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In this study, we study the load frequency control (LFC) problem for interconnected multiarea power systems (IMAPSs) with
quantization and actuator failure. To e�ectively reduce the amount of data in the channel, input signals will be quantized before
being transmitted from a controller to a system through the digital communication channel. To reveal the asynchronous
phenomenon between the original plant and LFC with actuator failure, a hidden semi-Markov model is formulated. In addition,
the stability of the jump system under network attack is discussed. On the basis of the Lyapunov theory, su�cient conditions are
derived to ensure the stochastic stability of IMAPSs. Finally, the validity of the theoretical results is tested via a simulation example.

1. Introduction

­e power system is a complex nonlinear system, which has
developed into a multiregional interconnected power system
(PS) since the Industrial Revolution. To deal with the low-
frequency little oscillations of interconnected PSs, the LFC
was proposed in [1], which has been e�ectively applied to
PSs [2–4]. According to the LFC technique, the frequency
can be adjusted at a desired level, which guarantees the
stability of entire PSs. Over the past few decades, researchers
have proposed a number of techniques concerning with
LFC, such as use of the integral control law [5], PI case [6],
and PID case [7]. ­ese approaches have been veri�ed to
improve the control performance of interconnected PSs
[8, 9].

In practical applications, the dynamic systems may
undergo sudden changes in their parameters or structures
due to component failures, sudden environmental changes,
etc. In this case, Markov chains are widely adopted to model
the variations in PS states. In [10], the Markov chain was
employed to describe the random mutations of the discrete-

time PS. In [11], the uncertain Markov chain was applied for
the decentralized control of the PS. However, in most
existing literature concerning Markov PSs, the residence
time of Markov processes obeys a memory-free random
distribution, in which the probability of the transition rate is
time-independent. As signi�ed in [12–14], compared with
the conventional Markov chain, the semi-Markov chain is
more general in approximating practical dynamics owing to
its time-varying transition rate. Consequently, it is mean-
ingful to study the LFC problem for PSs with semi-Markov
jumping parameters, the so-called semi-Markov PSs. To the
best of our knowledge, quite a few theoretical results have
been applied to semi-Markov PSs due to their inherent
di�culty, and this motivates this article.

In reality, the signal is communicated through a limited
bandwidth network [13, 15, 16]. Note that massive signals
are transmitted via the limited network, which may lead to
channel congestion, thus reducing the system performance.
To overcome this shortcoming, we quantify the control
inputs, in which quantization stands for the process of
mapping the continuous values of a signal to a limited
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number of discrete values [17, 18]. Bymeans of quantization,
the amount of data in the channel and load of the channel
can be effectively reduced. +e quantizers can be roughly
categorized into linear quantizers [19], and logarithm
quantizers [20, 21]. +e problem of stabilizing a continuous-
time switched system affected by the time-varying delay and
data quantization has been addressed in [22]. In the
quantitative input multiarea, however, results of the power
system are very few; in order to fill the gap, this article takes
into account the interconnectedmore regional power system
with quantitative input, and the quantification method is
used as the basis of the design, making the obtained
quantitative instruments with the crudest density and fur-
ther reducing the burden of transmission. We would like to
mention that, in practice, capturing system information is a
tricky task. +erefore, the asynchrony between the system
mode and the controller mode cannot be omitted. Never-
theless, the asynchronous control of the semi-Markov
IMAPS has not been researched thoroughly, which partially
motivates the current work.

Motivated by the above considerations, this work con-
siders the LFC problem of the IMAPS subject to quanti-
zation input. Different from the existing homogeneous
Markov IMAPS, the semi-Markov chain is employed to
describe the dynamic behavior of the IMAPS. Aiming to
describe the asynchronous phenomenon between the
original plant and LFC, the hidden semi-Markov model is
formulated. By resorting to the Lyapunov theory, sufficient

conditions are derived to ensure the stochastic stability of the
resulting dynamic. In the end, one numerical example is
inferred to show the correctness of the proposed method.
+e general structure is rendered as follows: the second
section describes the asynchronous LFC of the semi-Markov
PS with quantization form. In section 3, sufficient conditions
of random stability are given. A numerical example is given
in section 4.

Notations: diag ∗{ } means a block-diagonal matrix;
He R{ } � R + R⊤; P> 0 means P is positive definite; Pr ∗{ }

implies occurrence probability; ε ∗{ } indicates the mathe-
matical expectation; ‖∗ ‖ signifies the Euclidean vector
norm. I signifies the identity matrix; A⊤ and A− 1 stand for
the transpose and inverse matrix, respectively.

2. Problem Formulations

2.1. System Model. In this study, the dynamic model of the
multiarea LFC is described as follows:

_x(t) � A(r(t))x(t) + H(r(t))ΔPL(t) + B(r(t))u(t),

y(t) � C(r(t))x(t),

⎧⎨

⎩

(1)

where xi(t) ∈ R5, yi(t) ∈ R2, ui(t) ∈ R, and
ΔPi

L(t) ∈L2[0,∞) represent the state, the output, the
control input, and the disturbance, respectively, and

yi(t) � ACEi 􏽚
t

0
ACEi(s)ds􏼢 􏼣

⊤

,

y(t) � y1(t)y2(t) · · · yN(t)􏼂 􏼃
⊤

,

u(t) � u1(1)u2(t) · · · uN(t)􏼂 􏼃
⊤

,

ΔPL(t) � ΔP1
L(t)ΔP2

L(t) · · ·ΔPN
L (t)􏽨 􏽩
⊤

,

xi(t) � Δfi(t),ΔPi
m(t),ΔYi(t),ΔPi

tie(t), 􏽚
t

0
ACEi(s)ds􏼢 􏼣⊤,

x(t) � x1(t)x2(t) · · · xN(t)􏼂 􏼃
⊤

,

Bi(r(t)) � 0 0
1

Tg(i)(r(t))
0 0􏼢 􏼣

⊤

,

B(r(t)) � diag B1(r(t))B2(r(t)) · · · BN(r(t))􏼈 􏼉,

Hi(r(t)) � −
1

Mi(r(t))
0 0 0 0􏼢 􏼣

⊤

,

H(r(t)) � diag H1(r(t))H2(r(t)) · · · HN(r(t))􏼈 􏼉

Ci(r(t)) �
βi(r(t)) 0 0 1 0

0 0 0 0 1
⎛⎝ ⎞⎠,

C(r(t)) � diag C1(r(t))C2(r(t)) · · · CN(r(t))􏼈 􏼉,
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Aii(r(t)) �

−
Di(r(t))

Mi(r(t))

1
Di(r(t))

0 −
1

Di(r(t))
0

0 −
1

T
i
t(r(t))

1
T

i
t(r(t))

0 0

−
1

Ri(r(t))T
i
g(r(t))

0 −
1

T
i
g(r(t))

0 0

􏽘

N

j�1,j≠ i

2πTij(r(t)) 0 0 0 0

βi(r(t)) 0 1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Aij � [als]
5
l,s�1 with a51 � − 2πTij, als � 0, and

A � [Aij]
N

j,i�1. Each ACE signal is described as a linear
combination of the tie-line power exchange and frequency
deviation, i.e., ACEi � βi(r(t))Δfi(t) + Pi

tie(t), where ΔPi
tie

refers to the net exchange of the tie-line power. +e no-
menclature of other parameters is shown in Table 1.

In view of the uncertain fault time of the power system,
the semi-Markov process r(t){ }t≥0 ∈ S � 1, 2, . . . , S{ } is
adopted. For all k ∈ N,

Rk theMarkov chain

Tkthe sojourn time, i.e., Tk � tk − tk− 1

Gp the probability distribution function

χp theMarkov chain.

(3)

+en, (Rk, rk)􏼈 􏼉 is said to be a renewal process if r(t) �

RN(t) where N(t) � sup k: t≥ tk􏼈 􏼉 with

Pr Rk+1 � q|Rk � p􏼈 􏼉 �
Πpq, p≠ q,

0, p � q.
􏼨 (4)

Meanwhile, the probability distribution function Gp can
be described as follow:

Gp(h) � Pr Tk+1 < h|r tk( 􏼁 � p􏼈 􏼉. (5)

According to the aforementioned observation, we have

Pr r(t + δ) � q|r(t) � p􏼈 􏼉 �
Pr Tk+1 ≤ h + δ, Rk+1 � q|Tk+1 > h, Rk � p􏼈 􏼉, p≠ q,

Pr Tk+1 > h + δ, Rk+1 � q|Tk+1 > h, Rk � p􏼈 􏼉, p � q.
􏼨

�
πpq(h)δ + o(δ), p≠ q,

1 + πpq(h)δ + o(δ), p � q.

⎧⎨

⎩

(6)

Hence, by simple calculation, the transition rate matrix
can be defined by Ψ(h) � [πh

pq]S×S, where

πpq(h) � lim
δ⟶0

Pr r(t + δ) � q|r(t) � p􏼈 􏼉

δ

� Πpq

χp(h)

1 − Gp(h)
, p≠ q,

(7)

and πpp(h) � − 􏽐
S
q�1,q≠p πpq(h)< 0.

2.2. Asynchronous Control Input with Quantized. As
exhibited in Figure 1, the control input u(t) is required to be
quantized before sending it to the power system. Inspired by

this fact, the logarithmic quantizer can be described as
follows:

q(u(t)) � q1 u1(t)( 􏼁q2 u2(t)( 􏼁 · · · qι uι(t)( 􏼁􏼂 􏼃, (8)

where the wth subquantizer qw(·) satisfying
qw(uw(t)) � − qw(− uw(t)), w � 1, 2, . . . , ι. +e set of the
logarithmic quantization level can be described as

Uw � ± θw
n : ± θw

n � 〉nwθ
w
0 ,􏼈

n � ± 1 ± 2, · · ·}∪ ± θw
0􏼈 􏼉∪ 0{ },

(9)

where 0< ϱnw < 1 and θw
0 > 0 on behalf of the quantizer

density and the initial quantization, respectively .And
λω � 1 − ϱw/1 + ϱw. +en, we define the subquantizer
qω(uω(t)) as

Mathematical Problems in Engineering 3



qω uω(t)( 􏼁 �

θωn , if
θωn

1 + λω
< uω(t)<

θωn
1 − λω

,

0, if uω(t) � 0,

− qω − uω(t)( 􏼁, if uω(t)< 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

+en, we have that

q(u(t)) � u(t), (11)

where Λ � diag Λ1,Λ2, . . . ,Λι􏼈 􏼉, Λ⊤wΛw ≤I.
In this work, the i-th control area of an asynchronous PI

controller is given by

ui(t,φ(t)) � K
i
Pφ(t)ACEi(t) + K

i
Iφ(t) 􏽚

t

0
ACEi(s)ds

� K
i
φ(t)yi(t),

(12)

where Ki
Pφ(t), and Ki

Iφ(t) are the i -th proportional and in-
tegral gains, respectively, and Ki

φ(t) � [Ki
Pφ(t) Ki

Iφ(t)]. +e
variable φ(t) that refers to the Markov chain belongs to the
space M � 1, 2, . . . , M{ }, whose conditional probability
matrix is inferred Γ � [ρpm]S×M with

Pr φ(t) � m|r(t) � p􏼈 􏼉 � ρpm, (13)

with 􏽐m∈Mρpm � 1. According to equations (11) and (12),
the control signal ui(t,φ(t)) can be devised as follows:

ui(t, φ(t)) � ai(t) Ii + Λi( 􏼁K
i
φ(t)yi(t), (14)

where ai(t) ∈ 0, 1{ }, and ε ai(t)􏼈 􏼉 � ai.

2.3. Model Transformation. Let r(t) � p and φ(t) � m,
substituting equations (14) into (1), the closed-loop IMAPS
is formulated as follows:

Table 1: +e physical meaning of parameters.

Parameters Nomenclature
Δfi(t) Frequency deviation
ΔPi

m(t) Mechanical power output increment
ΔYi(t) Valve position of turbine
Di(r(t)) Mode-dependent damping coefficient
Ti

t(r(t)) Turbine time constant
Ti

g(r(t)) Governor time constant
βi(r(t)) Frequency bias
Tij(r(t)) Coefficient between the i-th and j-th area

r (t)

ϕ (t)

0

1

2

3

0

1

2

3

5 10 150
Time (s)

5 10 150
Time (s)

Figure 1: +e evolution of modes r(t) and φ(t).
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_xi(t) � A
ii
pxi(t) + 􏽘

N

j�1,j≠ i

A
ij
p xj(t) + aiB

i
p Ii + Λi( 􏼁K

i
pmC

i
pxi(t) + H

i
pΔP

i
L(t),

yi(t) � C
i
pxi(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

For analysis convenience, based on the compatible
matrix 􏽢B

i

p, we can obtain a full rank matrix B
i

p � [Bi
p

􏽢B
i

p].
We define Xi(t) � (B

i

p)− 1xi(t), we have that

X
.

i(t) � A
ii

pXi(t) + 􏽘
N

j�1,j≠ i

A
ij

pXj(t) + ai Ii + Λi( 􏼁K
i

mC
i
pXi(t) + H

i

pΔP
i
L(t),

yi(t) � C
i

pXi(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where A
ij

p � (B
i

p)− 1A
ij
p B

i

p, Km � [(Ki
m)⊤ 0]⊤, C

i

p � Ci
pB

i

p,

and H
i

p � (B
i

p)− 1Hi
p. It is worth noting that linear trans-

formation B
i

p is invertible. +us, the overall IMAPS can be
inferred as

X
.

(t) � ApX(t) + a(I + Λ)KmCpX(t) + HpΔPL(t),

y(t) � CpX(t),CpX(t),

⎧⎪⎨

⎪⎩

(17)

where a � diagN ai􏼈 􏼉, I + Λ � diagN (Ii + Λi)􏼈 􏼉,

Cp � diagN C
i

p􏼚 􏼛, H
i

p � diagN H
i

p􏽮 􏽯, and

Ap �

A
11
p A

12
p · · · A

1N

p

A
21
p A

22
p · · · A

2N

p

⋮ ⋮ ⋱ ⋮

A
N1
p A

N2
p · · · A

NN

p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Definition 1. ([23]) +e interconnected power system with
ΔPL(t) � 0 is called stochastic stability if the following
equation holds:

ε 􏽚
∞

0
‖X(t)‖

2dt|r t0( 􏼁,φ t0( 􏼁􏼚 􏼛<∞. (19)

Under the zero initial condition, the system with
ΔPL(t) ∈L2[0,∞) and c> 0 , the H∞ performance index is
satisfied:

ε 􏽚
∞

0
y

T
(t)y(t) − c

2
P

T
L (t)PL(t)􏼚 􏼛< 0. (20)

Lemma 1. ([21]) For the given matrix Ω1 and matrices Ω2
and Ω3 with appropriate dimensions, if inequality
Ω1 + He Ω2ΛΩ3􏼈 􏼉< 0 holds for all ‖Λ‖≤I, for any scalar s1,
such that Ω1 + s1Ω⊤3Ω3 + s− 1

1 Ω
⊤
2Ω2 < 0.

3. Main Results

Theorem 1. For given scalars c> 0and η> 0 and the matrix
Mp, the IMAPS is stochastic stability with preset performance,
such that

Ξpm �

Ξ11pm + C
⊤
pCp ∗ ∗

Ξ21pm − He ηM
⊤

􏼈 􏼉 ∗

H
⊤
p M
⊤ ηH

⊤
pM
⊤

− c
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (21)

where

Ξ11pm � 􏽘

S

q�1
ΠPq + 􏽘

M

m�1
ρpmHe M

⊤
Ap + a(I + Λ)KmCp􏼐 􏼑􏽮 􏽯,

Ξ21pm � − M + P
⊤
p + 􏽘

M

m�1
ρpmηM

⊤
Ap + a(I + Λ)KmCp􏼐 􏼑,

Πpq � ε πpq(h)􏽮 􏽯 � 􏽚
∞

0
πpq(h)χp(h)dh.

(22)

Proof. Establish the semi-Markov-based Lyapunov function
as follows:

V(X(T), r(t), φ(t)) � X
⊤

(t)Pr(t)X(t). (23)

It follows that

Mathematical Problems in Engineering 5



ε LV(X(t), r(t),φ(t))􏼈 􏼉 � lim
δ⟶0

1
δ

ε 􏽘
q≠p

πpq(h)δX⊤(t +δ)PqX(t +δ) + 1+πpp(h)δ􏼐 􏼑X
⊤

(t +δ)PpX(t +δ)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+X
⊤

(t)PpX(t)
⎧⎪⎨

⎪⎩
⎤⎥⎥⎥⎥⎥⎦

�X
⊤

(t) 􏽘

S

q�1
ΠpqPq

⎛⎝ ⎞⎠X(t) + He X
. ⊤

(t)PpX
⊤

(t)􏼚 􏼛.

(24)

On the basis of equation (17), for any proper matrix M,
such that

0 � 2 X
⊤

(t)M
⊤

+ ηX
.

(t)M
⊤

􏼔 􏼕 × − X
.

(t) + ApX(t) + a(I + Λ)KmCpX(t) + HpΔPL(t)􏼔 􏼕. (25)

It follows from equations (24) and (25) that

ε LV(X(t), r(t),φ(t))􏼈 􏼉

� X
⊤

(t) 􏽘

S

q�1
ΠpqPq

⎛⎝ ⎞⎠X(t) + He X
. ⊤

(t)PpX
⊤

(t)􏼚 􏼛

+ 2 X
⊤

(t)M
⊤

+ ηX
.

(t)M
⊤

􏼔 􏼕 × − X
.

(t) + ApX(t) + a(I + Λ)KmCpX(t) + HpΔPL(t)􏼔 􏼕

� ζ⊤(t)Ξpmζ(t),

(26)

where ζ⊤(t) � [ξ⊤(t) ΔP⊤(t)], ξ⊤(t) � [X⊤(t) X
. ⊤

(t)]

Πpq � ε πpq(h)􏽮 􏽯 � 􏽒
∞
0 πpq(h)χp(h)dh and

Ξpm �

Ξ11pm ∗ ∗

Ξ21pm − He ηM
⊤

􏼈 􏼉 ∗

H
⊤
p M
⊤ ηH

⊤
pM
⊤ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

In case of ΔPL(t) � 0, we have ε LV(X(t),{

r(t), φ(t))}≤ ξ⊤(t)Ξ1pmξ
⊤

(t), by equation (21), we have

Ξ1pm < 0, when Ξ1pm �
Ξ11pm ∗
Ξ21pm − He ηM

⊤
􏼈 􏼉

⎡⎣ ⎤⎦, Ξ11pm �

􏽐
S
q�1ΠPq +􏽐

M
m�1ρpmHe M⊤(Ap +a(I+Λ)KmCp)􏽮 􏽯, Ξ21pm �

− M+P⊤p +􏽐
M
m�1ρpmηM⊤(Ap +a(I+Λ)KmCp). Subse-

quently, we have

ε LV(X(t), r(t),φ(t))􏼈 􏼉

≤ − λε ‖X(t)‖
2 ∣ X t0( 􏼁, r t0( 􏼁,φ t0( 􏼁􏽮 􏽯,

(28)

where λ � λmin(− Ξ1pm), we can further have

ε 􏽚
∞

0
‖X(t)‖

2
|X t0( 􏼁, r t0( 􏼁,φ t0( 􏼁􏼚 􏼛

≤
1
λ

V X t0( 􏼁, r t0( 􏼁,φ t0( 􏼁( 􏼁<∞.

(29)

Furthermore, for ΔPL(t)≠ 0, according to equation (24),
it yields

LV + y
⊤

(t)y(t) − c
2ΔP⊤L (t)ΔPL(t)≤ ζ⊤(t)Ξpmζ(t). (30)

Note that Ξpm < 0, from which one can obtain

􏽚
∞

0
LV + z

⊤
(t)z(t) − c

2ΔP⊤L (t)ΔPL(t)􏼐 􏼑dt< 0, (31)

which indicates

􏽚
∞

0
z
⊤

(t)z(t) − c
2ΔP⊤L (t)ΔPL(t)􏼐 􏼑dt< 0, (32)

this completes the proof. □

Theorem 2. For given scalars c> 0, η> 0, and s1 > 0, system
equation (13) is stochastic stability with the preset H∞ per-
formance index c, if there exist matrices Mand Km, such that
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Ξ11pm ∗ ∗ ∗ ∗ ∗ ∗

Ξ21pm − He ηM
⊤

􏼈 􏼉 ∗ ∗ ∗ ∗ ∗

H
⊤
pM
⊤ ηH

⊤
pM
⊤

− c
2
I ∗ ∗ ∗ ∗

Cp 0 0 − I ∗ ∗ ∗

θ⊤p 0 0 0 θ11p ∗ ∗

θ111p􏼐 􏼑
⊤

η θ111p􏼐 􏼑
⊤

0 0 0 − He 􏽢as1􏼈 􏼉 ∗

M
⊤ ηM

⊤ 0 0 0 0 − He 􏽢as1􏼈 􏼉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (33)

where s1 � s− 1
1 , 􏽢a � ηa− 1

Ξ11pm � ΠppPp + He M
⊤

Ap􏽮 􏽯 + 􏽘
M

m�1
ρpmHe aYKmCp􏽮 􏽯,

Ξ21pm � − M + P
⊤
p + 􏽘

M

m�1
ρpmaηYKmCp

θ11p � − diag P1P2 · · · Pp− 1Pp+1 · · · PS􏽮 􏽯,

θ111p �
���ρp1

􏽰
C
⊤

K
⊤
1

���ρp2
􏽰

C
⊤

K
⊤
2 · · ·

����ρpM

􏽰
C
⊤

K
⊤
M􏼔 􏼕

θp �

����

Πp1

􏽱

P1

����

Πp2

􏽱

P2 · · ·

������

Πp(p− 1)

􏽱

Pp− 1

������

Πp(p+1)

􏽱

Pp+1 · · ·

����

ΠpS

􏽱

PS􏼔 􏼕,

Y � diag Y1, Y2, . . . , YN􏼈 􏼉, Yi � diag Ip, 0􏽮 􏽯.

(34)

Furthermore, controller gain matrices are given by Km �

(M⊤)− 1YKm .

Proof. Let YKm � M⊤Km, with the purpose of structure of
the matrix Km. In detail,

K
i

m � M
⊤
i( 􏼁

− 1
YiK

i
m ��

M
− 1
1i 0

0 M
− 1
2i

⎡⎢⎣ ⎤⎥⎦
Ip 0

0 0
􏼢 􏼣K

i
m. (35)

According to Lemma 1 and by using the Schur com-
plement in equation (21)(10) the proof is completed. □

4. Numerical Example

In this section, to show the effectiveness of the attached
methodology, a numerical example of the 3-area inter-
connected semi-Markov switching power system is pre-
sented. Suppose that the coefficients are selected
T12(r(t)) � 0.2, T13(r(t)) � 0.25, and T23(r(t)) � 0.12,
r(t) � 1, 2. Furthermore, for any i � 1, 2, 3, set

􏽢B
i

p �

0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0.001 0.001

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Let ai � 0.5, c � 7, η � 0.2, and s1 � 0.4. Other nominal
parameters are listed in Table 2 [3, 24].

Specifically, the transition rate function can be written
πpq � Πpq(h)k/ϵkhk− 1, and the Weibull distribution density
function is given by χp(h) � k/ϵ(h/ϵ)k− 1 exp(− (h/ϵ)k),
where k and ϵ indicate the parameters of the shape and scale,
respectively. Noting that when p � 1, we choose ϵ � 1 and
k � 3. Otherwise, for p � 2, we set ϵ � 1 and k � 4. Ac-
cordingly, the transition rate matrix can be expressed as

πpq(h) �
− 3h

2 3h
2

4h
3

− 4h
3

⎡⎣ ⎤⎦. (37)

+us, we have

Πpq � ε π(h){ }

�
− 2.7082 2.7082

3.6763 − 3.6763
􏼢 􏼣.

(38)

In order to better describe the asynchronous phenom-
enon, the condition probability matrix is set as
follows Γ � 0.6 0.4; 0.5 0.5􏼂 􏼃. According to +eorem 2,
the asynchronous controller gains can be easily devised. We
select the initial state x10 � [0.048 − 0.04 0.065
0.024 − 0.55]⊤, x20 � [0.045 − 0.09 0.015 0.022 − 0.46]⊤,
x30 � [0.07 − 0.05 0.07 − 0.08 − 1.1]⊤, and the load dis-
turbance ΔPi

L � 0.005 sin(k), (i � 1, 2, 3). Added by the
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above-derived gains, the mode evolution of r(t) and φ(t) is
shown in Figure 1. +e trajectories of the state are plotted in
Figure 2. Figure 3 thatdepict the state trajectories and the
measured output. +ese simulation results verify the ef-
fectiveness of the proposed method.

5. Conclusions

In this study, the problem of the asynchronous load fre-
quency control problem for semi-Markov interconnected

multi-area power systems with the quantization effect has
been addressed. In this case, the system under consideration
is modeled as the semi-Markov jump system. +e merit of
this work is to tackle the asynchronous phenomenon be-
tween the control and semi-Markov interconnected multi-
area power systems. By designing an asynchronous con-
troller with quantized form, the quantized closed-loop
system has stochastic stability under the specified perfor-
mance. At last, the effectiveness of the developedmethod has
been tested by the simulation result.
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