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�is paper proposes new mathematical models of representation, which can describe the dynamic behavior of large-scale
nonlinear systems, such as an extended mathematical model of Volterra series, interconnected Hammerstein structures, and
interconnected Wiener structures. In this research, we focus on the class of large-scale nonlinear systems, which are composed of
several interconnected nonlinear subsystems. In this context, a discrete nonlinear mathematical model with unknown time-
varying parameters, mono-variable, characterizes each interconnected subsystem operating in a deterministic or stochastic
environment. An illustrative numerical simulation example of two interconnected nonlinear processes is provided to prove the
validity and the performance of the developed theoretical results.

1. Introduction

In the literature, the description of a dynamical system by
a mathematical model (MM) can be carried out from two
di�erent approaches: the �rst approach is based on a
theoretical analysis which allows the system to be de-
scribed by a MM based on the universal laws that govern
it. As for the second, it is realized by experimental analysis
which makes it possible to describe the system by a MM
based on the results of the experimental tests carried out
of this system. �e �rst step in any system study un-
doubtedly requires representing it by a model that can
characterize its dynamic behavior. �us, this step is es-
sential in the synthesis of a control scheme, with a view to
solving either a tracking problem, or a regulation prob-
lem, or a joint tracking and regulation problem, of a
dynamic system (mechanical, electrical, biological), since
it determines the targeted control performance (rapidity,
stability, accuracy). It can present di�culties of practical
implementation, more particularly in the case of complex
systems.

In both the scienti�c and social sciences, the study of
complex systems is becoming increasingly relevant. It is
widely assumed that there is such a thing as a complex
system, with many instances examined across a variety of
�elds. However, there is no succinct description of a
complex system, much less one that is agreed upon by all
scientists. Various attempts have been made to describe a
complex system and examine a core set of characteristics
that are generally identi�ed with complex systems in the
literature and by specialists. Some of these characteristics are
neither required nor su�cient for complexity, while others
are too imprecise or ambiguous to be analytically useful. To
add mathematical development to the topic, various com-
mon measures of complexity are undertaken from the sci-
enti�c literature, and taxonomy for them is o�ered, before
claiming that the statistical complexity best re�ects the
qualitative idea of the order generated by complex systems.
In this context, requirements as a characterization of
complexity might be provided. �ese are qualitative re-
quirements that may or may not be adequate for complexity
when taken together. It is a ripe research �eld with a plethora
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of viewpoints to consider. With the increasing use of
complex systems in real-world applications, especially
biomedical, finance, and engineering, the study and analysis
of complex behavior and dynamic response of complex
systems have become increasingly essential. 'e develop-
ment of the estimation and the control strategies for a
complex system is based on the description of its dynamic
behavior by a MM. 'is description may essentially be
carried out using two ways of analysis, the theoretical
technique and the experimental one. 'ese MMs can be
expressed by difference equations (IOMMs), transfer
functions, or state equations (state MMs). 'e complex
systems modelling (nonlinear, nonstationary, high dimen-
sional) from a theoretical analysis can lead to a failure.
Indeed, these systems are complex enough for us to be able
to apply universal laws to them, in order to formulate
theoretically MMs allowing them to describe correctly their
dynamic behavior. However, the obtained MM, which is
based on theoretical analysis, will not be useable in general
for the synthesis of a control law, in particular a digital
control law. 'is is due, on the one hand, to the equations
resolution complexity of this MM and, on the other hand, to
the disregard of disturbances acting on different points in
the system. To overcome the problems relating to the
modelling of a dynamic system based on a method of
theoretical analysis, we seek to apprehend this system in a
phenomenological way, by establishing a mathematical
model from experimental analysis.'erefore, we seek to link
the measured quantities of the system (input, output, state)
by a certain combination.

'e study of dynamical high dimensional systems has
attracted the attention of many researchers and automation
engineers worldwide. Every large-scale system can be en-
visaged as a system consisting of a large number of inter-
acting interconnected systems. Since such a system normally
comprises several interconnected systems (power network
system and set of coupled tanks), the formulation problem of
their parametric estimation or their control is too intricate.
Several studies dealing with different themes (modelling,
identification, control, stability, and optimization) have been
developed and published in the literature [1–3]. In fact, the
study [1] is motivated by the desire to build decentralized
control for a class of large-scale systems that do not meet the
matching condition criterion.'e author of [2] discusses the
topic of implicit self-tuning control for a class of large-scale
systems that have been deconstructed into linked subsys-
tems. 'e authors look at plants with unknown character-
istics that are characterized by a linear invariant or slowly
variable model. In addition, the development of recursive
estimation techniques for large-scale stochastic systems
utilizing the maximum likelihood method was given in [3].
'e findings of this research concentrated on large-scale
linear systems that can be defined as either continuous or
discrete MM. However, certain results concerning large-
scale nonlinear systems have been developed and published
[4–13]. Indeed, the author of [4] proposes a fault-tolerant
control of a class of linked feedback linearizable nonlinear
systems via a decentralized adaptive approximation archi-
tecture. An adaptive approximation strategy for

decentralized fault-tolerant control for a class of nonlinear
large-scale systems with unknown multiple time-delayed
interaction faults is proposed in [5]. Using the input-output
linearization idea, the author of [6] suggested a resilient
adaptive fuzzy semidecentralized control for a class of large-
scale nonlinear systems. 'e author of [7] investigates the
topic of decentralized adaptive control in large-scale non-
strict-feedback nonlinear systems with a dynamic interac-
tion and unmeasurable states, where the dynamic
interaction is connected to both input and output items. A
unique extended modal series approach for tackling the
infinite horizon optimal control issue of nonlinear linked
large-scale dynamic systems is presented in [8]. 'e infinite
horizon nonlinear large-scale two-point boundary value
problem (TPBVP), derived from Pontryagin’s maximum
principle, is converted into a series of linear time-invariant
TPBVPs using this approach. An adaptive fuzzy decen-
tralized output-feedback control issue for a class of non-
linear large-scale systems is discussed in [9]. 'e parametric
absolute stability of linked Lurie systems with several sub-
systems is studied in [10], where the parametric stability
refers to the difficulty of determining the feasibility and
stability of equilibrium states when the unknown parameters
change. A decentralized fuzzy control problem for asymp-
totic stabilization of a class of nonlinear large-scale systems
using an observer-based output-feedback method has been
presented in [11]. A PD-type iterative learning control has
been developed and applied for uncertain spatially inter-
connected systems [12]. Tao et al. were proposed a robust
PD-type iterative learning control for discrete systems with
multiple time delays subjected to polytopic uncertainty and
restricted frequency domain [13]. 'e most of these works
concerned the large-scale systems which can be described by
a linear MM (input-output MM and state MM) with con-
stant or slow time-varying parameters. However, a few re-
sults were published concerning the large-scale nonlinear
systems which are described by nonlinear state MMs.
Furthermore, we may use other MMs to characterize these
nonlinear dynamic systems. 'e traditional structure relies
on the nonlinear system’s approximation by the Volterra
series. Other forms of representations, like input-output
models and linked block models, allow us to characterize the
dynamic behavior of considered systems.

Consequently, we shall build a variety of nonlinear discrete
MMs capable of describing the dynamic behavior of large-scale
nonlinear systems in this study. 'e emphasis will be on the
class of large-scale nonlinear systems that composed of several
linked mono-variable nonlinear systems with unknown time-
varying parameters. We suppose that these complex systems
can operate in a deterministic or stochastic environment.

'e remainder of this research is organized as follows:
Section 2 is devoted to the description of large-scale non-
linear systems by MMs in a series of functions, where two
forms of MMs are developed. In Section 3, input-output
MMs for modelling the dynamic behavior of linked non-
linear systems, operating in a deterministic or stochastic
environment, are proposed. 'e modelling of linked non-
linear mono-variable systems, based on interconnected
Hammerstein andWiener structures, is derived in Section 4.
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Finally, some simulation results and concluding remarks are
provided in Sections 5 and 6.

2. MMs in Series of Functions

Serial models of functions are one of the MMs that may
represent the dynamic behavior of a nonlinear system. 'is
family of models allows its output at a given moment to be
described by an infinite sum of polynomial functions de-
pendent on the input at the same and previous instants. As a
result, the Volterra series representation and the Volterra
parametric representation may be extended to describe
nonlinear systems with huge dimensions. 'ese two rep-
resentations are commonly used in the study and description
of nonlinear systems [14–17], particularly those defined by
discrete MMs. In fact, this is the second installment of a two-
volume guidebook [14] that provides a detailed review of
nonlinear dynamic system identification. Many elements of
nonlinear processes are covered in the books, including
modelling, parameter estimates, structure search, nonline-
arity, and model validity testing. Not only nonparametric
models but also parametric models with a restricted number
of parameters are included in the book.'e estimate of time-
domain parameters is covered in depth, as well as frequency
domain and power spectrum processes. 'is work is aimed
towards postgraduate students, researchers, and engineers
working in the field of nonlinear systems. 'ere are

numerous instances, case studies, and experimental iden-
tifications of genuine processes. 'e study [15] gives an
overview of works in the field of mathematical modelling of
nonlinear input-output dynamic systems with Volterra
polynomials that were undertaken at systems. 'e author of
[16] presents a method for identifying nonlinear aeroelastic
systems based on the Volterra theory of nonlinear systems.
'e theory’s recent applicability to difficulties in compu-
tational and experimental aeroelasticity is discussed. 'e
book [17] covers simple, brief, and easy-to-understand
methods for identifying nonlinear systems, as well as new
research discoveries in the field of adaptive nonlinear system
identification. 'ese approaches make use of adaptive filter
algorithms, which are well-known for identifying linear
systems.'ey can be used to simulate nonlinear systems that
polynomials can efficiently model.

2.1. MM in a Series of Volterra. 'e Volterra series represent
nonlinear MMs without output feedback. 'us, a nonlinear
system can be described by the following MM in a series of
Volterra:

y(k) � f(u(k − 1), u(k − 2), . . . , u(k − τ)). (1)

'e previous model can be extended to describe the
dynamics of an INS.

yα(k) � fα uα(k − 1), uα(k − 2), . . . , uα(k − τ), uβ(k − 1), uβ(k − 2), . . . , uβ(k − τ)􏼐 􏼑, (2)

where yα(k) and uα(k) represent, respectively, the output
and input of the INS Sα, α � 1, . . . ,Ν; uβ(k) indicates the
inputs from the other connected subsystems Sβ,
β � 1, . . . ,N; β≠ α; Ν represents the number of INSs; and

fα(.) is a nonlinear function, which is approximated by a
polynomial for the case of the Volterra model.

An approximation of the MM (2) allowing to describe an
INS of order M, which is composed of Ν INSs, can be
obtained using the second-order nuclei, such as

yα(k) � μα + 􏽘
M

r�1
ζα,r uα(k − r) + 􏽘

M

r�1
􏽘

M

s�1
ζα,rs uα(k − r) uα(k − s),

+ 􏽘
N

β�1,β≠α
􏽘

M

r�1
ζαβ,r uβ(k − r) + 􏽘

N

β�1,β≠α
􏽘

M

r�1
􏽘

M

s�1
ζαβ,rs uα(k − r) uβ(k − s),

(3)

where α, β � 1, . . . , N; β≠ α, μα is a constant, and ζα,r, ζα,rs,
ζαβ,r, and ζαβ,rs are positive parameters.'ese parameters are
called Volterra kernels.

2.2. Parametric Model of Volterra. 'is MM family is dis-
tinguished by linear feedback of outputs and a polynomial
function of inputs. In the literature, the Volterra parametric
model is used to describe a nonlinear system.

y(k) � f(u(k − 1), u(k − 2), . . . , u(k − m))

− 􏽘
m

h�1
ah y(k − h).

(4)

'ereby, we propose the following parametric
model of Volterra in order to describe the dynamic of an
INS:
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yα(k) � fα uα(k − 1), uα(k − 2), . . . , uα(k − m), uβ(k − 1), uβ(k − 2), . . . , uβ(k − m)􏼐 􏼑,

− 􏽘
m

h�1
aα,h yα(k − h) + 􏽘

N

β�1,β≠ α
􏽘

m

h�1
aαβ,h yβ(k − h),

(5)

with uα(k) is the input and yα(k) is the output of the INS
Sα; yβ(k) and uβ(k) represent, respectively, the outputs
and inputs from the other INSs Sβ, β � 1, . . . ,N; β≠ α; aα,h

and aαβ,h are constant parameters; and m is a positive

parameter which corresponds to the order of the con-
sidered system.

In the case of an order system M and a polynomial of
degree 2, the expression of the output yα(k) is written in the
following form:

yα(k) � μα − 􏽘
M

h�1
aα,h yα(k − h) + 􏽘

M

r�1
ζα,r uα(k − r) + 􏽘

M

r�1
􏽘

M

s�1
ζα,rs uα(k − r) uα(k − s),

+ 􏽘
N

β�1,β≠ α
􏽘

M

r�1
ζαβ,r uβ(k − r) + 􏽘

N

β�1,β≠ α
􏽘

M

h�1
aαβ,h yβ(k − h) + 􏽘

N

β�1,β≠ α
􏽘

M

r�1
􏽘

M

s�1
ζαβ,rs uα(k − r) uβ(k − s).

(6)

We can notice that these different representations of
MMs become more and more complex by increasing the
order of the system or the nonlinearity degree.

3. IOMMs

'e use of input-output MMs to describe nonlinear systems
is a popular strategy in industrial settings [15, 17]. In fact, the
paper [15] provides an overview of work done at systems in
the subject of mathematical modelling of nonlinear input-
output dynamic systems with Volterra polynomials. Based
on the Volterra theory of nonlinear systems, the author of
[16] proposes a technique for finding nonlinear aeroelastic
systems. 'e theory’s current relevance to computational
and experimental aeroelasticity problems is reviewed. 'e
book [17] discusses simple, concise, and simple-to-under-
stand approaches for identifying nonlinear systems, as well
as recent research findings in the field of adaptive nonlinear
system identification. 'ese methods employ adaptive filter
techniques, which are well-known for finding linear systems.
'ese methods can be used to simulate nonlinear systems
whose models are approximated by polynomial functions.

'is paragraph is concerned with the description of
large-scale nonlinear systems, which are made up of multiple
linked mono-variable nonlinear systems functioning in a
deterministic or stochastic environment [18]. We can dif-
ferentiate three types of nonlinearities, which are as follows:

(1) Nonlinearity with respect to the parameters
(2) Nonlinearity with respect to the observations
(3) Nonlinearity with respect to the parameters and the

observations

We are particularly interested in input-outputMMs with
linear parameters and nonlinear data.

3.1. Nonlinearity with respect to the Inputs. In this part, we
will present input-output MMs that can be used to char-
acterize the dynamics of INSs with nonlinearity with respect
to the inputs. We will concentrate on linked nonlinear
dynamical systems that may be characterized by the class of
deterministic or stochastic input-output MMs, which are
nonlinear with respect to inputs, mono-variables, with time-
varying parameters.

3.1.1. Deterministic Input-Output MMs. We are interested
here in the description of INSs by deterministic input-output
MMs. In this context, we consider an INS Sα, 1≤ α≤N,
coupled with other interconnected subsystems Sβ,
β � 1, . . . , N; β≠ α, having a nonlinearity with respect to the
inputs, which can be modeled by the following IOMM
INDARMA (interconnected nonlinear deterministic
autoregressive moving average) [18]:

Aα q
− 1

, k􏼐 􏼑yα(k) � q
− dα Bα q

− 1
, k􏼐 􏼑 uα(k) + 􏽘

N

β�1,β≠ α
q

− dαβBαβ q
− 1

, k􏼐 􏼑 uβ(k) + 􏽘
N

β�1,β≠ α
q

− tαβAαβ q
−1

, k􏼐 􏼑 yβ(k),

+f
u
g uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁􏽨 􏽩,

(7)

where yα(k) and uα(k) represent, respectively, the output
and input of the INS Sα; uα(k) and uβ(k) denote,

respectively, the outputs and inputs from the other inter-
connected nonlinear subsystems Sβ, β � 1, . . . , N; β≠ α; dα
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presents the intrinsic delay of the considered system; tαβ and
dαβ represent the delays of the interactions, which are rel-
ative to the outputs and the inputs of the other INSs Sβ; and
Aα(q−1, k), Bα(q−1, k), Bαβ(q−1, k), and Aαβ(q−1, k) are time-
varying polynomials, defined as follows:

Aα q
−1

, k􏼐 􏼑 � 1 + aα,1(k)q
−1

+ ... + aα,nAα
(k)q

−nAa
,

Bα q
−1

, k􏼐 􏼑 � bα,1(k)q
−1

+ ... + bα,nB,a
(k)q

−nBa ,

Bαβ q
−1

, k􏼐 􏼑 � bαβ,1(k)q
−1

+ ... + bαβ,nBαβ
(k)q

−nBαβ ,

(8)

and

Aαβ q
−1

, k􏼐 􏼑 � 1 + aαβ,1(k)q
−1

+ ... + aαβ,nAαβ
(k)q

−nAαβ , (9)

with α, β � 1, . . . , N; β≠ α, and nAα
, nBα

, nBαβ
, and nAαβ

are the
orders of the polynomials Aα(q−1, k), Bα(q−1, k), Bαβ(q−1, k),
and Aαβ(q−1, k).

'e term fu
g[.] represents a nonlinear function with

nonlinearity degree p, which depends on the input se-
quences of the interconnected system (IS) Sα, 1≤ α≤N, and
the other INSs Sβ, β � 1, . . . , N; β≠ α, defined as follows
[18]:

f
u
g[.] � 􏽘

ngαα,r1

r1�1
􏽘

ngαα,r1r2

r2�1
gαα,r1r2

(k) uα k − r1( 􏼁uα k − r2( 􏼁,

+ 􏽘

ngαα,r1

r1�1
􏽘

ngαα,r1r2

r2�1
􏽘

ngαα,r1r2r3

r3�1
gαα,r1r2r3

(k) uα k − r1( 􏼁uα k − r2( 􏼁uα k − r3( 􏼁,

+ · · · + 􏽘

ngαα,r1

r1�1
􏽘

ngαα,r1r2

r2�1
· · · 􏽘

ngαα,r1r2 ...rp

rp�1
gαα,r1...rp

(k) uα k − r1( 􏼁 . . . uα k − rp􏼐 􏼑,

+ 􏽘
N

β�1,β≠ α
􏽘

ngαβ,r1

r1�1
􏽘

ngαβ,r1r2

r2�1
gαβ,r1r2

(k)uα k − r1( 􏼁 uβ k − r2( 􏼁,

+ 􏽘
N

β�1,β≠ α
􏽘

ngαβ,r1

r1�1
􏽘

ngαβ,r1r2

r2�1
􏽘

ngαβ,r1r2r3

r3�1
gαβ,r1r2r3

(k) uα k − r1( 􏼁uα k − r2( 􏼁uβ k − r3( 􏼁,

+ · · · + 􏽘
N

β�1,β≠ α
􏽘

ngαβ,r1

r1�1
􏽘

ngαβ,r1r2

r2�1
· · · 􏽘

ngαβ,r1r2 ...rp

rp�1
gαβ,r1...rp

(k) uα k − r1( 􏼁 . . . u β k − rp􏼐 􏼑.

(10)

Note that each IS Sα, α � 1, . . . , N, is coupled with the
outputs and the inputs of the other INSs Sβ, by the poly-
nomials Aαβ(q−1, k) and Bαβ(q−1, k).

3.1.2. Stochastic Input-Output MMs. 'is subsection deals
with the description of the INSs, which are described by

stochastic IOMMs. Consider a stochastic INS Sα, 1≤ α≤N,
which is coupled to other ISs Sβ, β � 1, . . . , N; β≠ α, non-
linear with respect to the inputs.'is system can be qualified
by the following mathematical input-output model INAR-
MAX (interconnected nonlinear autoregressive moving
average with exogenous) [18]:

Aα q
−1

, k􏼐 􏼑 yα(k) � q
−dα Bα q

−1
, k􏼐 􏼑uα(k) + 􏽘

N

β�1,β≠ α
q

−dαβBαβ q
−1

, k􏼐 􏼑 uβ(k) + 􏽘
N

β�1,β≠ α
q

−tαβAαβ q
−1

, k􏼐 􏼑 yβ(k),

+ f
u
g uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁􏽨 􏽩,

+ f
ue
c uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃

+ f
e
c eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃 + Cα q

− 1
􏼐 􏼑 eα(k),

(11)

where eα(k)􏼈 􏼉 represents the set of random variables
acting on the IS Sα, which can be assimilated to a Gaussian
distribution with zero mean and constant variance σ2α,
fu

g[.] is a nonlinear function of degree p given by (10),

Aα(q−1, k), Bα(q−1, k), Bαβ(q−1, k), and Aαβ(q−1, k) are
time-varying polynomials defined by (8), (9), (10), and (9),
and Cα(q−1) is a polynomial with constant parameters,
defined as follows:
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Cα q
−1

􏼐 􏼑 � 1 + cα,1q
−1

+ ... + cα,nCa
q

−nCα , (12)

where nCα
denotes the order of Cα(q−1).

'e term fue
c [ . ] denotes a nonlinear function of degree

p, which is determined by the IS’s input sequences Sα and the
disturbance eα(k). 'is function can be expressed as follows:

f
ue
c [.] � 􏽘

ncαα,r1

r1�1
􏽘

ncαα,r1r2

r2�1
cαα,r1r2

uα k − r1( 􏼁eα k − r2( 􏼁 + . . . . . . +,

􏽘

ncαα,r1

r1�1
􏽘

ncαα,r1r2

r2�1
· · · 􏽘

ncαα,r1r2 ...rp

rp�1
cαα,r1 ...rp

uα k − r1( 􏼁 ... eα k − rp􏼐 􏼑.

(13)

'e termfe
c[ . ] represents a nonlinear function of degree

p, which depends only on the noise sequence eα(k)􏼈 􏼉. 'is
term is defined as follows:

f
e
c[.] � 􏽘

ncαα,r1

r1�1
􏽘

ncαα,r1r2

r2�1
cαα,r1r2

eα k − r1( 􏼁eα k − r2( 􏼁 + . . . . . . +,

􏽘

ncαα,r1

r1�1
􏽘

ncαα,r1r2

r2�1
· · · 􏽘

ncαα,r1r2 ...rp

rp�1
cαα,r1...rp

eα k − r1( 􏼁 ... eα k − rp􏼐 􏼑.

(14)

As an example, we consider a large-scale nonlinear dy-
namic system composed of two INSs S1 and S2. Each subsystem
can be modeled by the INARMAX mathematical model of the

second order, nonlinear with respect to the inputs and having a
degree of nonlinearity equal to 2. 'us, the output yα(k) of
each INS Sα is demonstrated by the following expression:

yα(k) � − 􏽘
2

r�1
aα,r(k)yα(k − r) + 􏽘

2

r�1
bα,r(k)uα k − dα − r( 􏼁 + 􏽘

2

r�1
cα,r eα(k − r),

+ 􏽘
2

β�1,β≠ α
􏽘

2

r�1
bαβ,r(k) uβ k − dαβ − r􏼐 􏼑 + 􏽘

2

β�1,β≠ α
􏽘

2

r�1
aαβ,r(k) yβ k − tαβ − r􏼐 􏼑,

+ 􏽘
2

r1�1
􏽘

2

r2�1
gαα,r1r2

(k)uα k − r1( 􏼁uα k − r2( 􏼁 + 􏽘
2

β�1,β≠ α
􏽘

2

r1�1
􏽘

2

r2�1
gαα,r1r2

(k) uα k − r1( 􏼁uβ k − r2( 􏼁,

(15)

with α, β � 1, 2; β≠ α.

3.2. Nonlinearity with respect to the Outputs. 'is section is
dedicated to the description of INSs with nonlinearity in
their outputs. 'is type of dynamical system may be
characterized by input-output MMs that are nonlinear in

terms of the outputs, mono-variable, deterministic, or
stochastic and include time-varying parameters.

3.2.1. Deterministic Input-Output MMs. Let us consider an
INS operating in a deterministic environment, mono-variable
and having a nonlinearity with respect to the outputs. 'e
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general structure of the considered system can be described by
the following INDARMA mathematical model [18]:

Aα q
− 1

, k􏼐 􏼑 yα(k) � q
− dα Bα q

− 1
, k􏼐 􏼑 uα(k) + 􏽘

N

β�1,β≠ α
q

− dαβBαβ q
− 1

, k􏼐 􏼑 uβ(k) + 􏽘
N

β�1,β≠ α
q

− tαβAαβ q
− 1

, k􏼐 􏼑 yβ(k),

+ f
y

fαβ
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽨 􏽩,

− f
y

fαα
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁􏼂 􏼃,

(16)

where the terms f
y

fαα
[ . ] andf

y

fαβ
[ . ] are nonlinear functions

of nonlinearity degree p, which depend on the output
sequences of the IS Sα and the other ISs Sβ, respectively.
'ese functions can be defined by the following expressions:

f
y

fαα
[.] � 􏽘

nfαα,r1

r1�1
􏽘

nfαα,r1r2

r2�1
fαα,r1r2

(k) yα k − r1( 􏼁yα k − r2( 􏼁,

+ 􏽘

nfαα,r1

r1�1
􏽘

nfαα,r1r2

r2�1
􏽘

nfαα,r1r2r3

r3�1
fαα,r1r2r3

(k) yα k − r1( 􏼁yα k − r2( 􏼁yα k − r3( 􏼁,

+ . . . + 􏽘

nfαα,r1

r1�1
􏽘

nfαα,r1r2

r2�1
· · · 􏽘

nfαα,r1r2 ...rp

rp�1
fαα,r1...rp

(k) yα k − r1( 􏼁 . . . yα k − rp􏼐 􏼑,

(17)

and

f
y

fαβ
[.] � 􏽘

N

β�1,β≠ α
􏽘

nfαβ,r1

r1�1
􏽘

nfαβ,r1r2

r2�1
fαβ,r1r2

(k) yα k − r1( 􏼁yβ k − r2( 􏼁,

+ 􏽘
N

β�1,β≠ α
􏽘

nfαβ,r1

r1�1
􏽘

nfαβ,r1r2

r2�1
􏽘

nfαβ,r1r2r3

r3�1
fαβ,r1r2r3

(k) yα k − r1( 􏼁yα k − r2( 􏼁yβ k − r3( 􏼁,

+ . . . + 􏽘
N

β�1,β≠ α
􏽘

nfαβ,r1

r1�1
􏽘

nfαβ,r1r2

r2�1
· · · 􏽘

nfαβ,r1r2 ...rp

rp�1
fαβ,r1...rp

(k) yα k − r1( 􏼁 . . . yβ k − rp􏼐 􏼑.

(18)

3.2.2. Stochastic Input-OutputMMs. We consider an INS Sα,
1≤ α≤N, which is coupled to other INSs Sβ,
β � 1, . . . , N; β≠ α, exhibiting nonlinearity in outputs and
working in a stochastic environment. We suppose that the

noise operating on the investigated system is made up of a
sequence of independent random variables with a zero mean
and a finite variance, σ2α. 'e general structure of this MM is
given by the following expression [18]:

Aα q
− 1

, k􏼐 􏼑yα(k) � q
− dα Bα q

− 1
, k􏼐 􏼑 uα(k) + 􏽘

N

β�1,β≠ α
q

− dαβBαβ q
− 1

, k􏼐 􏼑 uβ(k) + 􏽘
N

β�1,β≠ α
q

− tαβAαβ q
− 1

, k􏼐 􏼑 yβ q
− 1

, k􏼐 􏼑,

+ f
y

fαβ
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽨 􏽩 ,

− f
y

fαα
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁􏼂 􏼃 + f

e
c eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃,

+ f
ye

λ yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃 + Cα q
− 1

􏼐 􏼑 eα(k),

(19)
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where Aα(q− 1, k), Bα(q− 1, k), Bαβ(q− 1, k), and Aαβ(q− 1, k)

are time-varying polynomials, defined by (8), (9), (10), and (9);
Cα(q− 1) is a polynomial with constant parameters, given by
(14); and the nonlinear functions fe

c[ . ], f
y

fαα
[ . ], and f

y

fαβ
[ . ]

are defined by (16), (19), and (20), respectively.
'e term f

ye

λ [ . ] denotes a nonlinear function of degree
p, which depends on the output sequences of the IS Sα and
the noise eα(k)􏼈 􏼉. 'is function can be defined as follows:

f
ye

λ [.] � 􏽘

nλαα,r1

r1�1
􏽘

nλαα,r1r2

r2�1
λαα,r1r2

yα k−r1( 􏼁 eα k − r2( 􏼁 + . . . . . . +,

􏽘

nλαα,r1

r1�1
􏽘

nλαα,r1r2

r2�1
. . . 􏽘

nλαα,r1r2 ...rp

rp�1
λαα,r1 ...rp

yα k − r1( 􏼁 . . . eα k − rp􏼐 􏼑.

(20)

For example, the following model corresponds to an
IOMMINARMAX of the second order with a nonlinearity
degree equal to 2, making it possible to describe the dynamic
behavior of a large-scale nonlinear process composed of two
interconnected nonlinear subsystems S1 and S2. 'e output
yα(k) of each interconnected nonlinear subsystem Sα is
described as

yα(k) � − 􏽘
2

r�1
aα,r(k)yα(k − r) − 􏽘

2

r1�1
􏽘

2

r2�1
fαα,r1r2

(k) yα k − r1( 􏼁yα k − r2( 􏼁,

+ 􏽘
2

r�1
bα,r(k)uα k − dα − r( 􏼁 + 􏽘

2

β�1,β≠ α
􏽘

2

r�1
bαβ,r(k) uβ k − dαβ − r􏼐 􏼑,

+ 􏽘
2

β�1,β≠ α
􏽘

2

r�1
aαβ,r(k)yβ k − tαβ − r􏼐 􏼑 + 􏽘

2

β�1,β≠ α
􏽘

2

r1�1
􏽘

2

r2�1
fαβ,r1r2

(k) yα k − r1( 􏼁yβ k − r2( 􏼁,

+ 􏽘
2

r�1
cα,r eα(k − r),

(21)

with α, β � 1, 2; β≠ α.

3.3. Nonlinearity with respect to the Observations. In this
part, we will create input-output MMs of representation that
allow us to describe ISs that are nonlinear with respect to the
observations, are mono-variable, and have unknown time-
varying parameters [18].

3.3.1. Deterministic Input-Output MMs. We consider a
dynamical system, which is composed of N ISs, working in a
predictable environment and being nonlinear with regard to
the observations.'e input-output MMINDARMA, making
it possible to describe the considered system, is given as
follows [18]:

Aα q
− 1

, k􏼐 􏼑 yα(k) � q
− dα Bα q

− 1
, k􏼐 􏼑 uα(k) + 􏽘

N

β�1,β≠ α
q

− dαβBαβ q
− 1

, k􏼐 􏼑uβ(k) + 􏽘
N

β�1,β≠ α
q

− tαβAαβ q
− 1

, k􏼐 􏼑 yβ(k),

+ f
u
g uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁􏽨 􏽩,

+ f
y

fαβ
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽨 􏽩,

− f
y

fαα
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁􏼂 􏼃 + f

uy

hℓ yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁,􏼂 uα(k − 1),

uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽩,

(22)

where Aα(q− 1, k), Bα(q− 1, k), Aαβ(q− 1, k), and Bαβ(q− 1, k)

are polynomials defined by (8), (9), (10), and (9), re-
spectively; fu

g[.], f
y

fαα
[ . ], and f

y

fαβ
[ . ] are nonlinear

functions given by (12), (19), and (20), respectively,
and f

uy

λhl[.] is described by the following nonlinear
function:
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f
uy

hℓ [.] � 􏽘
N

β�1
􏽘

nhαβ,r1

r1�1
􏽘

nhαβ,r1r2

r2�1
hαβ,r1r2

(k) uα k − r1( 􏼁yβ k − r2( 􏼁,

+ 􏽘
N

β�1
􏽘

nhαβ,r1

r1�1
􏽘

nhαβ,r1r2

r2�1
􏽘

nhαβ,r1r2r3

r3�1
hαβ,r1r2r3

(k) uα k − r1( 􏼁uα k − r2( 􏼁yβ k − r3( 􏼁 + . . . +,

+ 􏽘
N

β�1
􏽘

nhαβ,r1

r1�1
􏽘

nhαβ,r1r2

r2�1
· · · 􏽘

nhαβ,r1r2 ...rp

rp�1
hαβ,r1...rp

(k) uα k − r1( 􏼁 . . . yβ k − rp􏼐 􏼑,

+ 􏽘
N

β�1,β≠ α
􏽘

nℓαβ,r1

r1�1
􏽘

nℓαβ,r1r2

r2�1
ℓαβ,r1r2

(k) yα k − r1( 􏼁uβ k − r2( 􏼁,

+ 􏽘
N

β�1,β≠ α
􏽘

nℓαβ,r1

r1�1
􏽘

nℓαβ,r1r2

r2�1
􏽘

nℓαβ,r1r2r3

r3�1
ℓαβ,r1r2r3

(k) yα k − r1( 􏼁yα k − r2( 􏼁uβ k − r3( 􏼁 + . . . +,

+ 􏽘
N

β�1,β≠ α
􏽘

nℓαβ,r1

r1�1
􏽘

nℓαβ,r1r2

r2�1
· · · 􏽘

nℓαβ,r1r2 ...rp

rp�1
ℓαβ,r1 ...rp

(k) yα k − r1( 􏼁 . . . uβ k − rp􏼐 􏼑.

(23)

3.3.2. Stochastic Input-Output MMs. Let us consider an INS
Sα, 1≤ α≤N, which is coupled to the other IS Sβ,
β � 1, . . . , N; β≠ α. 'is system is nonlinear with respect to

the observations and can be described by the class of
IOMMs. 'e considered structure of the INARMAX MM is
given by the following expression [18]:

Aα q
− 1

, k􏼐 􏼑 yα(k) � q
− dα Bα q

− 1
, k􏼐 􏼑uα(k) + 􏽘

N

β�1,β≠ α
q

− dαβBαβ q
− 1

, k􏼐 􏼑 uβ(k),

+ 􏽘
N

β�1,β≠ α
q

− tαβAαβ q
− 1

, k􏼐 􏼑 yβ(k) + Cα q
− 1

􏼐 􏼑eα(k),

+ f
u
g uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁􏽨 􏽩,

+ f
y

fαβ
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽨 􏽩,

− f
y

fαα
yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁􏼂 􏼃 + f

uy

hℓ yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁,􏽨 uα(k − 1),

uα(k − 2), . . . , uα k − nα( 􏼁, uβ(k − 1), uβ(k − 2), . . . , uβ k − nα( 􏼁, yβ(k − 1), yβ(k − 2), . . . , yβ k − nα( 􏼁􏽩,

+ f
ue
c uα(k − 1), uα(k − 2), . . . , uα k − nα( 􏼁, eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃,

+ f
ye

λ yα(k − 1), yα(k − 2), . . . , yα k − nα( 􏼁, eα(k − 1), ei(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃

+ f
e
c eα(k − 1), eα(k − 2), . . . , eα k − nα( 􏼁􏼂 􏼃,

(24)

where fu
g[ . ], fue

β [ . ], fe
c[ . ], f

y

fαα
[ . ], f

y

fαβ
[ . ], , and f

uy

hℓ [ . ]

are nonlinear functions defined by (12), (15), (16), (19), (20),
(22), and (23), respectively.

For the reason of simplicity, we consider the following
dynamical system, which consists of N INSs, running
in a deterministic environment and defined by an

Mathematical Problems in Engineering 9



IOMM INDARMA with a nonlinearity degree equal to 2,
such as

Aα1 q
− 1

􏼐 􏼑yα(k) + Aα2 q
−1
1 , q

−1
2􏼐 􏼑y

2
α(k) � Bα1 q

− 1
􏼐 􏼑uα(k) + Bα2 q

−1
1 , q

−1
2􏼐 􏼑u

2
α(k) + Aαβ1 q

− 1
􏼐 􏼑yβ(k),

+ Bαβ1 q
− 1

􏼐 􏼑uβ(k) + Aαβ2 q
−1
1 , q

−1
2􏼐 􏼑yα(k)yβ(k),

+ Bαβ2 q
−1
1 , q

−1
2􏼐 􏼑uα(k)uβ(k) + Fαβ q

−1
1 , q

−1
2􏼐 􏼑uα(k)yβ(k),

+ Hαβ q
−1
1 , q

−1
2􏼐 􏼑yα(k)uβ(k),

(25)

where

Bα1 q
− 1

􏼐 􏼑 � 􏽘

nBα1

r�1
bα1,rq

− r
,

Aα1 q
− 1

􏼐 􏼑 � 1 + 􏽘

nAα1

r�1
aα1,rq

− r
,

Bα2 q
−1
1 , q

−1
2􏼐 􏼑u

2
α(k) � 􏽘

nBα21

r�1
􏽘

nBα22

s�1
bα2,rsuα(k − r)uα(k − s),

Aα2 q
−1
1 , q

−1
2􏼐 􏼑y

2
α(k) � 􏽘

nAα21

r�1
􏽘

nAα22

s�1
aα2,rsyα(k − r)yα(k − s),

Bαβ1 q
− 1

􏼐 􏼑uβ(k) � 􏽘
N

β�1,β≠ α
􏽘

nBαβ1

r�1
bαβ1,ruβ(k − r),

Aαβ1 q
− 1

􏼐 􏼑yβ(k) � 􏽘
N

β�1,β≠ α
􏽘

nAαβ1

r�1
aαβ1,ryβ(k − r),

Bαβ2 q
−1
1 , q

−1
2􏼐 􏼑uα(k)uβ(k) � 􏽘

N

β�1,β≠ α
􏽘

nBαβ21

r�1
􏽘

nBαβ22

s�1
bαβ2,rsuα(k − r)uβ(k − s),

Aαβ2 q
−1
1 , q

−1
2􏼐 􏼑yα(k)yβ(k) � 􏽘

N

β�1,β≠ α
􏽘

nAαβ21

r�1
􏽘

nAαβ22

s�1
aαβ2,rs yα(k − r)yβ(k − s),

Fαβ q
−1
1 , q

−1
2􏼐 􏼑uα(k)yβ(k) � 􏽘

N

β�1
􏽘

nFαβ1

r�1
􏽘

nFαβ2

s�1
fαβ,rsuα(k − r)yβ(k − s),

(26)

and

Hαβ q
−1
1 , q

−1
2􏼐 􏼑yα(k)uβ(k) � 􏽘

N

β�1,β≠ α
􏽐

nHαβ1

r�1
􏽐

nHαβ2

s�1
hαβ,rs yα(k − r)uβ(k − s), (27)

with α, β � 1, . . . , N; β≠ α.
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From the developed MM, we can distinguish special
cases of input-outputMM, based on various representations,
such as the following:

(1) Serial model of Volterra:

Aα1 q
− 1

􏼐 􏼑 � 0, Aα2 q
−1
1 , q

−1
2􏼐 􏼑 � 0, Aαβ1 q

− 1
􏼐 􏼑 � 0, Aαβ2 q

−1
1 , q

−1
2􏼐 􏼑 � 0, Fαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0, Hαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0. (28)

(2) Parametric model of Volterra:

Aα2 q
−1
1 , q

−1
2􏼐 􏼑 � 0, Aαβ2 q

−1
1 , q

−1
2􏼐 􏼑 � 0, Fαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0, Hαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0. (29)

(3) Bilinear model:

Aα2 q
−1
1 , q

−1
2􏼐 􏼑 � 0, Bα2 q

−1
1 , q

−1
2􏼐 􏼑 � 0. (30)

(4) Linear model with respect to the input signal:

Bα2 q
−1
1 , q

−1
2􏼐 􏼑 � 0, Bαβ2 q

−1
1 , q

−1
2􏼐 􏼑 � 0, Fαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0, Hαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0. (31)

(5) Linear model with respect to the output signal:

Aα2 q
−1
1 , q

−1
2􏼐 􏼑 � 0, Aαβ2 q

−1
1 , q

−1
2􏼐 􏼑 � 0, Fαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0, Hαβ q

−1
1 , q

−1
2􏼐 􏼑 � 0. (32)

For example, we consider a large-scale nonlinear pro-
cess, which is constituted of two INS S1 and S2. Each
interconnected subsystem can be defined by the INDARMA
mathematical model of the second order with time-varying
parameters and having a nonlinearity degree equal to 2.

Figure 1 shows the interaction structure diagram of the
considered nonlinear process:

'us, the output yα(k) of the INS Sα can be expressed as

yα(k) � − 􏽘
2

r�1
aα,r(k)yα(k − r) − 􏽘

2

r1�1
􏽘

2

r2�1
fαα,r1r2

(k) yα k − r1( 􏼁yα k − r2( 􏼁,

+ 􏽘
2

r�1
bα,r(k)uα k − dα − r( 􏼁 + 􏽘

2

β�1,β≠ α
􏽘

2

r�1
bαβ,r(k) uβ k − dαβ − r􏼐 􏼑,

+ 􏽘
2

β�1,β≠ α
􏽘

2

r�1
aαβ,r(k) yβ k − tαβ − r􏼐 􏼑 + 􏽘

2

r1�1
􏽘

2

r2�1
gαα,r1r2

(k) uα k − r1( 􏼁uα k − r2( 􏼁,

+ 􏽘
2

β�1,β≠ α
􏽘

2

r1�1
􏽘

2

r2�1
gαβ,r1r2

(k) uα k − r1( 􏼁uβ k − r2( 􏼁 + 􏽘
2

β�1,β≠ α
􏽘

2

r1�1
􏽘

2

r2�1
fαβ,r1r2

(k) yα k − r1( 􏼁yβ k − r2( 􏼁,

+ 􏽘
2

β�1
􏽘

2

r1�1
􏽘

2

r2�1
hαβ,r1r2

(k) uα k − r1( 􏼁yβ k − r2( 􏼁 + 􏽘
2

β�1,β≠ α
􏽘

2

r1�1
􏽘

2

r2�1
ℓαβ,r1r2

(k) yα k − r1( 􏼁uβ k − r2( 􏼁,

(33)

with α, β � 1, 2; β≠ α.
We notice that these different representations of

developed MMs become more and more complex by
increasing the nonlinearity degree p and/or the order of
the IS.

4. MMs in Connected Blocks

'e linked block MMs explain the dynamic behavior of a
nonlinear system composed of a linear dynamic element and
a nonlinear static element. 'is form of MM is widely used
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in a variety of industrial applications for the description of
nonlinear systems with tiny dimensions [17, 19–22]. In fact,
the authors of [19] provided an approach for identifying
nonlinear dynamic systems using extended Hammerstein
and Wiener models. Following that, the author of [20] re-
fined a strategy for identifying the Hammerstein model.
Similarly, the authors of [21] produced promising findings
for Hammerstein system identification. Around ten years
later, the authors of [17] proposed an adaptive nonlinear
system identification approach to the Volterra and Wiener
Models. 'e author of [22] proposes a significant im-
provement in the identification of Hammerstein–Wiener
models. 'e use of MMs to describe this type of dynamic
system in linked blocks simplifies the construction of
parametric estimates and control strategies. In linked blocks,

there are two types of MMs, Hammerstein MM and Wiener
MM.

Two structures of linked block MMs are developed in
this part for the description of mono-variable INSs.'is type
of system can be represented by discrete MMs of Ham-
merstein or Wiener, which can be deterministic or sto-
chastic, and has unknown time-varying parameters.

4.1. Interconnected Hammerstein MMs. A Hammerstein
MMs description of an interconnected nonlinear dynamic
system relates to the interconnection of many MM struc-
tures, each of which consists of a static nonlinear portion
followed by a dynamic linear part [23].'is family of models
includes two types of MMs: a deterministic Hammerstein
MM, in which an IDARMA input-output model defines the
dynamic linear component of the investigated system, and a
stochastic Hammerstein MM, in which an IARMAX input-
output model describes the dynamic linear part.

4.1.1. Deterministic Interconnected Hammerstein MMs.
'e structure of an INS Sα, 1≤ α≤N, operating in a de-
terministic environment and that can be defined by Ham-
merstein MM, is represented in Figure 2.

Figure 2 depicts the dynamic linear component of
Hammerstein MM, which is characterized by the following
formula [23]:

Aα q
− 1

, k􏼐 􏼑 yα(k) � Bα q
− 1

, k􏼐 􏼑 h
uα
α (k) + 􏽘

N

β�1,β≠ α
Bαβ q

−1
, k􏼐 􏼑 h

uβ
β (k) + 􏽘

N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 h

yβ
β (k), (34)

where yα(k) and h
uα
α (k) denote, respectively, the output and

the input of the dynamic linear block of the IS Sα; yβ(k), uβ(k),
and uα(k) are the inputs of the static nonlinear blocks; h

uβ
β (k)

and h
yβ
β (k) represent the inputs of the dynamic linear blocks of

the other ISs Sβ, β � 1, . . . , N; β≠ α; and Aα(q− 1, k),
Bα(q− 1, k), Bαβ(q− 1, k), and Aαβ(q− 1, k) are time-varying
polynomials, defined by (8), (9), (10), and (9).Wemust note that
the INS Sα, 1≤ α≤N, is linked to other INS Sβ, β � 1,

. . .∞, N; β≠ α, by the polynomials Aαβ(q− 1, k) and Bαβ
(q− 1, k).

'e following equations represent the static nonlinear
sections of the analyzed Hammerstein MM:

h
uα
α (k) � fh

uα
α

uα(k)􏼂 􏼃, (35)

h
uβ
β (k) � f

h
uβ
β

uβ(k)􏽨 􏽩, (36)

h
yβ
β (k) � f

h
yβ
β

yβ(k)􏽨 􏽩, (37)

where fh
uα
α

[.], f
h

uβ
β

[.], and f
h

yβ
β

[.] represent nonlinear
functions.

Equations (40), (41), and (42) can be approximated by
the following functions, such as

h
uα
α (k) � 􏽘

p1

r1�1
ηα,r1

u
r1
α (k) + Δhuα

α uα(k)􏼂 􏼃, (38)

h
uβ
β (k) � 􏽘

p2

r2�1
λβ,r2

u
r2
β (k) + Δhuβ

β uβ(k)􏽨 􏽩, (39)

h
yβ
β (k) � 􏽘

p3

r3�1
cβ,r3

y
r3
β (k) + Δhyβ

β yβ(k)􏽨 􏽩, (40)

where Δhuα
α [uα(k)], Δhuβ

β [uβ(k)], and Δhyβ
β [yβ(k)] repre-

sent the approximation errors of nonlinear functions
fh

uα
α

[.], f
h

uβ
β

[.], and f
h

yβ
β

[.], respectively, which can be
assimilated to a disturbance acting on the output of
the INS Sα, ηα,r1

, λα,r2
, and cβ,r3

, rt � 1, . . . , pt, t � 1, 2, 3
are unknown parameters, and pt denotes the degree of
nonlinearity. Note that the variances values of these
approximation errors depend on the chosen of the
nonlinearity degrees values pt for the nonlinear
functions.

From (40), which are related to the linear and the
nonlinear parts of the Hammerstein model, we can describe
the considered system by the following expression:

Interconnected
nonlinear system S1

Interconnected
nonlinear system S2

y1 (k)

y2 (k)

u1 (k)

u2 (k)

Figure 1: Interaction structure diagram of the considered process.
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yα(k) � − 􏽘

nAα

r�1
aα,r(k)yα(k − r) + 􏽘

nBα

s�1
􏽘

p1

r1�1
bα,s(k)ηα,r1

u
r1
α (k − s) + 􏽘

nBα

s�1
Δhuα

α uα(k − s)􏼂 􏼃,

+ 􏽘
N

β�1,β≠ α
􏽘

nBαβ

s�1
􏽘

p2

r2�1
bαβ,s(k)λβ,r2

u
r2
β (k − s) + 􏽘

nBαβ

s�1
Δhuβ

β uβ(k − s)􏽨 􏽩,

+ 􏽘
N

β�1,β≠ α
􏽘

nAαβ

s�1
􏽘

p3

r3�1
aαβ,s(k)cβ,r3

y
r3
β (k − s) + 􏽘

nAij

s�1
Δhyβ

β yβ(k − s)􏽨 􏽩.

(41)

4.1.2. Stochastic Interconnected Hammerstein MMs. 'is
second form of Hammerstein MM is distinguished by
IARMAX input-output MM, which describes the dy-
namic linear component of the system under consider-
ation [23]. We suppose that there is a disturbance

operating on the output of the considered system and that
it may be characterized by a moving average MM.

As a result, Figure 3 depicts the Hammerstein MM’s
structure:

'e following formula describes the dynamic linear
component of the examined Hammerstein MM [23]:

Aα q
− 1

, k􏼐 􏼑 yα(k) � Bα q
− 1

, k􏼐 􏼑 h
uα
α (k) + 􏽘

N

β�1,β≠ α
Bαβ q

− 1
, k􏼐 􏼑 h

uβ
β (k) + 􏽘

N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 h

yβ
β (k) + Cα q

− 1
􏼐 􏼑 eα(k), (42)

where h
uα
α (k), h

uβ
β (k), and h

yβ
β (k) represent the outputs of the

static nonlinear blocks of the considered MM, which are
defined by equations (43), (44), and (45); eα(k) designates
the set of disturbances acting on the output of the IS, which
consists of an independent random variables sequence with

zero mean and constant variance σ2α; and Cα(q− 1) is a
polynomial with constant parameters, given by (12).

Taking into account the polynomials (43), (44), and (45),
the output yα(k), which is defined by (47), can be written as
[26]

yα(k) � − 􏽘

nAα

r�1
aα,r(k) yα(k − r) + 􏽘

nBα

s�1
􏽘

p1

r1�1
bα,s(k) ηα,r1

u
r1
α (k − s) + 􏽘

nBα

s�1
Δhuα

α uα(k − s)􏼂 􏼃,

+ 􏽘
N

β�1,β≠ α
􏽘

nBαβ

s�1
􏽘

p2

r2�1
bαβ,s(k) λβ,r2

u
r2
β (k − s) + 􏽘

nBαβ

s�1
Δhuβ

β uβ(k − s)􏽨 􏽩,

+ 􏽘
N

β�1,β≠ α
􏽘

nAαβ

s�1
􏽘

p3

r3�1
aαβ,s(k) cβ,r3

y
r3
β (k − s) + 􏽘

nAαβ

s�1
Δhyβ

β yβ(k − s)􏽨 􏽩 + 􏽘

nCα

r�1
cα,reα(k − r) + eα(k).

(43)

Other forms of HammersteinMMsmay be distinguished
in order to represent the dynamics of INSs, depending on
different configurations of static nonlinear elements.

For reason of simplicity, we assume that the polynomials
Bα(q− 1, k), Aα(q− 1, k), Aαβ(q− 1, k), Bαβ(q− 1, k), and
Cα(q− 1) of Hammerstein MMs, which are given by (41) and

yβ (k)

uβ (k)

uα (k) yα (k)

Aαβ (q-1, k)
Aα (q-1, k)

Bαβ (q-1, k)

Bα (q-1, k)

Aα (q-1, k)

Aα (q-1, k)

hy
β (k)β

hu
β (k)β

hu
β (k)α

fh [yβ (k)]β
β

y

fh [uβ (k)]β
β

u

fh [uα (k)]α
α

u

+

++

+

Figure 2: Deterministic structure of the interconnected Hammerstein MM.
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(43), have the same order nα (nα � nAα
� nBα

� nBαβ
� nAαβ

).
We make also a choice of the nonlinearity degrees pt,
t � 1, 2, 3, in such a way that the approximation errors
Δhuα

α [uα(k)], Δhuβ
β [uβ(k)], and Δhyβ

β [yβ(k)] become negli-
gible (Δhuα

α [uα(k)] � Δhuβ
β [uβ(k)] � Δhyβ

β [yβ(k)] � 0).
'ese assumptions allow us to further simplify the formu-
lation of the parametric estimation and the control problems
for the INSs, which are described by the two types of the

developed Hammerstein MMs, which are given by (46) and
(48).

4.2. Interconnected Wiener MMs. 'e creation of Wiener
MMs for characterizing the INSs is discussed in this section.
'is model’s class relates to the interconnection of nu-
merous MM structures, each of which has a dynamic linear
and a static nonlinear component. In this class of MMs, we
may distinguish between two forms of Wiener MMs: de-
terministic Wiener MMs and stochastic Wiener MMs [24].

4.2.1. Deterministic Interconnected Wiener MM. 'is sec-
tion is intended for Wiener MMs [24] to describe INSs
working in a deterministic environment. As a result, we
investigate a nonlinear time-varying system made up of
deterministic ISs. 'e deterministic Wiener MM may be
used to explain each IS, and its structure is depicted in
Figure 4.

'e previous structure, which is illustrated by Figure 4,
can be expressed by the following MM [24]:

Aα q
− 1

, k􏼐 􏼑 wα(k) � Bα q
− 1

, k􏼐 􏼑 uα(k) + 􏽘
N

β�1,β≠ α
Bαβ q

− 1
, k􏼐 􏼑 uβ(k) + 􏽘

N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 yβ(k), (44)

where wα(k) and uα(k) are, respectively, the output and
input of the dynamic linear block of the IS Sα, yβ(k), and
uβ(k) denote, respectively, the outputs and inputs, which
arise from the other ISs Sβ, β � 1, . . . , N; β≠ α, and
Aα(q− 1, k), Bα(q− 1, k), Bαβ(q− 1, k), and Aαβ(q− 1, k) are
time-varying polynomials, as given by (8), (9), (10), and (9),
respectively.

'e following equation describes the static nonlinear
component of the considered MM:

yα(k) � fwα
wα(k)􏼂 􏼃, (45)

where fwα
[.] represents the nonlinear function.

'e following polynomial can be used to approximate
(45):

yα(k) � 􏽘

p

r�1
ηα,rw

r
α(k) + Δyα wα(k)􏼂 􏼃, (46)

where p represents the nonlinearity degree of the nonlinear
function, which can be chosen in an appropriate way; ηα,r,
r � 1, . . . , p, are unknown parameters; and Δyα[wα(k)]

signifies the nonlinear function’s approximation error. 'is
approximation error, which is dependent on the nonline-
arity degree p chosen, might be compared to noise operating
on the output of the IS in question. For an appropriate
choice of the nonlinearity degree value p, this approximation
error Δyα[wα(k)] can be neglected.

'e output of the IS yα(k) can be written as follows,
taking into consideration the dynamic linear component of
the investigated Wiener MM, as stated by (44) [24]:

yα(k) � 􏽘

p

r�1
ηα,r − 􏽘

nAα

s�1
aα,s(k)wα(k − s)⎡⎣ + 􏽘

nBα

h�1
bα,h(k)uα(k − h),

+ 􏽘
N

β�1,β≠ α
Bαβ q

− 1
, k􏼐 􏼑 uβ(k)+ 􏽘

N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 yβ(k)⎤⎥⎥⎥⎦

r

+ Δyα wα(k)􏼂 􏼃.

(47)

4.2.2. Stochastic InterconnectedWiener MM. In this part, we
suppose that the output of the considered system is subjected
to noise, which is composed of an independent random

variable sequence. As a result, the Wiener MM’s dynamic
linear portion is of type IARMAX.

'e structure of this model is depicted in Figure 5.
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Figure 3: Stochastic structure of the interconnected Hammerstein
MM.
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Aα q
− 1

, k􏼐 􏼑wα(k) � Bα q
− 1

, k􏼐 􏼑 uα(k) + 􏽘
N

β�1,β≠ α
Bαβ q

− 1
, k􏼐 􏼑 uβ(k) + 􏽘

N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 yβ(k) + Cα q

− 1
􏼐 􏼑 eα(k), (48)

where eα(k) designates all disturbances acting on the IS Sα,
Cα(q− 1) is a polynomial defined by (12), and yα(k) corre-
sponds to the output of the static nonlinear part of the
stochastic Wiener MM, which is given by (46).

'e output of the system yα(k) may be represented in
the following manner based on the dynamic linear com-
ponent of the investigated Wiener MM, as given by (48).

yα(k) � 􏽘

p

r�1
ηα,r − 􏽘

nAα

s�1
aα,s(k)wα(k − s)⎡⎣ + 􏽘

nBα

h�1
bα,h(k)uα(k − h) + 􏽘

N

β�1,β≠ α
Bαβ q

− 1
, k􏼐 􏼑 uβ(k),

+ 􏽘
N

β�1,β≠ α
Aαβ q

− 1
, k􏼐 􏼑 yβ(k)+ 􏽘

nCα

t�1
cα,teα(k − t) + eα(k)⎤⎦

r

+ Δyα wα(k)􏼂 􏼃.

(49)

In the description of the INSs, we may use a variety of
Wiener MMs, which are based on various forms of the static
nonlinear portion.

We assume that the polynomials Aα(q− 1, k), Bα(q− 1, k),
Bαβ(q− 1, k), Aαβ(q− 1, k), and Cα(q− 1) intervening in the two
types of Wiener MMs, given by (47) and (49), have the same
order nα (nα � nAα

� nBα
� nAαβ

� nBαβ
). We also assume that

the approximation error Δyα[wα(k)] is negligible, to reduce
the formulation of the parametric estimation issue for large-
scale dynamical systems defined by the Wiener MMs created.

5. Case Study

In this section, we present a numerical example to illustrate
the feasibility and effectiveness of the developed theoretical
results. 'is example corresponds to a stochastic large-scale
nonlinear system, composed of two interconnected sub-
systems S1 and S2, and can be described by the class of
interconnected Hammerstein MM.

Figure 6 shows the general structure interaction of the
considered process.

'e system output yi(k), i � 1, 2, can be expressed as

yi(k) � −ai,1(k)yi(k − 1) − ai,2(k)yi(k − 2) + αi,1ui(k − 1) + bi,2(k)αi,1ui(k − 2),

+ αi,2u
2
i (k − 1) + bi,2(k)αi,2u

2
i (k − 2) + βj,1uj(k − 1) + bij,2(k)βj,1uj(k − 2),

+ βj,2u
2
j(k − 1) + bij,2(k)βj,2u

2
j(k − 2) + ei(k) + ci,1ei(k − 1),

(50)

where the relative data are selected as follows: a1,1(k) �

−0.88 + 0.03 sin(0.2k), c1,1 � 0.25, α1,1 � 0.32, a1,2(k) �

0.45 + 0.02 cos(0.2k), b1,2(k) � 0.32+ 0.02 sin(0.2k),
α1,2 � 0.23, β2,1 � 0.33, β2,2 � 0.22, b12,2(k) � 0.33+

0.03 sin(0.2k), a2,1(k) � −0.85+ 0.03 sin(0.2k), c2,1 � 0.27,
α2,1 � 0.31, a2,2(k) � 0.42 + 0.02 cos(0.2k), b2,2(k) � 0.45+

0.04 sin(0.2k), α2,2 � 0.21, β1,1 � 0.33, β1,2 � 0.24,

b21,2(k) � 0.43 + 0.03 sin(0.2k). Adding that the input ui(k)

that applied to the INS is a high level pseudo-random
binary sequence [-1.5, +1.5], and the variances values of
the noise sequence ei(k), i � 1, 2􏼈 􏼉 are σ21 � 0.0937 and
σ22 � 0.0853.

Some results of this simulation example of the consid-
ered system are given. 'ereby, Figures 7 and 8 illustrate the

yβ (k) Aαβ (q-1, k)

Bαβ (q-1, k)

Bα (q-1, k)

Aα (q-1, k)

Aα (q-1, k)

Aα (q-1, k)
wα (k)++

+
+

yα (k)
fwα

 [wα (k)]

uβ (k)

uα (k)

Figure 4: Deterministic structure of the interconnected Wiener
MM.
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Figure 5: Stochastic structure of the interconnected Wiener MM.
'e following formula describes the dynamic linear portion of
Wiener MM [24].
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evolution of the prediction error, the parametric distance,
and their overall variances for each interconnected non-
linear subsystem.

'e obtained results indicate the good quality of the
estimate, based on an iterative algorithm. 'is estimate
quality ensures the exact choice of the parametric estimation
algorithm and the mathematical model of representation
that describe the best behavior of the considered inter-
connected nonlinear system, despite the parameters varia-
tions, the presence of interactions signals, and disturbances
interim on each system output.

Note that the mathematical model of representation,
which is also called the mathematical model of control or
mathematical model of behavior, corresponds to the
mathematical model of the ″black box″. Let’s add that the
mathematical model of representation is most often de-
scribed by difference equations; this, therefore, corresponds
to an input-output type mathematical model. However, the
parameters involved in this type of mathematical model have

no physical meaning. In fact, the theoretical mathematical
model is much richer in physical meaning than the repre-
sentation model, since it contains all the useful information
about the real process.

It should also be noted that the mathematical model of
representation is the most currently used in the control of
dynamic systems, in particular in the synthesis of nu-
merical control laws. However, the choice of a mathe-
matical model, from this set of models, may depend on
several criteria, such as the type of application, the desired
performance indices, and the strategy of the control law
envisaged. 'erefore, we must classify mathematical
models according to their ability to approximate the sys-
tem. 'us, they can be classified from the simplest
mathematical model to the most complex mathematical
model. 'e selection of a “good” mathematical model for
the formulation of the control law is made according to the
targeted control objectives (accuracy, robustness, and
rapidity).

B1 (q-1, k)

C1 (q-1)

α2,1u2 (k) + α2,2 u
2
2
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Figure 6: General structure interaction of the considered process.
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6. Conclusions

'is paper has proposed new input-output MMs of repre-
sentation, which can describe the dynamic behavior of large-
scale nonlinear systems, such as the extended MM of
Volterra series, the interconnected Hammerstein structures,
and the interconnected Wiener structures. In this research,
we considered the class of large-scale nonlinear systems,
which are decomposed into several interconnected non-
linear subsystems. Each interconnected subsystem is de-
scribed by discrete nonlinear MM, mono-variable, operating
in a deterministic or stochastic environment, and with
unknown time-varying parameters. An illustrative numer-
ical simulation example of two interconnected nonlinear
processes was treated to test the performance and the ef-
fectiveness of the developed theoretical results.

Let us note that, in certain practical situations, the
formulation of a representation mathematical model based
on experimental method, describing an industrial system,
becomes difficult or impossible in certain cases due to the
difficulty in carrying out or analyzing experimental tests on
the considered process (unmeasurable inputs and outputs
variables and dangerous experimental measurements of
certain real process). Besides, it can be remarked that the
developed mathematical model becomes more complex with
the increase of the dimension and the nonlinearity degree of
the considered system. In this case, the synthesis of the
adequate control design will be difficult.

In future works, we will address to develop extended
versions of different methods, which permit us to estimate
the structure variables and the parameters of the inter-
connected nonlinear systems.'e formulation of the control
problem of this class of dynamical systems will be investi-
gated in future research by developing various controllers
based on different control approaches. [25].
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