Existence of Unique Solution of Urysohn and Fredholm Integral Equations in Complex Double Controlled Metric Type Spaces

Sahibzada Waseem Ahmad, Muhammad Sarwar, Gul Rahmat, and Fahd Jarad

1Department of Mathematics, University of Malakand, Dir Lower, Chakdara, Pakistan
2Department of Mathematics, Islamia College Peshawar, Peshawar, Pakistan
3Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Çankaya University, Ankara, Turkey

Correspondence should be addressed to Muhammad Sarwar; sarwarswati@gmail.com and Fahd Jarad; fahd@cankaya.edu.tr

Received 3 May 2021; Revised 14 September 2021; Accepted 21 April 2022; Published 29 May 2022

1. Introduction and Preliminaries

A self-mapping $\varphi: \Xi \rightarrow \Xi$, where $\Xi \neq \emptyset$, is called a contraction if $\exists \kappa \in (0,1)$, such that

$$d(\varphi a, \varphi b) \leq \kappa d(a,b), \forall a, b \in \Xi,$$

(1)

where (Ξ, d) is a metric space. Furthermore, if the metric space (Ξ, d) is complete and satisfies the inequality (1), then in such case, φ possesses a unique fixed point. Inequality (1) is often used to define contractivity, which implies the continuity of φ and is known as the Banach contraction principle. The generalization of Banach contraction principle stated by means of contraction mapping is one of the active areas of research for the practitioners of nonlinear phenomenon. Among these generalizations, weakly contractive mappings are one of the eminent results from scholars, which can be found in the articles [1, 2]. Moreover, Alqahtani et al. [3] have proved a result which is a generalization of Das and Gupta [4] and Jaggi [5], in which the rational type contractions were considered. Those considered rational type contractions are themselves, in fact, generalizations of Banach contraction principle. For more studies, refer to [6–11].

Apart from the generalization of contractive conditions, researchers have dedicated plentiful time to the solution of diversified amount of equations via the fixed point method. Such generalizations include solving linear system of equations, differential equations, fractional differential and integral equations, etc. Abdeljawad et al. generalized the double controlled metric spaces [12] to a complex double controlled metric spaces [13], in which a contraction theorem was presented. Furthermore, the solutions to complex Riemann–Liouville fractional operator, Atangana–Baleanu fractional integral operator, and nonlinear telegraph equation were obtained via the fixed point method. For further study, we encourage readers to study [14].

Integral equations play a key role in radioactive heat transfer problems, electricity and magnetism, kinetic theory of gases, mathematical economics, mathematical problems of radioactive equilibrium, quantum mechanics, fluid mechanics, optimization, optimal controlled systems, communication theory, radiation, population genetics, potential theory, queuing theory, geophysics, medicine, the particle transport problems of astrophysics, nuclear reactor theory, renewal theory, acoustics, fluid mechanics, hereditary phenomena in physics and biology, steady-state heat conduction, fracture mechanics, and continuum mechanics.
Therefore, researchers have dedicated a lot of attention towards solving these equations (for instance, see [15–19] and references therein). Urysohn integral equations occupy comparable priority in the diversified area of research in mathematics, biological sciences, physical sciences, and so on. The Urysohn integral equations are defined as

\[
\delta(t) = \rho(t) + \int_x^y \Delta_1(t, t, \epsilon(\theta), \delta(\epsilon)) \, d\epsilon,
\]

\[
\zeta(t) = \rho(t) + \int_x^y \Delta_2(t, t, \epsilon, \zeta(\epsilon)) \, d\epsilon,
\]

where \(\rho(t) \) is a continuous function on the interval \([x, y] \), \(\Delta_1(t, t, \epsilon, \delta(\epsilon)) \) and \(\Delta_2(t, t, \epsilon, \zeta(\epsilon)) \) are kernels defined on the complex region, and \(R(x, y) = \{ (\theta, \epsilon): x \leq \theta \leq y, x \leq \epsilon \leq y \} \).

The solution of Urysohn integral equations has been handled via distinctive approaches such as [20, 21] and references therein. One of the approaches is the fixed point approach (several articles can be found on such topic, for instance, see [22, 23] and references therein).

Likewise, Fredholm integral equation is one of the significant integral equations and is given by

\[
\Lambda(c) = h(c) + \alpha \int_c^d \Omega(c, t, \Lambda(t)) \, dt,
\]

where \(h(c) \) is a complex continuous function on the given interval \(a \neq 0 \) and \(\alpha \) is a complex parameter, the kernel \(\Omega(c, t, \Lambda(t)) = \sum_{j=1}^d c_j(t) \delta_j \) is a known continuous separable kernel function on a complex plane, and \(S(c, d) = \{ (c, t): c \leq \xi \leq d, c \leq t \leq d \} \). It is always assumed that functions \(c_j(t) \) and \(d_j(t) \) are complex-valued. In addition, the sets \(\{ c_j \} \) and \(\{ d_j \} \) are linearly independent on the interval \([c, d]\), and \(c, d \) are the real limits of the integral.

Similarly, the applications of Fredholm integral equation can be found in the aforementioned fields of the research, which highlight the dominance of integral (3) in the area of research. Therefore, the authors conceive to find the solution of (3) via variant strategies. Similarly, the solution of Fredholm integral equation is managed in distinctive methods. An illustration of some of those methods has been analyzed in [24–26]. One of the methods to solve integral (3) is the B-spline wavelet method by Maleknejad and Nosrati Sahlan [27]. Similarly, He proposed a variational iteration method [28–30] to solve integral (3). The Adomian decomposition method and various numerical methods have also been applied to obtain the solution to (3). Fixed point theory is an alternative supporting approach to solve (3). Numerous researchers have followed this method. For further study, one can see [31–33].

As mentioned earlier, there are diverse methodologies to solve an integral equation. The fixed point technique is among the various other techniques. In the current study, we have extended the result proven in [3] to common fixed point weak contraction in the setting of complete complex double controlled metric type spaces with a numerical experiment. Moreover, we apply our proven result to obtain sufficient conditions for the existence and uniqueness of complex-valued Urysohn integral equations and Fredholm integral equation.

Theorem 1 (see [3]). Let \((\Xi, \partial)\) be a complete extended b-metric space and \(\varphi: \Xi \rightarrow \Xi\) be a continuous self-mapping such that for all \(a \neq b \in \Xi \),

\[
\partial(\varphi a, \varphi b) \leq \kappa M(a, b),
\]

where \(\kappa \in (0, 1) \) and

\[
M(a, b) = \max \left\{ \frac{\partial(a, b)(1 + \partial(\varphi a, \varphi b))}{1 + \partial(a, b)}, \frac{\partial(a, \varphi a)(1 + \partial(b, \varphi b))}{1 + \partial(a, b)}, \frac{\partial(b, \varphi b)(1 + \partial(a, \varphi a))}{\partial(a, b)} \right\}.
\]

Therefore, it can be inferred that \(\zeta_1 < \zeta_2 \), if one of the given property holds.

(1) \(\text{Re}(\zeta_1) = \text{Re}(\zeta_2) \) and \(\text{Im}(\zeta_1) = \text{Im}(\zeta_2) \).
(2) \(\text{Re}(\zeta_1) = \text{Re}(\zeta_2) \) and \(\text{Im}(\zeta_1) = \text{Im}(\zeta_2) \).
(3) \(\text{Re}(\zeta_1) = \text{Re}(\zeta_2) \) and \(\text{Im}(\zeta_1) = \text{Im}(\zeta_2) \).
(4) \(\text{Re}(\zeta_1) = \text{Re}(\zeta_2) \) and \(\text{Im}(\zeta_1) = \text{Im}(\zeta_2) \).

The notation can be listed as \(\zeta_1 \preceq \zeta_2 \), if \(\zeta_1 \neq \zeta_2 \), along with property (4) to be satisfied by considering the equivalent fashion, i.e.,

(1) \(0 < \zeta_1 \preceq \zeta_2 \Rightarrow |\zeta_1| < |\zeta_2| \).
(2) \(\zeta_1 < \zeta_2 \) and \(\zeta_2 < \zeta_3 \Rightarrow \zeta_1 \leq \zeta_3 \).
(3) \(0 < \zeta_1 \preceq \zeta_2 \Rightarrow |\zeta_1| \leq |\zeta_2| \).
(4) \(0 \leq a \leq b \in \mathbb{R} \) and \(\zeta_1 < \zeta_2 \Rightarrow a \zeta_1 < b \zeta_2 \forall \zeta_1, \zeta_2 \in \mathbb{C} \).
where \mathbb{C} is a complex-valued set. A complex-valued double controlled metric space can be defined as

1. $\partial(\eta, \zeta) = 0 \Leftrightarrow \eta = \zeta$.
2. $\partial(\eta, \zeta) \leq \partial(\xi, \zeta)$.
3. $\partial(\eta, \zeta) < \mu(\eta, \xi) + \nu(\xi, \zeta)\partial(\xi, \zeta)$.

Moreover, consider the functions $\mu, \nu: \Xi \times \Xi \rightarrow [1, \infty)$. Let

$$\partial(\eta, \zeta) = \partial(\eta, \xi) + \mu(\xi, \eta)\partial(\eta, \zeta) + \nu(\eta, \zeta)\partial(\xi, \zeta).$$

which shows that (Ξ, ∂) is not a complex controlled metric space and hence not a complex extended b-metric space. On the other hand,

$$2 + 3t = \partial(\eta, \zeta) = \partial(0, 1) + \mu(0, 1)\partial(0, 1) + \mu(1, 1)\partial(1, 1) = \left(\frac{3}{2}\right)(1 + t) + \frac{5}{4}(1 + t) = 4 + 5.5t,$$

Similarly, all the remaining cases can be verified, which shows that (Ξ, ∂) is a complex double controlled metric space.

Definition 3 (see [13]). Let (Ξ, ∂) be a complex double controlled metric type space and let $\{\zeta_n\}_{n \in \mathbb{N}} \in \Xi$ be a sequence and $\zeta \in \Xi$.

1. A sequence $\{\zeta_n\}_{n \in \mathbb{N}}$ is said to be convergent to $\zeta \in \Xi$ if $\partial(\zeta_n, \zeta) < \kappa$; then, $\{\zeta_n\}_{n \in \mathbb{N}} \rightarrow \zeta$ as $n \rightarrow \infty$. Mathematically, it can be expressed as $\lim_{n \rightarrow \infty} \zeta_n = \zeta$.
2. A sequence $\{\zeta_n\}_{n \in \mathbb{N}} \rightarrow \zeta$, is said to be Cauchy if for all $m > n > N$, $\partial(\zeta_n, \zeta) < \kappa$.
3. The metric space (Ξ, ∂) is said to be complete if every Cauchy sequence is convergent in Ξ.

Example 1. Consider a nonempty set $\Xi = [0, 1/3, 1]$, and we define distances as follows (Table 1).

<table>
<thead>
<tr>
<th>$\partial(\eta, \zeta)$</th>
<th>0</th>
<th>$1/3$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$1/3$</td>
<td>1</td>
</tr>
<tr>
<td>$1/3$</td>
<td>$1/3$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2 + 3t</td>
<td>$1 + t$</td>
<td>0</td>
</tr>
</tbody>
</table>

The pair (Ξ, ∂) is called a complex-valued double controlled metric space.

2. Fixed Point Result

In this section, a fixed point result is established which generalizes the result in [3] to a common weak contraction in the sense of complete complex double controlled metric space.

Theorem 2. Let (Ξ, ∂) be a complete complex double controlled metric space. Furthermore, let $\varphi, \eta, \zeta: \Xi \rightarrow \Xi$ be two self-operators. Now for $\lambda \in (0, 1)$ and $L > 0$, such that for all distinct $a, b \in \Xi$, we have

$$\partial(\varphi a, \varphi b) < \lambda M(a, b) - LN(a, b),$$

where

$$M(a, b) = \max\left\{\partial(a, b), \frac{\partial(b, \varphi b)[1 + \partial(a, \varphi a)]}{1 + \partial(a, b)}, \frac{\partial(a, \varphi a)[1 + \partial(b, \varphi b)]}{1 + \partial(a, b)}\right\}, \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

$$N(a, b) = \min\{\partial(a, \varphi a), \partial(b, \varphi b), \partial(b, \varphi a)\}.$$
Proof. Let \mathcal{P}, \mathcal{Q} be an arbitrary point. Suppose the sequence $a_n = \varphi^n a_0$ satisfies the conditions of the theorem and is defined as

\[
\varphi(a_n, a_{n+1}) \leq \lambda M(a_n, a_{n+1}) - L N(a_n, a_{n+1}),
\]

together with

\[
M(a_n, a_{n+1}) = \max \left\{ \varphi(a_n, a_{n+1}), \frac{\varphi(a_n, a_{n+1})[1 + \varphi(a_n, a_{n+1})]}{1 + \varphi(a_n, a_{n+1})}, \frac{\varphi(a_n, a_{n+1})[1 + \varphi(a_n, a_{n+1})]}{1 + \varphi(a_n, a_{n+1})} \right\},
\]

from which it is concluded that

\[
M(a_n, a_{n+1}) = \max \left\{ \varphi(a_n, a_{n+1}), \varphi(a_n, a_{n+1})[1 + \varphi(a_n, a_{n+1})] \right\}.
\]

Now

\[
N(a_n, a_{n+1}) = \min \left\{ \varphi(a_n, a_{n+1}), \varphi(a_n, a_{n+1}) \right\},
\]

Additionally, for each $a \in \Xi$, suppose that

\[
\lim_{a \to 0} \mu(a, a_{2n+1}) \text{ and } \lim_{a \to 0} \mu(a_{2n+1}, a) \text{ exist and are finite.}
\]

Then, φ, \mathcal{Q} have a common fixed point. Consider

\[
a_{2n+1} = \varphi a_{2n}, \quad a_{2n+2} = \mathcal{Q} a_{2n+1}.
\]
From (17), we get that \(N(a_{2n}, a_{2n+1}) = \partial(a_{2n + 1}, a_{2n+1}) = 0 \).

In order to proceed, consider the following cases from (16).

Case 1. Case 1: If \(M(a_{2n}, a_{2n+1}) = \partial(a_{2n+1}, a_{2n+2}) \), using (9) implies
\[
\partial(a_{2n + 1}, a_{2n+2}) < \lambda \partial(a_{2n+1}, a_{2n+2}) - LN(a_{2n}, a_{2n+1});
\]

which follows that the sequence \(\{a_n\}_{n=1}^{\infty} \) is Cauchy sequence. Now, we show that the given point is unique; for this, as \(L > 0 \) and \(N(a_{2n}, a_{2n+1}) = 0 \), we get \(\partial(a_{2n+1}, a_{2n+2}) < \lambda \partial(a_{2n+1}, a_{2n+2}) \), which is an obvious contradiction as \(\lambda \in (0, 1) \).

Case 2: If \(M(a_{2n}, a_{2n+1}) = \partial(a_{2n}, a_{2n+2}) \), then
\[
\partial(a_{2n}, a_{2n+2}) < \partial(a_{2n+1}, a_{2n+2}).
\]

Here \(\mu(a_0, a_1) > 1 \) is used. Define
\[
S_p = \sum_{i=0}^{p} \left(\prod_{j=0}^{i} [\partial(a_j, a_{2j+1})] \mu(a_i, a_{i+1}) \lambda^i \right).
\]

Hence,
\[
\partial(a_{2n+1}, a_{2n+2}) < \partial(a_{2n}, a_{2n+2}).
\]

which follows that the sequence \(\{a_n\}_{n=1}^{\infty} \) is a Cauchy sequence. Now, it is known that the double controlled metric space is a complete space. So, the sequence \(\{a_n\}_{n=1}^{\infty} \) converges to some point say \(f \in E \). We claim that \(f \) is the common fixed point for \(\varphi, \Psi \). Using triangle inequality, it follows that
\[
\partial(f, a_{2n+2}) < \mu(f, a_{2n+1}) \partial(f, a_{2n+1}) + \nu(a_{2n+1}, a_{2n+2}) \partial(a_{2n+1}, a_{2n+2}).
\]

Now it is claimed that \(\varphi f = f \). Using triangle inequality, continuity of \(\varphi \), and (9), it follows that
\[
\partial(f, \varphi f) < \mu(f, a_{2n+1}) \partial(f, a_{2n+1}) + \nu(a_{2n+1}, \varphi f) \partial(a_{2n+1}, \varphi f)\]
\[
= \mu(f, a_{2n+1}) \partial(f, a_{2n+1}) + \nu(a_{2n+1}, \varphi f) \partial(\varphi a_{2n+1}, \varphi f)\]
\[
< \mu(f, a_{2n+1}) \partial(f, a_{2n+1}) + \nu(a_{2n+1}, \varphi f) \partial(\varphi a_{2n+1}, \varphi f)\]
\[
< \mu(f, a_{2n+1}) \partial(f, a_{2n+1}) + \nu(a_{2n+1}, \varphi f) \lambda M(a_{2n+1}, f) - LN(a_{2n+1}, f).\]

From (27) and (32) and letting \(n \to \infty \), we get
\[
\partial(f, \varphi f) = 0 \quad \text{which implies} \quad f = \varphi f. \]

Similarly, it can be checked that \(f = \Psi f \). Thus, \(\varphi, \Psi \) have a common fixed point say \(f \). Now we show that the given point is unique; for this, consider \(f \neq g \in E \), such that \(\varphi f = f \) and \(\varphi g = g \). From (4), it follows that
\[
\partial(\varphi f, \varphi g) < \lambda M(f, g) - LN(f, g), < \lambda^2 \partial(f, g).
\]
It can be deduced that \(f = g \). Similarly, the uniqueness of fixed point for \(N \) can also be checked. Therefore, \(\varphi, N \) have a unique common fixed point.

This completes the proof.

If in Theorem 2, \(N(a, b) = 0 \). Then, we get the following corollary.

Corollary 1. Let \((\Xi, \partial)\) be a complete complex double controlled metric space. Furthermore, suppose that \(\varphi, N: \Xi \rightarrow \Xi \) are two self-operators, such that \(\forall \) distinct \(a, b \in \Xi \),
\[
\partial(\varphi a, Nb) < \kappa M(a, b),
\]
where \(M(a, b) = \max \{\partial(a, b), \partial(b, Nb)[1 + \partial(a, \varphi a)]/1 + \partial(a, b), \partial(\varphi a)[1 + \partial(b, Nb)]/1 + \partial(a, b), \partial(b, Nb)\} \) and \(0 < \kappa < 1 \). With the additional assumption for \(\kappa \in (0, 1) \) and any \(a, b \in \Xi \),
\[
\sup_{n \geq 1} \lim_{n \rightarrow \infty} \frac{\mu(a_{i+1}, a_{i+2})v(a_{i+1}, a_{2n+1})}{\mu(a_{i}, a_{i+1})} < \frac{1}{\kappa}
\]

Moreover, for each \(a \in \Xi \), suppose that
\[
\lim_{n \rightarrow \infty} \mu(a, a_{2n+1}) \text{ and } \lim_{n \rightarrow \infty} \mu(a_{2n+1}, a) \text{ exist and are finite.}
\]

Then, \(\varphi, N \) have a common unique fixed point.

Corollary 2. Let \((\Xi, \partial)\) be a complete complex double controlled metric space. Furthermore, suppose that \(\varphi, N: \Xi \rightarrow \Xi \) are two self-operators, such that \(\forall \) distinct \(a, b \in \Xi \), we have
\[
\partial(\varphi a, Nb) < \nabla (a, b),
\]
where \(\nabla (a, b) = k_{1}\partial(a, b) + k_{2}\partial(b, Nb)[1 + \partial(a, \varphi a)]/1 + \partial(a, b), k_{1}\partial(\varphi a)[1 + \partial(b, Nb)]/1 + \partial(a, b), k_{2}\partial(b, Nb) \) \(\partial(a, \varphi a)\partial(a, b) \) such that \(k_{1}, k_{2} > 0 \) for \(n = 1, 2, 3, 4 \) such that \(\sum_{n=1}^{4} k_{n} < 1 \). With the additional assumption for \(\kappa \in (0, 1) \) and any \(a, b \in \Xi \),
\[
\sup_{n \geq 1} \lim_{n \rightarrow \infty} \frac{\mu(a_{i+1}, a_{i+2})v(a_{i+1}, a_{2n+1})}{\mu(a_{i}, a_{i+1})} < \frac{1}{\kappa}
\]

Moreover, for each \(a \in \Xi \), suppose that
\[
\lim_{n \rightarrow \infty} \mu(a, a_{2n+1}) \text{ and } \lim_{n \rightarrow \infty} \mu(a_{2n+1}, a) \text{ exist and are finite.}
\]

Then, \(\varphi \) has a unique fixed point.

Example 2. Let \(\Xi = [0, 1] \) and define a distance function \(\partial: \Xi \times \Xi \rightarrow C \) by \(\partial(a, b) = |a - b|\sqrt{1 + B^{2}e^{\cot^{-1}(b)}} \), where \(b = 1 \) and \(a \neq b \in \Xi \). Consider the functions \(\mu, v: \Xi \times \Xi \rightarrow [1, 1) \) by \(\mu(a, b) = 2a + 1/3b + 1 \) and \(v(a, b) = a + 4b + 3 \), respectively. Then, it is easy to verify that \((\Xi, \partial)\) is a complete complex double controlled type metric space. Now consider the operators \(\varphi, N: \Xi \rightarrow \Xi \) by \(\varphi a = 1/75a + 2/91a \sqrt{2}e^{\cot^{-1}(1)} \).

Then, the left hand side of the inequality (9) implies that
\[
\partial(\varphi a, Nb) = \left| \frac{1}{75}a + \frac{2}{91}b \right| \sqrt{2}e^{\cot^{-1}(1)}.
\]

Now to calculate right hand side of the inequality (9), consider
\[
M(a, b) = \max\left\{ |a - b|\sqrt{2}e^{\cot^{-1}(1)}, \frac{|b - 2/91b|\sqrt{2}e^{\cot^{-1}(1)} \left[1 + |a - 1/75a|\sqrt{2}e^{\cot^{-1}(1)} \right]}{1 + |a - b|\sqrt{2}e^{\cot^{-1}(1)}}, \right. \left. \frac{|a - 1/75a|\sqrt{2}e^{\cot^{-1}(1)} - \frac{2}{91b}\sqrt{2}e^{\cot^{-1}(1)} \left[1 + \frac{|a - 1/75a|\sqrt{2}e^{\cot^{-1}(1)}}{1 + |a - b|\sqrt{2}e^{\cot^{-1}(1)}} \right]}{1 + |a - b|\sqrt{2}e^{\cot^{-1}(1)}}, \right. \left. \frac{|a - b|\sqrt{2}e^{\cot^{-1}(1)} |b - 2/91b|\sqrt{2}e^{\cot^{-1}(1)} \left[1 + |a - 1/75a|\sqrt{2}e^{\cot^{-1}(1)} \right]}{1 + |a - b|\sqrt{2}e^{\cot^{-1}(1)}} \right\},
\]
\[
N(a, b) = \left\{ |a - 1/75a|\sqrt{2}e^{\cot^{-1}(1)}, |b - 2/91b|\sqrt{2}e^{\cot^{-1}(1)}, |b - 1/75a|\sqrt{2}e^{\cot^{-1}(1)} \right\}.
\]
With simple calculations, it can be analyzed that
\[M(a, b) = |a - b| \sqrt{2e^{\text{cot}^{-1}(1)}} \]
and
\[N(a, b) = |a - 1/75a| \sqrt{2e^{\text{cot}^{-1}(1)}}. \]
Then, for \(\lambda = 0.9 \) and \(L = 0.001 \), inequality (9) is satisfied. Furthermore for each \(a \in \Xi \), conditions (11) and (12) are also satisfied, respectively. Hence, by Theorem 2, \(\varphi \) and \(\mathcal{N} \) possess a common unique fixed point, i.e., 0. For visualizing the co-relation of left and right hand side of the inequality (9), consider Figure 1.

The real and imaginary parts can be separately visualized in Figures 2 and 3, respectively.

It can be seen that Figures 2 and 3 provide the same visuals. This is because of the equal values of real and complex parts as can be observed in Table 3. Furthermore, the numerical comparison of some values of left hand side and right hand side of inequality (9) is given in Table 3.

To visualize the convergence behavior of \(\varphi a \) and \(\mathcal{N} b \) graphically, consider Figures 4 and 5, respectively.

For checking the convergence behavior of \(\varphi a \) and \(\mathcal{N} b \) numerically, consider Tables 4 and 5, respectively.

3. Existence of a Unique Solution of Complex Urysohn Integral Equations

Let \(\Xi = C([p, q], \mathcal{C}) \) be the set of all continuous functions from the closed and bounded interval \([p, q]\) to \(\mathcal{C} \). Consider a distance function \(\partial : \Xi \times \Xi \rightarrow \mathbb{C} \) defined by

\[
\partial(\theta, \sigma) = |\theta - \sigma| + |i(\theta - \sigma)|,
\]

where \(\theta, \sigma \in \Xi \). Furthermore, consider the functions

\[
\mu, \nu : \Xi \times \Xi \rightarrow [1, \infty) \text{ defined by } \mu(\theta, \sigma) = \theta + 5\sigma + 2 \text{ and } \nu(\theta, \sigma) = \theta + 3\sigma + 1, \text{ respectively. Then, } (\Xi, \partial) \text{ is a complete complex double controlled metric space.}
\]

In this section, we propose the existence and uniqueness of solution via the fixed point method for the complex-valued Urysohn integral equations.

\[
\begin{align*}
\theta(c) &= \theta(c) + \int_p^q \Gamma_1(\xi, \theta(d\theta)), \\
\sigma(c) &= \sigma(c) + \int_p^q \Gamma_2(\xi, \sigma(d\theta)),
\end{align*}
\]

(47)

where \(\Gamma_1(\xi, \theta(\cdot)) \) and \(\Gamma_2(\xi, \sigma(\cdot)) \) are continuous complex-valued kernels on the given interval and \(\theta(c) \) is continuous and complex-valued on the interval \([p, q]\).

Consider the operators \(\varphi, \mathcal{N} : \Xi \rightarrow \Xi \) defined by

\[
\begin{align*}
\varphi \theta(c) &= \theta(c) + \int_p^q \Gamma_1(\xi, \theta(d\theta)), \\
\mathcal{N} \sigma(c) &= \sigma(c) + \int_p^q \Gamma_2(\xi, \sigma(d\theta)).
\end{align*}
\]

(48)

Urysohn integral (47) would have a unique common solution if the following conditions hold, where \(M(\theta, \sigma), N(\theta, \sigma), \) and \(L \) are defined in (9).

\[
\begin{align*}
|\Gamma_1(\xi, \theta(\cdot)) - \Gamma_2(\xi, \sigma(\cdot))| &< \frac{1}{(p - q) \exp(ipq)} [M(\theta, \sigma) - LN(\theta, \sigma)], \\
\frac{1}{\exp(ipq)} &< \kappa \text{ where } 0 < \kappa < 1,
\end{align*}
\]

(49)
Table 3: Numerical comparison of left hand side and right hand side of inequality (9).

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\hat{\partial}(\mathcal{P}a, \mathcal{N}b)$</th>
<th>$\lambda M(a, b) - ZN(a, b)$ where $\lambda = 0.9$ and $Z = 0.001 > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>0.0022 + 0.0022\iota</td>
<td>0.0699 + 0.1083\iota</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>0.0110 + 0.0110\iota</td>
<td>0.3343 + 0.5415\iota</td>
</tr>
<tr>
<td>0.0</td>
<td>0.9</td>
<td>0.0198 + 0.0198\iota</td>
<td>0.6018 + 0.9747\iota</td>
</tr>
<tr>
<td>0.1</td>
<td>1.0</td>
<td>0.0206 + 0.0206\iota</td>
<td>0.6018 + 0.9747\iota</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>0.0184 + 0.0184\iota</td>
<td>0.5349 + 0.8664\iota</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.0097 + 0.0097\iota</td>
<td>0.2675 + 0.4321\iota</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.0153 + 0.0153\iota</td>
<td>0.3343 + 0.5415\iota</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9</td>
<td>0.0131 + 0.0131\iota</td>
<td>0.2675 + 0.4332\iota</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>0.0152 + 0.0152\iota</td>
<td>0.3343 + 0.5415\iota</td>
</tr>
</tbody>
</table>

Figure 3: Imaginary parts of (9).

Figure 4: Convergence behavior of $\mathcal{P}a$.

Figure 5: Convergence behavior of $\mathcal{N}b$.
Table 4: Convergence behavior of a_n

<table>
<thead>
<tr>
<th>a_0</th>
<th>$a_0 = 0.1$</th>
<th>$a_0 = 0.4$</th>
<th>$a_0 = 0.75$</th>
<th>$a_0 = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>0.00133</td>
<td>0.0053</td>
<td>0.0100</td>
<td>0.0132</td>
</tr>
<tr>
<td>a_2</td>
<td>0.000917</td>
<td>0.000570</td>
<td>0.00013</td>
<td>0.00017</td>
</tr>
<tr>
<td>a_3</td>
<td>0.0000002</td>
<td>0.00000009</td>
<td>0.0000073</td>
<td>0.000023</td>
</tr>
<tr>
<td>a_4</td>
<td>0.00000003</td>
<td>0.000000001</td>
<td>0.0000022</td>
<td>0.0000036</td>
</tr>
<tr>
<td>a_5</td>
<td>0.000000004</td>
<td>0.00000000120</td>
<td>0.0000000266</td>
<td>0.0000000483</td>
</tr>
<tr>
<td>a_6</td>
<td>0.00000000000</td>
<td>0.0000000000000</td>
<td>0.0000000000000</td>
<td>0.0000000000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 5: Convergence behavior of b_n

<table>
<thead>
<tr>
<th>b_0</th>
<th>$b_0 = 0.1$</th>
<th>$b_0 = 0.4$</th>
<th>$b_0 = 0.75$</th>
<th>$b_0 = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td>0.0022</td>
<td>0.0088</td>
<td>0.0165</td>
<td>0.0218</td>
</tr>
<tr>
<td>b_2</td>
<td>0.000048</td>
<td>0.00193</td>
<td>0.0036</td>
<td>0.0047</td>
</tr>
<tr>
<td>b_3</td>
<td>0.0000010</td>
<td>0.000041</td>
<td>0.000079</td>
<td>0.000100</td>
</tr>
<tr>
<td>b_4</td>
<td>0.000000219</td>
<td>0.00000900</td>
<td>0.00001700</td>
<td>0.0000028</td>
</tr>
<tr>
<td>b_5</td>
<td>0.0000000461</td>
<td>0.0000001978</td>
<td>0.0000003900</td>
<td>0.00000061</td>
</tr>
<tr>
<td>b_6</td>
<td>0.00000000000</td>
<td>0.0000000000000</td>
<td>0.0000000000000</td>
<td>0.0000000000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Let $\mathcal{Z} = C([a, b], C)$ be the set of all continuous functions from the closed and bounded interval $[a, b]$ to C. Consider a distance function $\tilde{d}: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{C}$ defined by

$$\tilde{d}(\theta, \sigma) = |\theta - \sigma| + i|\theta - \sigma|,$$

where $\theta, \sigma \in \mathcal{Z}$. Furthermore, consider the functions $\mu, \nu: \mathcal{Z} \times \mathbb{C} \rightarrow [1, \infty)$, defined by $\mu(\theta, \sigma) = \theta + 2\alpha + 5$ and $\nu(\theta, \sigma) = 3\theta + \alpha + 1$, respectively. Then, (\mathcal{Z}, \tilde{d}) is a complete complex double controlled metric space.

In this section, we inspect the existence and uniqueness of solution via the fixed point method for complex Fredholm integral equation.

$$\vartheta(\cdot) = h(\cdot) + \alpha \int_p^q \Omega(\cdot, t, \vartheta(t))dt,$$ \hspace{1cm} (53)

where each of the component of (53) is defined in Section 1. Consider the operator $\varphi: \mathcal{Z} \rightarrow \mathbb{C}$ defined by

$$\varphi \vartheta(\cdot) = h(\cdot) + \alpha \int_p^q \Omega(\cdot, t, \vartheta(t))dt.$$ \hspace{1cm} (54)

The Fredholm integral equation would have a unique solution if the following condition:

If $\exp(ipq)/k < k$, then

$$\tilde{d}(\varphi \vartheta, \mathcal{Z}) < k|\mathcal{Z}(\theta, \sigma) - N(\theta, \sigma)|.$$ \hspace{1cm} (51)
\[|\Omega(\zeta, t, \theta(t)) - \Omega(\zeta, t, \sigma(t))| \leq \frac{\kappa}{\alpha(q-p)} |\theta(t) - \sigma(t)| \text{ where } 0 < \kappa < 1, \tag{55} \]

holds.

Consider

\[
|\varphi\theta - \psi\sigma| + i|\varphi\theta - \psi\sigma| = \left| h(\zeta) + \alpha \int_{\rho}^{q} \Omega(\zeta, t, \theta(t))dt - \left[h(\zeta) + \alpha \int_{\rho}^{q} \Omega(\zeta, t, \sigma(t))dt \right] \right|
+ i \left[h(\zeta) + \alpha \int_{\rho}^{q} \Omega(\zeta, t, \theta(t))dt - \left[h(\zeta) + \alpha \int_{\rho}^{q} \Omega(\zeta, t, \sigma(t))dt \right] , \right]
< \alpha \int_{\rho}^{q} |\Omega(\zeta, t, \theta(t)) - \Omega(\zeta, t, \sigma(t))|dt + i \left[\alpha \int_{\rho}^{q} |\Omega(\zeta, t, \theta(t)) - \Omega(\zeta, t, \sigma(t))|dt \right],
\]

which implies

\[\partial(\varphi\theta, \psi\sigma) < \kappa \partial(\theta, \sigma). \tag{57} \]

Consequently, all hypotheses of the Corollary 3 are satisfied. Therefore, integral (53) has a unique solution.

5. Conclusion

In this study, we have proved an extended rational weak contraction for common fixed point in the setting of complex double controlled type metric spaces. Our results are validated by a numerical example and existence and uniqueness for complex Urysohn integral equations and complex Fredholm integral equation. The existence and uniqueness of a solution for certain type of equation hold remarkable applications towards geophysics, mechanics, quantum mechanics, population genetics, fluid mechanics, etc.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

