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Due to the explosive growth of data in the Internet, more and more applications are being deployed on Big Data platforms.
However, as the scale of data continues to increase, the probability of anomalies in the platform is also increasing. However,
traditional anomaly detection techniques cannot e�ectively handle the massive amount of historical data and can hardly meet the
security requirements of big data platforms. In order to solve the above problems, this paper proposes a security anomaly detection
method for big data platforms based on quantum optimization clustering. Firstly, a framework of big data platform anomaly
detection system is designed based on distributed software architecture through Hadoop and Spark big data open source
technology.  e system achieves e�ective detection of network anomalies by collecting and analyzing big data platform server log
data. Secondly, an o�ine anomaly detection algorithm based on quantum ant colony optimized a�nity propagation clustering is
designed for various anomalies mined from historical data. e bias parameters of the a�nity propagation clustering are treated as
individual ants to construct an ant colony, and the clustering accuracy is set as �tness. Finally, in order to improve the accuracy of
the optimal path search of the ant colony, quantum bit encoding is applied to the ant colony position to re�ne the granularity of
the individual ant colony position update.  e experimental results show that the proposed method can e�ectively complete the
anomaly clustering detection of massive data. With a reasonable threshold, the quantum ant colony–based a�nity propagation
clustering has high detection accuracy.

1. Introduction

With the rapid development of big data technologies, big data
platform architectures are becoming more complex, and the
security requirements of big data platforms for new risks
continue to increase. However, as the size of data and the
functionality of modules continue to increase, the probability
of anomalies in the platform grows [1–4]. For example, DDoS
attacks on websites by hackers can bring down big data
platform servers. Bursts of access tra�c generated by large
numbers of users during the festive season cause big data
applications to crash.  e proliferation of viruses and Trojan
horses can lead to the leakage of personal information from
applications [5, 6]. ese security issues can cause incalculable
�nancial losses to individuals and society.  erefore, accurate
and timely detection of anomalies in big data platforms is of
great practical importance.

Currently, the security of a Big Data platform is mainly
provided by its infrastructure. However, due to the lack of
necessary semantic interpretation and upper layer security
mechanisms, the lower layer infrastructure is not capable of
fully detecting anomalous events in the platform. For ex-
ample, traditional �rewalls and other security devices are
unable to e�ectively detect and prevent anomalous events
[7–9]. In order to achieve anomaly detection in big data
platforms, we need to perform data mining on server logs
and network tra�c. Due to the fast, in�nite, variable, and
continuous nature of these massive data, it is very di�cult to
analyze these data manually. Over the years, research on
automated anomaly detection has received much attention
and has been widely used in areas such as intrusion de-
tection, fault diagnosis, identity recognition, and e-mail
�ltering [10–14]. Trojans, viruses, and system vulnerabilities
are now well resolved by software such as �rewalls and
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security assistants. However, there are still some limitations
to traditional detection methods for network anomalies such
as burst flow anomalies and DDoS attacks. )is is because
the data in the platform are highly variable and it is difficult
to detect both of these anomalies completely with expert
rule-based detection methods. In addition, software such as
firewalls and security assistants can consume a lot of
computational resources to detect large amounts of data. In
summary, in order to ensure the security of big data plat-
forms and to overcome the limitations of traditional
anomaly detection algorithms, it is promising to study key
technologies for anomaly detection in big data platforms.

)e definition of anomaly refers to a special sample
(pattern) which is inconsistent with most observed values in
the observed set and produced by completely different
mechanisms. For example, in regression algorithms, attri-
bute values with significant deviations from expectations are
regarded as anomalies [15, 16]. In statistical models, sample
data that are distant from the series and do not obey the
distribution are considered as anomalies. Assuming that
there are qualitatively (or quantitatively) describable dif-
ferences between normal and abnormal patterns, then
anomaly detection is the process of identifying the differ-
ences that exist from the observed set of samples using
statistical methods, data mining, and other theories.
Anomaly detection algorithms are widely relevant and ap-
plicable to various fields, such as cyber-attack detection,
credit card fraud detection, financial loan approval, medical
drug research, etc. [17–20].

Early research into anomaly detection has mainly used
misuse detection. Misuse detection constructs detection
features based on existing network attacks andmatches them
to the corresponding attacks. )e key step in misuse de-
tection is the filtering and labeling of logs, which requires the
extraction of important information from a large number of
files. )erefore, misuse detection requires expert knowledge
of appropriate WEB attacks to be able to detect predefined
attacks. Misuse detection appears to be powerless against
unknown anomalies. Anomaly detection methods mainly
use normal WEB log data for analysis and training, and then
build anomaly detection models that can distinguish un-
known anomalous behavior. )e current attack strategies
faced by big data platforms mainly include [21–23]: DDoS,
protocol vulnerability attacks, application service vulnera-
bility attacks, and Trojan horses, which are all unknown
anomalies. )erefore, Intrusion-Detection Systems (IDS)
based on misuse detection cannot solve the security prob-
lems faced by Big Data platforms.

)e anomaly detection data source of the Big Data
platform is mainly based on server hosts and network traffic.
Server host-based detection uses user logs and server access
logs as the data source, and analyses them online or offline
using relevant anomaly detection algorithms. Server host-
based detection does not require external equipment and is
insensitive to traffic data.)e data source for network traffic-
based anomaly detection is mainly network traffic from
devices such as routers. Network traffic-based anomaly
detection does not have access to the real-time status of the
host system, resulting in less accurate detection.

)ere are currently three main types of anomaly de-
tection algorithms [24, 25]: (1) Statistical analysis, (2) rule
fields, and (3) data mining. Statistical analysis-based
anomaly detection algorithms will assume that the data to be
tested obeys a certain random distribution and identify
anomalies through inconsistency detection methods. Said
et al. [26] proposed a session anomaly degree calculation
model based on the information of request URL, request
time and other fields. Aissaoui’s et al. [27] used log files to
segment session attributes and used Bayesian parameter
estimation to determine the session anomaly level. In the
low-dimensional case, we can use statistical knowledge for
distribution determination. However, when faced with large
amounts of data, the data are usually high-latitude and
therefore cannot be statistically analyzed.

Rule-based anomaly detection algorithms use expert
experience to build up a rule base and complete a pattern
matching process based on the rule base information to
determine whether an anomaly is present. Rule-based
anomaly detection algorithms are often used in misuse
detection systems, such as the widely used Snort system,
which has over 20,000 rules, each of which is a summary of
expert experience. Metcalfe [28] construct a complete rule
set based on the same elements in the data sequence under
normal conditions. Sequences that are not identical to the
rule set are defined as anomalies when detected. Rule-based
anomaly detection algorithms are unable to detect unknown
anomalies and require a priori knowledge to detect intrusion
anomalies. However, in a Big Data environment, where
anomalous attacks occur every day and expert experience is
limited, building andmaintaining a comprehensive rule base
is a very difficult task.

Data mining–based anomaly detection algorithms pre-
process the data to be tested and then extract the appropriate
patterns from these data. If the extracted patterns do not
match the normal behavior, they are categorized as anomalies.
Data mining–based anomaly detection algorithms are divided
into three main categories: detection algorithms based on
correlation sequences, detection algorithms based on classi-
fication analysis, and detection algorithms based on cluster
analysis, the most popular of which is cluster analysis, which
belongs to the field of unsupervised detection. Anomaly
detection algorithms based on cluster analysis will divide the
data into multiple clusters and classify the anomaly clusters
based on the similarity within and between clusters to per-
form the determination of anomaly detection. For example,
Sunardi et al. [29] proposed a clustering-based anomaly
detection algorithm for DDoS attacks that can automatically
identify web crawlers. However, the method is too complex to
train and has high complexity.

In summary, anomaly detection in big data platforms is a
complex problem, especially for the anomalies present in
massive historical data. )erefore, this paper proposes a
quantum-optimized clustering-based anomaly detection
method for big data platform security. )e aim of the re-
search was to accurately detect multiple anomalies present in
the massive data of a big data platform in a reasonable time
using an improved clustering analysis algorithm without the
need for expert experience and rule bases.
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)e main innovations and contributions of this paper
include.

(1) A framework for a big data platform anomaly de-
tection system is designed on the basis of distributed
software architecture through Hadoop and Spark
open source technologies for big data. )e system
achieves effective detection of network anomalies by
collecting and analyzing the server log data of the big
data platform.

(2) To improve the performance of affinity propagation
(AP) clustering, a quantum ant colony–based bias
parameter optimization strategy is introduced,
thereby enhancing the applicability of clustering.)e
similarity matrix and random values of the bias
parameters are calculated after sample initialization.
)e selection paths are continuously optimized
through changes in the pheromone values in the
quantum ant colony optimization algorithm,
resulting in stable clustering results.

)e rest of the paper is organized as follows: In Section 2,
the anomaly detection system framework for big data
platforms are studied in detail, while Section 3 provides the
offline anomaly detection method based on quantum ant
colony optimised AP clustering. Section 4 provides the
experimental results and analysis. Finally, the paper is
concluded in Section 5.

2. Design of an Anomaly Detection System
Framework for Big Data Platforms

)e development of new open source technologies such as
Hadoop/Spark has made it easy for Big Data–related
companies to process and analyze all kinds of Big Data.
Traditional anomaly detection systems are only oriented
towards the anomaly detection segment and do not form an
organic combination with the big data framework. Most of
the traditional anomaly detection systems are rule-based
anomaly detection algorithms. As there is no mature so-
lution yet, it is important to study the system framework for
big data anomaly detection and analysis.

2.1. System Logical Architecture Design. )e objective of this
paper was to design an intelligent security analysis system for
big data platforms based on Hadoop and Spark technologies.
)e logical architecture of the system is shown in Figure 1.
)e intelligent security analysis system based on the Lambda
framework consists of an offline processing layer, an online
processing layer, and a service layer [30, 31].)e architecture
combines the data detection functions of offline and online
environments, and has the advantages of high fault toler-
ance, high scalability, and fast processing speed. In addition,
the architecture supports various big data components such
as Hadoop, Spark and kafka, and is suitable for the de-
ployment of anomaly detection in big data platforms.

)e offline processing layer is responsible for the storage
and processing of large-scale data. )is layer is mainly
implemented using Hadoop and Spark. )e collected

historical data are stored onHDFS, while the data processing
results are stored on HBase. )e data are preprocessed and
anomaly detected in an offline environment using Spark’s
efficient computing capabilities. )e online processing layer
is responsible for storing the incoming data streams with the
distributed message cache kafka. )e service layer is re-
sponsible for implementing fast user-interactive queries
using Spark SQL.

2.2. System Physical Architecture Design. )e physical ar-
chitecture of the system is shown in Figure 2, which mainly
accomplishes the tasks of log collection, log storage, and data
processing. Firstly, the collection of standalone logs is ac-
complished by deploying Flume Agent on each server in the
Big Data platform. Secondly, for the log storage task, the
online streaming data are cached into kafka to ensure secure
data transfer. For large batches of offline data, HDFS is used
for storage. Finally, the Spark-Streaming technology in the
Spark framework is used to process the real-time data. )e
offline data are then detected and analyzed using clustering
algorithms.

)e key modules of the system include the log pre-
processing module, the monitoring and alerting module,
and the data presentation module. )e core function of the
log preprocessing module is responsible for the collection of
logs and the normalization of logs. In designing the log
management module, this paper uses the Apache Flume
open source log collection system to collect data from the
WEB servers on the Big Data platform. )e data collected
include request logs from the WEB server, user access logs
from the application server, and bulk WEB logs from the file
server. )e workflow of Apache Flume is shown in Figure 3.

)e monitoring and alerting module is mainly divided
into two parts: anomaly rule management and anomaly
detection, the core part of which is anomaly detection, which
is the focus of the full text. )e proposed system uses
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quantum optimization clustering algorithms to perform
anomaly detection on offline historical data. )e anomaly
rule management part uses Snort as a subsystem for rule-
based anomaly detection of online data. When an exception
is detected, the system flags the exception and sends a
processing message to the data presentation module for an
exception warning.

)e data presentation module uses a basic C/S (client/
server) framework to deliver data to the front-end interface
using the Json format. )e module uses statistical charts to
visualize the messages to the user. )e data presentation
module includes sub-modules for message push, data query,
and data interface. WebSocket technology is used to im-
plement active pushing of messages, taking into account the
data transfer rate and bandwidth utilization. Spark SQL is
used for fast and interactive queries.

3. Offline Anomaly Detection Based on
Quantum Ant Colony Optimised
AP Clustering

As a technique that does not require manual labeling, cluster
analysis occupies an important position in data mining.
)rough clustering, hidden connections in massive amounts
of data can be effectively mined, thus enabling value pro-
cessing of large-scale data. As a kind of unsupervised
learning, clustering can group similar objects into the same
cluster. )e more similar the objects within a cluster, the
more effective the clustering will be. )e advantage of
anomaly detection algorithms based on clustering analysis is
that the data categories do not have to be manually labeled,
thus reducing the cost of the training process of the anomaly
detection algorithm. Without the aid of a priori knowledge,
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clustering often fails during data mining due to high di-
mensionality or heterogeneity.

)e most commonly used anomaly detection algorithm
based on cluster analysis is the K-Means algorithm [32].
However, the data sources in anomaly detection usually
contain a large number of target objects, resulting in a large
computational effort for anomaly detection based on the
K-Means algorithm. Also, the selection of K values in the
K-Means algorithm has to be tested repeatedly, thus further
increasing the complexity of detection.

3.1.AffinityPropagationClustering. )e affinity propagation
(AP) clustering algorithm [33] is a relatively new clustering
method. Compared with traditional clustering methods, AP
clustering algorithm does not require a predetermined
number of clusters and has better clustering performance
and efficiency. However, the accuracy of AP clustering is also
often constrained by various factors such as the number of
samples, the degree of sample balance, and the number of
cluster centers.)erefore, in order to obtain better clustering
results in large-scale data, the clustering method must be
continuously improved according to the actual clustering
needs.

Currently, there are more studies on optimized clus-
tering algorithms. Shao et al. [34] used the density peaking
algorithm to complete clustering and the whale algorithm
for density peaking core parameter optimization to enhance
the clustering performance. )is study provides a new re-
search direction for the improvement of clustering perfor-
mance. Recently, various quantum population intelligence
optimization algorithms have been proposed and have
shown even better global and local optimization seeking
capabilities. At present, no research has emerged on the use
of quantum population intelligence optimization algorithms
to enhance the performance of AP clustering.

AP cluster first needs to calculate that degree of simi-
larity between two samples.

S(i, j) � − xi − xj

�����

�����
2
, (1)

where xi and xj represent the x dimensional functions of the
samples i and j, respectively. )e distance between any two
of the samples is calculated for all samples and output as a
matrix. )e value on the diagonal of the matrix is called the
bias parameter P.

In the similarity dimension function of a sample, r(i, j)

and a(i, j) represent attract dimensionality and affiliation
dimensions, respectively. Both can be represented in matrix
form.

r(i, j) � s(i, j) − max
j′s.t.j′ ≠ j

a i, j′(  + s i, j′(  ,

R � [r(i, j)]N×N,

A � [a(i, j)]N×N,

a(i, j) � min 0, r(j, j) + 

i′s.t.i′ ∉ i,j{ }

max 0, r i′, j(  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(2)

where r(j, j) represents the attractiveness of j. Add a(j, j) to
both the left and right sides of equation (2).

r(i, j) + a(i, j) � s(i, j) + a(i, j) − max
j′s.t.j′ ≠ j

a i, j′(  + s i, j′(  . (3)

)e calculation of the similarity of the AP clustering
algorithm takes into account r(i, j) and a(i, j). )e value of
r(i, j) + a(i, j) was chosen to measure the degree of simi-
larity between i and j.

Let E � [e(i, j)]N×N � [r(i, j) + a(i, j)]N×N � R + A.
Keep optimally solving E to obtain the similarity of the
samples to complete the clustering.

)e factor ϕ (ϕ ∈ [0, 1)) is added to attenuate the os-
cillation effect in the update ofR andA . )e calculation of R
and A at the time of T is shown as follows:

RT � (1 − ϕ)RT + ϕRT−1,

AT � (1 − ϕ)AT + ϕAT−1.
(4)

3.2. Affinity Propagation Clustering for Quantum Ant Colony
Optimization. In this paper, the AP clustering algorithm is
used to implement data mining. In order to prevent the
problem of degraded clustering performance due to un-
reasonable bias parameter settings, we introduced the ant
colony optimisation (ACO) strategy [35]. )e ant colony
algorithm was used to optimize the bias parameters and
quantum bit coding was used to encode the individual
positions of the ant colony to improve the applicability of AP
clustering. )e essence of the ant colony algorithm is to find
the optimum through ant path selection. For n nodes of m

ants, the next node path is determined by the pheromone of
the selectable nodes. When the ant k is at node position i and
the set of optional nodes is Mi, then the next node is selected
as follows:

J � arg
s∈Mi

max τ(i, s), (5)

where τ(i, s) denotes the pheromone of the node s and node
i. τ0 denotes the initial pheromone. )e pheromones in the
ant path selection process were calculated in a probabilistic
manner.

Pij �
[τ(i, j)]

α
· [η(i, j)]

β

s∈Ma
[τ(i, j)]

α
· [η(i, j)]

β, j ∈Ma, (6)

where τ(i, j) is the pheromone to (i, j), α is the coefficient of
the pheromone, η(i, j) is the inspired intensity, and β is the
coefficient of the inspired intensity.)e pheromone needs to
be updated after the ant moves to the next node.

τ(i, j) � (1 − ρ)τ(i, j) + ρτ0, (7)

where ρ is the evaporation factor.

τ(i, j) � (1 − ρ)τ(i, j) + Δτ(i, j), (8)

where Δτ(i, j) indicates the best path pheromone value.
)e bit representation of a quantum is shown as follows:

|φ〉 � α|0〉 + β|1〉, (9)
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where |·〉 represents the superposition state. |α|2 and |β|2

represent the probability of quantum collapse to the “0” and
“1” states, respectively.

|φ〉 � [α, β]
T
. (10)

Let α � cos(θ) and β � sin(θ).

|φ〉 � cos(θ)|0〉 + sin(θ)|1〉 � [cos(θ), sin(θ)]
T
. (11)

We need to code all individual positions of the colony.

Pi �
cos θi1( 

sin θi1( 





cos θi2( 

sin θi2( 




· · ·

cos θij 

sin θij 





cos θim( 

sin θim( 





⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (12)

where θij � 2π · Rand, Rand ∈ (0, 1), i ∈ 1, 2, . . . , n{ },
j ∈ 1, 2, . . . , m{ }, n are the total number of individuals in the
colony and m represents the location dimension.

Let θ be the phase of [α, β]T on the component
|0〉 � [1, 0]Τ.

|φ〉 � cos θ + i sin θ � e
iθ

� r(θ),

cos2 θ � |α|
2
, sin2 θ � |β|

2
,

⎧⎨

⎩ (13)

where θ meets 0< θ≤ (π/2).

3.3. Flow of Offline Anomaly Detection. )e quantum ACO-
AP clustering described above allows the dataset to be
measured to be efficiently divided into clusters, and then the
anomaly index is constructed according to the quantitative
approach, thus completing the quantitative description of
the anomaly clusters. For clusters with a large value of
anomaly index, they can be regarded as anomalous clusters,
which means that all objects in that cluster are anomalous
data. )e dataset is first clustered using quantum ACO-AP
clustering, and then the anomaly index is calculated for each
cluster. )en, the clusters are sorted according to the
anomaly index and combined with the corresponding
threshold judgement to finally identify the anomaly clusters,
thus completing the anomaly detection. )e flow of offline
anomaly detection is shown below.

Step 1. Solving the similarity matrix for the offline historical
data to be tested in the big data platform in order to initialize
the bias parameters.

Step 2. Building several individuals of the ant colony op-
timisation algorithm with random values of the bias
parameters.

Step 3. Quantizing the position of individual ants.

Step 4. Performing ant colony optimization to solve the ant
colony individual with the highest fitness (optimal deflection
parameter).

Step 5. Completing the clustering using the best bias pa-
rameter AP algorithm.

4. Experimental Results and Analysis

In this paper, two sets of experiments are designed. )e aim
of the first set of experiments is to demonstrate that the
quantum ACO-AP algorithm has better clustering perfor-
mance than the K-Means algorithm. )e purpose of the
second set of experiments is to verify the effectiveness of
anomaly detection based on the quantum ACO-AP algo-
rithm.)e experimental running environment experimental
machine is a Lenovo desktop computer with Intel Core i7
processor, 3.30GHz CPU, 16GB memory, and CentOs 7.0
operating system type. )e commonly used clustering ac-
curacy and clustering Silhouette values are selected as the
evaluation metrics for clustering performance in this paper.

4.1. Clustering Performance Evaluation

4.1.1. Clustering Performance with Different Bias Parameters.
)efirst set of experiments used the UCI dataset, as shown in
Table 1.

In AP clustering, the common bias parameter selection
methods are the median and minimum of the similarity
matrix. )ese three bias parameter selection strategies were
used for clustering simulation, respectively, and the results
are shown in Table 2.

It can be seen that the number of categories obtained by
AP clustering when P�median is significantly greater than
the other two methods. )is is mainly because when
P�median, too many class centres are obtained in the
clustering process, which results in a significantly distorted
number of categories. )e number of classes obtained by AP
clustering when P is equal to the minimum is also signifi-
cantly more than the actual classes, which indicates that the
conventional AP clustering algorithm is poorly adapted to
the UCI dataset. )erefore, it becomes critical to optimize
the bias parameters of AP.

)e number of categories obtained by the quantum
ACO-AP clustering algorithm is consistent with the actual
categories, which indicates its strong adaptive capability.
Next, the effects of the three bias parameter setting strategies
on the AP clustering accuracy will be analyzed, and the
results are shown in Figure 4.

It can be seen that the use of different bias parameter
setting strategies has a greater impact on the Silhouette
values. )e Silhouette of the quantum ACO-AP algorithm is
significantly higher than the other 2 algorithms in the 5-class
dataset.)e cross-sectional comparison revealed that each of
the 3 algorithms obtained the highest Silhouette value in the
Iris set. )erefore, the setting of the bias parameter has a
greater impact on the performance of AP clustering.When it

Table 1: Simulation sample set.

Datasets Dimension Number of samples Number of categories
Wine 13 3791 3
Seeds 7 4621 3
Iris 4 5317 3
Flowers 12 3289 5
Glass 10 4433 6

6 Mathematical Problems in Engineering



cannot be set manually and reasonably, it is more appro-
priate to use ACO algorithm to adaptively optimise the bias
parameters.

4.1.2. Performance Verification of the Quantum ACO. To
further verify the optimization performance of Quantum
ACO for AP clustering, the clustering tests were carried out
using the AP, ACO-AP, and Quantum ACO-AP algorithms,
respectively, and the results are shown in Table 3 and
Figure 5.

It can be seen that the clustering categories obtained
using the AP algorithm are significantly larger than the
actual categories, while the quantum ACO-AP and ACO-AP
algorithms obtain clusters that are closer to the actual
categories. )is indicates that the clustering effect is sig-
nificantly improved after the introduction of the ACO al-
gorithm to optimize the bias parameters. )e classes
obtained by the quantum ACO-AP clustering are all equal to
the actual classes, whereas ACO-AP only obtains the same
results as the actual values on the wine and glass datasets.
)e biased parameter optimization performance of ACO
was further improved by quantum bit encoding, resulting in
higher accuracy for quantum ACO-AP clustering.

In terms of Silhouette performance, the AP algorithms
all stayed below 0.25. )e Quantum ACO-AP algorithm all
stayed above 0.4, while the ACO-AP algorithm stayed
between [0.3, 0.36]. )is is because the QACO algorithm
results in a more reasonable distribution between the

different cluster classes in the dataset. )e performance
comparison of the clustering accuracy of the three algo-
rithms is shown as Table 4.

For the 5-class sample set, Quantum ACO-AP has the
highest clustering accuracy. After the introduction of
QACO, the performance of AP clustering was more stable.
)is is mainly due to the excessive number of class centres
when the bias parameters of AP are not set appropriately,
which tends to cause oscillations in the clustering results. A
comparison of the convergence performance of the three
algorithms is shown in Figure 6.

In terms of the number of iterations, Quantum ACO-AP
requires fewer iterations, mainly because the AP algorithm
requires more iterations to solve for the highest clustering
accuracy before the bias parameters are optimized. However,
with the quantum ACO algorithm, the efficiency of AP
clustering is significantly improved. In terms of convergence
curves, both ACO-AP and AP briefly fall into local optima,
while the quantum ACO-AP algorithm has a very smooth
downward trend.

Table 2: Number of clustering categories.

Datasets Actual category
AP clustering

Quantum ACO-AP clustering
P�median P�minimum

Wine 3 16 6 3
Seeds 3 15 10 3
Iris 3 26 11 3
Flowers 5 23 11 5
Glass 6 25 9 6
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Figure 4: Silhouette values corresponding to different bias
parameter setting strategies.

Table 3: Clustering categories of three algorithms.

Datasets Actual
category

Clustering categories
AP ACO-AP Quantum ACO-AP

Wine 3 6 3 3
Seeds 3 10 5 3
Iris 3 11 4 3
Flowers 5 11 6 5
Glass 6 9 6 6
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Figure 5: Silhouette values of three algorithms.
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4.1.3. Clustering Performance of Commonly Used Algorithms.
To further validate the clustering performance of the
Quantum ACO-AP algorithm, it was compared with De-
cision tree, K-medoid, and K-Means, and the results are
shown in Figure 7.

)e cross-sectional comparison revealed that all four
algorithms had the highest clustering accuracy in the Seeds
set and generally poorer clustering accuracy in the Iris set. It
can be seen that for the same sample set, the quantum ACO-
AP algorithm has the highest clustering accuracy. With a
comprehensive analysis of the above results, we can see that
Quantum ACO-AP has a more obvious advantage in terms
of clustering accuracy.

4.2. Anomaly Detection Results. )e second set of experi-
ments uses the KDD CUP 99 dataset, which contains mainly
4900000 network protocol connection records. Each record
consists of 42 fields, where the 42nd field indicates whether the

record is an anomaly or not. To check the effectiveness of the
Quantum ACO-AP algorithm, 40,000 records were randomly
selected from the dataset to form the dataset to be examined,
namely, 38,447 normal records and 1,553 anomalous records.

Detection accuracy is usually evaluated using the de-
tection rate and the false alarm rate. )e detection rate DR is
calculated as shown as follows:

DR �
NumTP

NumTP + NumFP( 
. (14)

)e false detection rate FAR is calculated as shown as
follows:

FAR �
NumTN

NumTN + NumFN( 
, (15)

where NumTP indicates the number of correctly detected
abnormal samples, NumFP indicates the number of incor-
rectly detected abnormal samples, NumTN indicates the
number of correctly detected normal samples, and NumFN
indicates the number of incorrectly detected normal samples.

Firstly, different thresholds are used to detect KDD
CUP99 experimental subsets, as shown in Table 5 and
Figure 6.

It can be seen that the detection rate of the Quantum
ACO-AP algorithm decreases when the threshold value is
taken to be larger. However, the false detection rate also
decreases at the same time. When threshold� 0.05, the
detection rate can reach 98.4%, but the false detection rate is
higher at this time.)is indicates that the threshold value has
a certain influence on the experimental results and should be
chosen carefully. )e best results are obtained when the
threshold value is equal to [0.05, 1].
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Figure 6: Convergence of three algorithms.
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Figure 7: Clustering accuracy.

Table 5: Detection performance at different thresholds.

)reshold Detection rate DR (%) False detection rate FAR (%)
0.05 98.4 7.7
0.075 96.2 6.4
0.1 84.1 5.8
0.125 65.4 3.3
0.15 58.3 1.2

Table 4: Clustering accuracy and performance of three algorithms.

Algorithms Datasets Accuracy Standard deviation

AP

Wine 0.6953 3.156e− 5
Seeds 0.7326 3.142e− 5
Iris 0.6647 3.113e− 5

Flowers 0.7065 3.246e− 5
Glass 0.7328 3.303e− 5

ACO-AP

Wine 0.7930 2.341e− 5
Seeds 0.8438 2.361e− 5
Iris 0.7727 2.411e− 5

Flowers 0.8224 2.252e− 5
Glass 0.8152 2.273e− 5

Quantum ACO-AP

Wine 0.8237 1.341e− 5
Seeds 0.8982 1.252e− 5
Iris 0.7921 1.411ee− 5

Flowers 0.8556 1.252e− 5
Glass 0.8473 1.273e− 5
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Finally, experimental comparisons were performed on
the KDD CUP99 dataset using the Quantum ACO-AP al-
gorithm, the PLC algorithm, and the CE algorithm, re-
spectively, and the comparison results are shown in Table 6.

It can be seen that the Quantum ACO-AP algorithm
outperforms the other two anomaly detection algorithms in
terms of both detection rate and false detection rate. In
addition, the quantum ACO-AP algorithm has a smaller
range of variation in detection rate and false detection rate.
Combining the results of the first and second sets of ex-
periments, we can conclude that the quantum ACO-AP
algorithm has a higher detection performance for anomalies
under reasonable threshold conditions.

5. Conclusion

Without the need for expert experience and rule bases, this
paper uses an improved clustering analysis algorithm to
accurately detect multiple anomalies in a large amount of data
from a big data platform in a reasonable amount of time. )e
quantum ACO algorithm is used to optimally solve the bias
parameters of AP clustering, which improves the accuracy of
AP clustering. Reasonable settings of the main parameters of
quantum ACO can obtain better bias parameter optimization
of individuals and enhance the applicability of AP clustering.
)e experimental results show that compared with other
anomaly detection algorithms, the quantum ACO-AP algo-
rithm shows certain advantages in terms of both detection
rate and false detection rate. )e next step of the research will
be to further optimize the core parameters of the quantum
ACO algorithm in order to reduce the solution time of
quantum ACO. An attempt is made to improve the real-time
performance of large-scale sample processing by improving
the clustering efficiency of the quantum ACO-AP.
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)e experimental data used to support the findings of this
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