(x, J)w, (x, 1) + p,. (x, X)w (x, 1) — J Prx (6 Y)w(y, t)dy, (12)
where d/dxp (x,x) = p, (%, %) + Py (%, x), py (x,x) =0/ From (10)-(12), we obtain
3xp (%, Y,y Py (%, %) = A3yp (%, ),
d
u, (x,t) — ey, (x,t) = [—spy (x,x) — sd—xp(x, x) —ep, (x, x)]w(x, t)
1-8 !
+|c +e g p(x,1)+spy(x,l)—J p(x, y)e;dy |[w(1,¢t) (13)
1
+ | elpetxir) = pyy )00
G(&m) =¢(E—n). (16)
In order to get the target system (3), we choose that the
kernel p(x, y) satisfies the following hyperbolic PDE with Next, from integral boundary condition in (15), we have
integral boundary condition. In (13), the first term of right- 1 £
hand side becomes 2ed/dxp (x, x) = 0. Then, we obtain ¢r () = b _<—ﬁ)¢({) _a J ¢ (w)du. (17)
Pax (% 9) = Py (x, ) = 0, e \ B £ Jo

p(x,x) =0,

¢, (1- (14)

1
py(x,1) = e —<T)P(X, 1)
¢ (!
o J p(x, y)dy,
where 0 <x < y <1. Next is to find an explicit form of kernel
solution p(x,y). Let &=1-x, n=1-y, and

G (&, n) = p(x, y). Now, applying change of variables, the
kernel PDE is converted to

G (&) -G, (&) =0,
G =0,

1-— 3
GW (6) 0) = C_l + <—/3>G(£> 0) - C_l J G (f) T)dT>
€ B e Jo
(15)
where Gy = —p,, G, = =p,, Gt = Py and G, = p,.

It is obvious that the homogeneous equation in (15) has a
general solution of the form G(&,7) = ¢(E—n) +w(& + 1),
using the boundary condition G (¢, &) = 0; without loss of
generality, we set ¢ = 0 and ¢ (0) = 0. Therefore,

Applying the Laplace transform with respect to &, we
obtain

S0(5) - $(0) = - f—(%)cb(s) LAy

q)(s)=—c—1(2 ! )

e\s"+(1-pB/B)s —cyle

(o 1 1 1
:_s(sl —52)[5—51 _5—52]’

where s, = —(1-B/2B) + (1 - B/2B)* +¢,/e and s, =
—(1=P12B) =\ (1 = BI2B)* + ¢, /e.

Now, applying inverse Laplace transform gives

(19)

—) [e"F — ™). (20)
Thus, we have

G(f”?):¢(5—f7)=—%< )[e%(f-v)_esZ(f—n)}

(21)

1
S1=5
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Hence, from G(,7) = p(x, y), the explicit solution of
kernel PDE (14) is given by

af 1 S O-% s (-
) = —L[ —— |[e —e® . 22
(%) (_)[ sV @

which is continuously differentiable in [0, 1]. O

Remark 2. The structure of the left boundary controller is in
the form as follows, using integral transformation (2):

(i) For a =0, then the left boundary controller be-
comes Dirichlet boundary feedback controller, that
is, w(0,t) = U (t) and u(0,¢) = 0:

1
Ut) = jo 20, yw(y, )dy. (23)

(ii) For a =1, then the left boundary controller be-
comes the Neumann boundary feedback controller,
that is, w, (0,t) = -U (¢) and u, (0,¢) = 0:

w(0,8) = U () =Cl<

&

w, (0,8) = U () = —%‘

(1-a)w(0,t) —aw, (0,t) =U () = —(1 —(x)%(

o 1
+a—
e\s; -5,

Furthermore, the explicit solution of the target system
(3) is possible to get in the simple heat equation form
(detailed in [39]). That is,

u(x,t) = Z A, (x)e_Af‘t, (28)

n=1

where A, = (2n - 1)m+/e/2 is the eigenvalue, @, (x) = (1 -
a/a)A,/ /e cos(A,/~/€ x) + sin(A,/+/e x) is the eigenfunc-

1 1
tion, and A, = J u,®,, (x)dx/J CDfl (x)dx is the effect of
0 0

initial conditions. With the Volterra integral transformation,
employing the solution of the target system easily gives the
solution of system (1).

Therefore, the explicit solution of kernel function exists
and compatibility condition with initial value holds. Thus, a
unique solution w (x, ) of the closed-loop system (1) exists.
This completes the proof.

S1—%

1
U(t) = p(0,0)w(0,t) JO P (0w (yHdy.  (24)

(iii) For a € (0,1), then the left boundary controller
becomes the Robin boundary feedback controller,
that is, (1-a)w(0,f)—aw,(0,t) =U(¢) and
(1-a)u(0,t) —au,(0,t) =0:

1
U®) = ap(0,00w(0,) + (1 - ) jo 20, Yw(y)dy
1
- ocJ P, (0, Yw(y, t)dy.
0
(25)

It then follows the boundary control input which is given
by

) Jl [e") — e ]w(y,t)dy, (26)

0

S1—5

1 1
) J [-s,€" + 5,6 Jw(y, H)dy,
0
1

1
) j [~ e Jwy.ndy (27)

S1=58/Jo

1

) J[—slew +sew(y,t)dy, a€ (0,1).

0

2.2. Exponential Stability Results for (3). Next, the expo-
nential stability of target system (3) is proved using the
Lyapunov stability analysis.

Theorem 2. For £>0 and 5 € (0,1], the target system (3)
with mixed boundary conditions at « =0 or a =1 for ar-
bitrary initial condition uy(x) € L*(0,1) is an exponentially
stable in L*(0,1) if the following inequality holds

e Coe, )2 < € g ()] - (29)
Under the condition, (1 - f/f) =0.

Proof. To prove the stability of (3), consider the Lyapunov
function as follows:

Vtu(nn) = Jou (x, )dx. (30)



Since u(x,t) is a differentiable function, taking time
derivative and using boundary condition in (3) and inte-
gration by parts, we obtain

? = j; u(x, tu, (x,t)dx,

1
= J u(x,teu,, (x,t)dx,
0

=eu(1,t)u, (1,t) — eu(0,t)u, (0,¢) — Jl eui (x,t)dx,
0

_ —s(l /_3/3>u2 (Lt) - J: e (x, £)dx.

(31)
Using inequality in Lemma 1, yields that
) 1
wﬁ - j u? (x,t)dx. (32)
ot 0

In view of (18), we have oV (-)/ot < — 2V (t, u(x,1t)).
Solving this inequality, we obtain

V(tu(x, b)) <e >V (0,u(x,0)), (33)

1
where V (0, u(x,0)) = 1/2 J ug (x)dx. Therefore, from (30),
0

we get inequality (29). Hence, from Definition 1, it can be
concluded that the target system is an exponential stability in
L?(0, 1). This completes the proof.

Suppose if @ € (0,1), the boundary condition of target
system (3) turned to be Robin type, the stability results for
this case will be proved in the following theorem. O

Theorem 3. For ¢>0 and 5 € (0,1], the target system (3)
under Robin boundary conditions at a € (0, 1) for arbitrary
initial condition u, (x) € L*(0, 1) is an exponentially stable in
L%(0,1) if the following inequality holds

e Coes )2 < € g ()] 25 (34)
under the condition (1 —f/B)=0 and (1 - a/a) > 0.

Proof. Consider the Lyapunov function as given in Theorem
2, and using the same procedure, we have

av() 1-B\ , l-a\ 5
T__e(T)u (1,t)—€< . )M (0,1)

(35)
1
- J (—:ufc (x,t)dx.
0
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Applying inequality in Lemma 1, yields
v ()
ot

In view of (30), we have oV (-)/ot < —2eV (t,u(x,t)).
Integrating the above inequality results,

V(tu(x,t)<e ™V (0,u(x,0)), (37)

< —SJI u? (x,t)dx. (36)
0

1
where V (0, u(x,0)) = 1/2 J ué (x)dx. Therefore, from (30),
0

we get inequality (34). Hence, from Definition 1, it can be
concluded that the target system is an exponential stability in
L2(0,1). This completes the proof. O

2.3. Inverse Transformation for (2). Now, we are in a position
to prove the exponential stability of the closed-loop system
(1). For this, it is enough to show that transformation (2) is
invertible, which can guarantee that the stability of the target
system (3) implies that the stability of the closed-loop system
(1). Assume the inverse of transformation (2) in the form

1
w(x,t) =ulx,t) + J q(x, y)u(y,t)dy, (38)

where q(x, y) € € (0,1) is a kernel function. By following
similar procedure in (10)-(13), we obtain a PDE in kernel
function as

Gx (%, ¥) =, (%, y) = 0,

Q(x, x) =0, (39)

c 1-
g, (x,1) = —;—(Ij,ﬁ)q(x, 1).
PDE (39) is similar to (14); using similar lines, the ex-
plicit solution of (39) can be achieved.
Suppose transformation (2) and its inverse (20) are
mutual transformation pair (inverse to each other), then
p(x, y) and q(x, y) should satisfy

y
q(x,y)=p(x,y) + J p(x,5)q(s, y)ds. (40)
To prove the required result, we consider
y
F(x,y) =q(x,y) - p(x,y) - J p(x,8)q(s, y)ds. (41)

From (14) and (39), we have F (x, x) = 0. Differentiating
(41) with respect to x and y, we obtain
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y
Fo(x,y) =q. (%, ) = pe (%, y) + p(x,x)q (x, y) - I Px (x,5)q(s, y)ds,
y
F,(x%,y)=q,(x,y) = p,(x,y) - p(x, y)q(y, y) - J p(x,5)q, (s, y)ds,
d
Fre (6, ) = @ (%, 9) = P (6 3) + - (6, X)q (%, y) + p (4, X)4, (%, ) + pic (%, %) (%, ) (42)

=P, (6 94y, ) + py (%, X)q (x, y) = p(x, ¥)q, (3> ¥) + p(x, %)q, (%, y) = Jy P (x,9)q5 (s, y)ds,

d y
Fy (%) =4q,,(xy) = p,, (% y) - a1 (> 9P (6 y) = p, (% ¥)q(y, y) = p(x. 9)q, (. y) = L p(x,9)q,, (s, y)ds.

Then, we obtain
Feo(x,9)=F,, (x,y) =0,
F(x,x) =0, (43)
F y (x,1)=0.

Obviously, F(x, y) = 0 is the unique solution of system
(43); therefore, transformation (2) and its inverse (38) are
mutual transformation pair. Hence, the transformation (2) is
invertible.

There, from the above analysis, it is easy to conclude that

the parabolic system with Dirichlet local term (1) is expo-
nentially stable.

3. Stabilization of the Parabolic System with
Neumann Local Term

Consider the linear system as follows:
w, (x,t) —ew,, (x,1) = c,w, (1,1),
(1-aw(0,t) — aw, (0,t) = U (¢), (44)
1-Pw(l,¢) + pw,(1,t) =0,

where x € (0,1), t>0, >0, a € [0,1], and € (0, 1), the
state  variable w(x,t) € & with initial condition

w(x,0) = wy (x), ¢, is an arbitrary constant which describes
the coefficient of local term (that is, Neumann intercon-
nection), and U () is the actuation control input.

Remark 3. Substitute the right boundary condition
w, (1,t) = —(1-B/B)w(l,t) in (44) at the place of Neu-
mann interconnection which is equivalent to system (1).
However, it is noted that we will get a different form of the
kernel function and boundary inputs for the above system,
which is the main reason to proceed with the following
results.

For U (t) = 0, the proposed system (44) is unstable one.
Then, the stability of this system is derived by using the
backstepping transformation. Here, we use the following
Volterra integral transformation with upper triangular
structure:

1
w(xt) = wlxt) - J 1(x, Y)w(y, H)dy, (45)

where I(x, y) € %2(0,1) is the kernel function to be found.
Now, applying transformation (45) in (44), we get an ex-
ponentially stable target system (3).

Then, we set the compatible condition of initial condi-
tion in (44) as follows:

1 1
(1 - &)w, (0) — aw, (0,0) = al (0,0)w, (0) + (1 — ) .[o 1(0, y)wy (»)dy — « Jo 1. (0, y)w, (»)dy, (46)

(1 - Bywy (1) + fw, (1,0) = 0.

(47)



3.1. Uniqueness of the Solution of (44)

Theorem 4. For any c,, there exist a function
1(--) € €%(0,1): {0<x<y<1} such that wy(-) € L*(0,1);

U(t) = al(0,0)w(0,t) + (1 — a) Jl

has a unique solution w(x,t) in € ([0,00); L* (0, 1)).

Proof. First, we find the kernel function and its solution.
Substituting the transformation in (45) and then following

Lee (6, 9) =1, (x, y) = 0,
I(x,x) =0,

G
€

1-8

B

ly (x,1) =

Solving the above kernel equation using change of
variables and Laplace transforms, the explicit solution of
kernel is

umw=§( .

)

— Sy

1-B

[3 )[653()/3‘) _ 654(}’*96)]’ (50)

_al-p

w03
w __S(1-B
on=3(5")

(1-a)w(0,t) — aw, (0,1) :(1—oc)%<l

(

Next, the exponential stability of target system (3) for
this case followed from Theorems 2 and 3 with (1 - 3/8) >0
and (1 -a/a)>0. O

&
£

B

Remark 4. It should be noted that the arguments on « in
Remark 1 will hold in this case too. Furthermore, the value of
B =0andf = 1 are not considered here because, when § = 0
affects the local term and when f =1, boundary control
becomes undefined.

Ol(O, yw(y,t)dy —a

)

1-8
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with compatibility conditions (46) and (47), the closed-loop
system (44) with the feedback controller,

Jl 1.0, )w(y,t)dy, ae€ [0,1]. (48)
0

the same procedure in Theorem 1. We get the kernel
function of hyperbolic type:

(49)

-B -B

)l(x,l)+%<l ; )Jl 1(x, y)dy.

where s; = —(1-f/2f) + \/(1 —B12B)* = c,/e(1 - BIB) and
5= = (1= 12B) (1 - B12B)* — cyfe (1 - BI).

The left boundary controller in (44) has the same result
as in Remark 2. Substituting the kernel solution in the
boundary control law is given by

)]

1
> JO [—s5e™ + s, Jw(y, H)dy,

B

1

[e% — e w(y,t)dy,
0

1

S3 =84

(

-B

1

S3 =84

I

1

S35

(51)
1

S3 =S4

)]

3.2. Inverse Transformation for (45). Now, we are in a po-
sition to prove the exponential stability of the closed-loop
system (44). For this, it is enough to show that transfor-
mation (45) is invertible, which can guarantee that the
stability of the target system (3) implies that the stability of
the closed-loop system (44). Assume the inverse of trans-
formation (45) in the form

1
3 ) JO [e%) — e w(y,t)dy

1
)( O[—s3es3y + s, Jw(y, )dy.

1

m(x, y)u(y,t)dy, (52)

w(x,t) =u(x,t) +J
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where m (x, y) € %2(0,1) is a kernel function. By following
similar procedure in (10)-(13), we obtain a PDE in kernel
function as

My, (%, ) —m,,, (x,y) =0,

m(x,x) =0,

m},(x,l):%(%>+%m(1,l) (53)

—(%)m(x, 1).

This hyperbolic PDE (53) is similar to (49); using similar
lines, the explicit solution of (53) can be achieved. There,
from the above analysis, it is easy to conclude that the
parabolic system with Neumann local term (44) is expo-
nentially stable.

4. Applications

In this section, the single-species pattern generation which
has the spatial heterogeneity with the Budworm spruce
model [41] will be discussed.

Consider the one-dimensional reaction diffusion system
for single-species pattern generation given by

9, (x,1) = DI, (x,1) = f (9(x, 1)), (54)

where 9(-) denotes the population density of a species,
x € (0,L) is the spatial domain for the species, t >0 is the
time taken for pattern generation, f (9(x,t)) is the species
dynamics (possibly linear or nonlinear), D is the measure of
the dispersal efficiency of the species, and 9(x, 0) = 9, (x) is
the initial population distribution of the species. Generally,
the external environment is not always favorable one; that is,
there may be some unfavorable circumstances that can be
described by appropriate boundary conditions given by

x9(0,¢) = 9,(0,¢) = 0, (55)

(L, t)+9,(L,t) =0, (56)

where « is the parameter for a value of the unfavorable
situation. It is noted that when x = 0, the above boundary
conditions turned to be Neumann boundary conditions; it
does not affect the species population due to the fully
covered environment. Also, rarely, if x takes a larger value
(—>00), then the exterior goes to an entirely unfavorable
one. Here, we consider the small value of the unfavorable
situation which means some little changes in the environ-
ment or in the setting place of species gives an unstable
response of species density. To overcome this situation, we
consider the control input in the left boundary as

k9(0,t) - 9,(0,¢) = U (t), (57)
where U (t) is an appropriate boundary control.

Furthermore, using a simple transform of variable
9(x,t) = e*'w(x,t) and appropriate choice of function

f(O(x,1)), one can easily see that systems (54)-(57) are
equal to systems investigated in this paper. When U (t) = 0,
it gives the unstable response for open loop system
(54)-(56). Then, boundary feedback control is to be
designed, which helps to overcome the unfavorable situation
and achieve the stable response for closed-loop system
(54)-(57). So, the proposed results can be implemented to
show the stability results for the single-species pattern
generation model which is discussed in the following two
cases.
Case I: consider the linearized species dynamics

fF O, 1) =cgd(x,t) + ¢;9(1, 1), (58)

where ¢, and ¢, are an arbitrary constants and choose D = ¢ >0
is the dispersal efficiency. It is noted that the reaction diffusion
model (54) with (58) describes a single-species pattern gener-
ation with a Dirichlet local term. Now, by considering the
transform of variable mentioned above, the reaction diffusion
model (54) is equal to parabolic system (1) with Robin boundary
conditions and w (x,t) denotes the population density of the
species.

Let x = (1 — a/a) stands for the value of the unfavorable
situation with 0 <a <1, the parameters of the model are
e=1,¢,=0-1,¢; = 3,and L = 1, and the initial population
distribution is wg(x) = 1+ sin(37x/2). Now, using the
boundary control input derived in Theorem 1,

9| 1 Jl S1y Sy
=—(1- = 1Y _ % ,
Ult)=—-(1-« ; (S1 —Sz> O[e e w(y, t)dy
LY Jl [-se" + s, |w(y, t)d
els =5, ) )ot ™ 2 y,1)dy.

(59)

For « =0-7 and =07, we can observe the stable
responses of system (1), as shown in Figure 2. Furthermore,
the state response of the considered single-species pattern
generation model (54)-(58) is presented in Figures 3 and 4.
Our main focus here is to study the stability of the species
population dynamics (54)-(58) in the presence of a small
value of an unfavorable situation. The absence of control
actuation gives the divergence results shown in Figure 3. So,
from the simulation results, it is easy to observe that the
considered model has stable density of the species when the
control input is considered; otherwise, there will be an
oscillation in the population density of the species. The
simulation results for the parabolic system are presented by
using finite difference scheme with forward time and central
space.

Case II: in this case, we consider the linearized species
dynamics as

fFOx,1) = cy9(x,t) + 9, (1,1), (60)

where ¢, and c, are the arbitrary constants. Also, system (54)
with (60) describes a single-species pattern generation with
the Neumann local term. Following similar lines of Case 1,
the reaction diffusion model (54) can be described as par-
abolic system (44) under Robin boundary conditions.
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FIGURE 2: w(x,t) of system (1).
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F1GURE 4: 9(x,t) in Case I with the controller.
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wy (x) = 1 +sin(37x/2), and ¢, = 0 - 1. Apply the conditions
derived in Theorem 4 and the control input,

— 1- 1 1 s s 1- 1 ! S S,
U =>1- “)CSZ(ﬁﬁ)(M) JO [e%) — e w(y, t)dy—oc%2 ([),ﬁ)<s3 — s4> Jo [—s5e™ + s, |w(y, t)dy.  (61)

with « =0-7 and 3 =07 to model (54). We observe that
similar to that of Case I, Figure 5 presents the unstable state
response of species population dynamics in the absence of
control input. Furthermore, when we consider the control
actuation in system (44), systems (54)-(57) with (60) have
stable state responses, as shown in Figures 6 and 7,
respectively.

Thus, with the reaction diffusion systems (54)-(57), the
population dynamics achieves the stable steady states in the
both cases. It is evident that the transform of variable worked
well as the simulations of reaction diffusion system (54) is
matching in both cases.

Remark 5. It should be noted that using an appropriate
transform of variable the problem investigated here can be
also useful in some other practical scenarios such as

(i) The general reaction diffusion system with oscilla-
tory kinetics which has the travelling wave-train
solution can be modeled [41]

(ii) The PDE model for linearizing a tubular chemical
adiabatic reactor [42] derived from the two equa-
tions for temperature and concentration when Peclet
numbers for heat and mass transfer is equal

5. Conclusion

Some new results on the boundary stabilization of the
parabolic system with mixed or Robin boundary conditions
by using the backstepping method have been investigated.
Using Volterra integral transformation, we converted the
original system into an exponentially stable target system
along with the hyperbolic type of kernel function which has
an explicit solution. We have verified the target system is an
exponentially stable using Lyapunov stability theory and also
demonstrated that the integral transformation is invertible
so that the considered system is exponentially stable through
the stability of target system. Simulation results of a single-
species pattern generation model illustrate the effectiveness
of the obtained results. The boundary stabilization for class
of semilinear fractional PDEs and systems with delays and
disturbances is not yet fully studied. In particular, the results
involving fractional-order kernel equations are an inter-
esting topic of research; these issues will be focused in our
future topics of research.
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