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In most cases, the blasting object is the rock mass. Because the rock mass has the characteristics of anisotropy and inhomogeneity,
there are often structural surfaces such as joints, �ssures, faults, and weak interlayers, but details are basically impossible.
Compared with the rock, these structural surfaces are weak parts, and the explosive energy required for breaking is smaller. It is
di�cult to take into account the existence of each weak side when the explosives are arranged in the blasthole. �erefore, after the
explosive explodes in the rock mass, the explosive gas will �rst rush out from these weak parts, entraining individual fragments to
form �ying rocks. Aiming at the problem that it is di�cult to accurately obtain the rockmotion information in the blasting process
of open-pit mines, this paper selects the kernel function to establish the support vector machine model and optimizes the
parameters of the support vector machine model to obtain the optimal blasting rock trajectory prediction model. Under the
protection of special protection devices, the information of the rock movement during the blasting process is collected at a higher
frequency, and the analysis algorithm of the rock movement characteristics is researched on the basis of inertial navigation
technology. �e algorithm is used to analyze and output the rock movement. �e curve of velocity, position, and kinetic energy
provides a theoretical and technical basis for the study of rock movement law in the blasting process of open-pit mines. �rough
the experimental analysis, based on the cross-validation method, through the support vector machine model parameter opti-
mization and comparison evaluation parameters, the optimal prediction model of the blasting rock trajectory is obtained as the
support vector machine model based on the radial basis kernel function. �e mean value of root mean square error and mean
absolute error of this model are 0.102 and 0.0674, respectively, and the performance is the most robust among the three types
of models.

1. Introduction

Blasting is an important means of open-pit mine production.
�e blasting process releases huge energy, a part of which is
used to break the rock mass, and a part of it is used to throw
the broken ore rock. �e movement speed changes and
movement trajectories of the ore rock at di�erent positions
during the blasting process are studied. �e characteristics
and laws can re�ect various situations such as energy e�-
ciency, ore depletion, and safety risks in blasting production

and provide a scienti�c basis for the evaluation of blasting
e�ects [1, 2]. Relevant scholars have done a lot of research
work on the movement characteristics and laws of ore rock
during the blasting process, mainly using the following
methods. One is the high-speed photography method
combined with the theoretical analysis method. By moni-
toring the blasting process and combining the blasting
funnel theory, the velocity distribution of ore and rock and
the proportion of explosive energy in each part of the
blasting process are established, so as to provide a basis for
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the adjustment and optimization of blasting parameters.
One is to use color marking to mark the ore and rock before
blasting and pass the mark after blasting the ore to measure
the movement of ore and rock and combine the empirical
formula to establish a ore-rock movement model, so as to
determine the amount of waste rock mixed into the ore
during the blasting process. (e rock movement is more
convenient to measure [3]. With the development of
computer technology, more and more scholars use model
experiments and numerical simulations on the basis of
theoretical research to study the movement characteristics
and laws of blasting ore and rocks, so as to provide reference
for the safety protection of flying rocks during blasting. In
recent years, with the emergence of machine learning and
artificial intelligence, some scholars have used different
learning algorithms to learn from previous blasting data and
established rock movement models based on different
blasting parameters to predict the movement of blasted rock
[4, 5].

However, the environment of the blasting site is very
harsh. (e high-speed photography method is affected by
the blasting smoke at the blasting site and cannot completely
monitor the movement process of the ore rock. Due to the
uniqueness and complexity of rock masses at different
blasting sites, the accuracy and authenticity of methods such
as model experiments, numerical simulations, and machine
learning based on theoretical methods are insufficient [4].
Since the inertial sensor can collect and store the corre-
sponding motion information at a higher frequency when it
moves with the object, and has a built-in independent power
supply, it can work normally without relying on the outside
world [6–9], so it has special protection. In the case of the
device, the movement information of the ore rock can be
collected during the blasting process. (erefore, this paper
proposes an experimental research method based on the
inertial navigation technology to study the characteristics
and laws of the blasting rock movement. It is proved by field
experiments that this research method has obvious advan-
tages compared with other research methods, which can
accurately obtain the real movement characteristics of ore-
rock movement.

As an important technology for mining, blasting tech-
nology has an indispensable position. In the underground
ore mining of mines, blasting technology is almost always
used regardless of tunneling or rock-breaking mining. (e
rational application of blasting technology can not only
improve production efficiency but also help to improve the
safe production environment in the well. In view of different
mine environments, selecting reasonable blasting parame-
ters is the key to safe and efficient production, so the op-
timization of blasting parameters is a topic that has received
much attention. (ere are many ways to optimize the se-
lection of blasting parameters mainly through comparison
with the mature experience of similar mines and calculation
of formulas. With the rapid development of computer
technology, the optimization and selection of parameters in
recent years has gradually been combined with intelligent
algorithms, which has also become the blasting parameter.
(e method of obtaining blasting parameters through the

on-site blasting test is reliable, but the cost is high and the
efficiency is poor. For the research of blasting parameter
optimization that requires a large amount of statistical data,
the on-site test is not suitable. In order to improve the
optimization efficiency of blasting parameters, the research
of blasting parameter optimization in this paper mainly
selects the means of combining the support vector machine
model with the practice.

(e innovations of this paper are as follows: Since rock
blasting is a complex nonlinear system affected by multiple
factors, the prediction of blasting rock trajectory is a mul-
tivariable prediction problem. (is paper improves on the
basis of the support vector machine model and establishes
the prediction model of blasting ore, and the rock trajectory
is verified, and the validity of the model prediction is verified
by the cross-validation method.

(e paper is arranged as follows: Chapter 1 introduces
the related research on rock blasting parameters by relevant
scholars and makes a summary based on the above research;
Chapter 2 introduces the support vector machine and im-
proves it based on the traditional model; Chapter 3 explains
the blasting experiments carried out in this study which is
cross-validated based on the experimental results; and the
fourth chapter is the total of the full text.

2. Related Work

(e damage degree and process control of explosives to rock
are mainly realized by blasting parameters. Regarding the
determination of blasting parameters, many scholars at
home and abroad have conducted a lot of research on it, and
some scholars have tried to give clear and unified conclu-
sions. (erefore, there is no theory and conclusion about the
calculation of blasting parameters that can be adapted to all
production environments [10].

Gilbride successfully applied photography and related
analysis techniques to parameter optimization research and
successfully improved production efficiency and reduced
production costs at the same time [11]. Taylor and Firth in
order to study the influencing factors of blasting rock
fragmentation applied the principal component analysis
methodand also used the multivariate statistical method
[12]. Yennamani used artificial neural network to study the
relationship between blasting backflush and its related rock
and explosive and hole network parameters. After optimi-
zation, very good results are obtained [13]. La Rosa and
(ornton applied multiple flash imaging technology to the
statistics of blasted ore-rock trajectory, which not only
improved its measurement accuracy but also saved a lot of
manpower and greatly improved the efficiency of related
research [14]. Amini et al. used Kuz-Ram and Monte Carlo
simulations to predict blasting parameters, and the final
results were proved to be reasonable and efficient [15].
Manoj and Monjezi proposed to select seven factors such as
the angle of internal friction, severity, in-situ leaching, in-
jection strength, cohesion of the topsoil layer, and fully
weathered ore layer to conduct orthogonal experiments. (e
experimental results were analyzed using the principle of
response surface methodology, and established a model to
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predict the stability of the in-situ leaching slope of ionic rare
Earth ore [16]. Ohadi et al. intelligently optimized the
blasting parameters using the KCO model, the Bond-Ram
model, the Kuz-Ram model, and the EBT model and op-
timized the blasting parameters [17]. Yu et al. used the
empirical formula method to optimize and adjust the
number of blasting holes in railway tunnels and, at the same
time, used the comparative research method to optimize and
adjust the hole spacing and row spacing, and the optimi-
zation effect was obtained for improvement [18]. Sastry et al.
used the existing blasting design, according to their existing
data, combined with new requirements and new technology,
and well completed the drilling and blasting method pa-
rameter optimization research [19]. Kourepenis et al. cal-
culated and determined the blasting parameter design
scheme based on experience and actual engineering needs
when the blasting design scheme was uncertain [6].
Aggarwal et al. used empirical formulas to optimize blasting
parameters such as blasthole row spacing, minimum re-
sistance line, blasthole density coefficient, and bottom dis-
tance in a mine and achieved good results [7]. Shaeffer used
the empirical formula to determine the charge consumption
and the number of blastholes in the optimization study of
blasting parameters for ore and rock excavation [8]. Perl-
mutter and Breit proposed to use the limit equilibrium
method and discrete element numerical simulation to an-
alyze the stability and failure mode of the open-pit mine
slope on the basis of determining the relevant parameters of
the slope stability. (e problem is widespread, and the
situation of high, steep, and complex rock slopes in large
open-pit mines is particularly prominent [9].

In summary, intelligent computing and numerical
simulation technology will be more and more frequently
used in blasting parameter optimization research and future
development direction. (e previous research results have
promoted the development of rock blasting to a certain
extent, but the research on the prediction model of mineral
rock blasting in some literatures has a small number of data
samples, and the data selection is subject to a certain degree.
(e sample is not generated by random sampling; in ad-
dition, most of the models in the literature are tested only
once, and the chance is large, which cannot prove the
universality of the model.

3. Support Vector Machine Model Introduction
and Algorithm Improvement

3.1. ,e Basic Idea of SVM. A support vector refers to the
input x for some training points in the training set. (e
support vector machine method is a supervised learning
method; that is, the category of the training point is known,
and the correspondence between the training point and the
category is obtained so as to separate the training set
according to the category or predict the category corre-
sponding to the new training point. In a nutshell, the support
vector machine method is a classification method that firstly
transforms the input space into a high-dimensional space
through the Philippine linear transformation defined by the
inner product function and then finds the optimal

classification surface in this space. It shows many unique
advantages in nonlinear and high-dimensional pattern
recognition and can be extended to other machine learning
problems such as function fitting.

(e idea of support vector machine is created based on
the optimal classification surface on the basis of linear
separability, and its principle is shown in Figure 1.

In Figure 1, the optimal classification surface is relative
to the multidimensional space. In the two-dimensional
space, the optimal classification surface is the optimal
classification line, which can accurately separate two types of
data samples under the premise of ensuring the minimum
empirical risk and make it the largest interval, that is, the
largest classification interval.

Suppose there are two types of linearly separable sample
sets (xi, yi), i � 1, . . . , n, xi ∈ Rd, yi∈[1, −1], then define
f(x) � ωx + b as the form of the discriminant function.(is
form has parameters that need to be adjusted but must be
linear. (e response equation is shown as

ωx + b � 0. (1)

(e first job to be done is to normalize the discriminant
function to ensure that all samples under different classi-
ficationsmust meet the constraints. It can be deduced that all
classification straight lines must be within the range rep-
resented by the following equation and make the correct
classification, as

yi ωxi(  + b  − 1≥ 0, i � 1, . . . , n. (2)

(e distance from the sample point to the hyperplane is

d �
wx + b

‖w‖
. (3)

(e distance of the classification line from which the
response is obtained can be expressed as 2/‖w‖, and the
largest classification distance is equivalent to the smallest
value of ‖w‖2, that is, the optimal classification hyperplane.
In the case of a given sample, the selection of SVM pa-
rameters will first affect the learning ability of its model.
Some scholars pointed out that the parameter selection of
support vector machine not only determines its learning
performance but also the size of the parameters which has a
great influence on the scale of the hypothesis space and the
searchmethod of the space. In the support vector machine, it
can be seen from the above description that the accuracy of
the model is a contradictory community for the parameters,
and the relationship between its own complexity and the
parameters is also the same. For different situations, the
selection of parameters is also different, and a trade-off needs
to be made. (e choice of parameters determines the per-
formance of the support vector machine model. How to use
the algorithm to obtain the optimal parameter combination
is a problem that the support vector machine must consider.
Parameter selection is the key to the quality of the support
vector machine model. Manual selection is not only time-
consuming and labor-intensive but also the found parameter
group may not be optimal, but parameter selection can be
treated as an optimization problem. (erefore, this paper
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considers the intelligent optimization algorithm and in-
troduced the optimization of support vector machine
parameters.

3.2. Improvement of the Support Vector Machine Algorithm
Based on the Kernel Function. In order to make the support
vector machine model have the best generalization ability, it
is mainly necessary to do two things: the first thing is to
choose a kernel function; the second thing is to choose an
intelligent optimization algorithm to let the model obtain a
set of optimal parameter combination. At present, the se-
lection of the kernel function is generally a single kernel
function. Based on the summary of the advantages and
disadvantages of the polynomial kernel function and the
Gaussian radial basis function, this paper forms a mixed
kernel function of the polynomial kernel function and the
Gaussian radial basis function. At the same time, the in-
telligent optimization algorithm used in this paper is an
improved differential evolution algorithm. Finally, an im-
proved support vector machine model is established.

In the support vector machine, to select the kernel
function to map the nonlinear input to the high-dimensional
feature space, this paper defines the characteristics of the
kernel function based on the calculation requirements of the
blasting rock trajectory as

K(u, v) � 
∞

k�1
αkϕ(u)ϕ(v). (4)

It is guaranteed that the symmetric function K(u, v)

under L2 is expanded with a positive coefficient αk > 0 as

 g
2
(u)dx<∞. (5)

Due to the complex factors affecting the blasting rock
trajectory in the mining area, a single kernel function is often
unable to achieve satisfactory prediction results. However,
there are many types of kernel functions, and there is no
good experience on how to choose the kernel function well.
But if the kernel function is classified, it can be roughly
divided into two types: the first type is the global kernel
function, and the second type is the local kernel function.
(e polynomial kernel function is an excellent representa-
tive of the first type of global kernel function. Its advantages

are that it has a strong generalization ability and a good
globality in extracting data. Among them, the excellent
representative of the second largest type of local kernel
function is the Gaussian kernel function, which has the
advantage of good learning effect, and the disadvantage is its
poor generalization ability.

(e first type of global kernel function and the second
type of local kernel function have different performances;
therefore, in terms of their performance, the first type of
global kernel function and the second type of local kernel
function should be considered. (ese two kernel functions
construct a new type of kernel function according to a
certain proportional relationship, as shown in Figure 2.

Although support vector machines and neural networks
are both nonlinear classification models, support vector
machines consist of single hidden layer, whichmainly realize
nonlinear classification through the trick of kernel function.
(e direction of the line of least resistance is the direction
with the least rock resistance, and it is also the direction
which is most likely to generate flying rocks. When the
minimum resistance line is too small, after the explosive
explodes, only a part of the energy is enough to break the
rock in the direction of the resistance line, and the excess
energy throws the broken rock forward, producingmore and
farther flying stones. When the minimum resistance line is
selected is too large, the energy generated by the explosive is
not enough to overcome the resistance of the rock in the
direction of the resistance line, but the energy of the ex-
plosive needs to be released, so it is easy to produce rush
guns at this time, which is followed by flying stones. Since
the foundation of SVM is statistical theory, it has rigorous
theoretical and mathematical ideas, which can overcome the
unavoidable problems of neural network. At the same time,
the SVM also has relatively strong approximation ability and
generalization ability.

4. Experimental Design and Analysis

4.1.Experimental Site. In order to analyze themovement law
of ore rock in the process of slag blasting in the open pit and
the influence of the residual blasting pile on the movement
of nearby ore rock, this paper selects the 31st bench blasting
in the south mining area of Qidashan open pit as the ex-
perimental site, and the bench elevation is −120m–105m,
section height is 15m, blasting step length is 132m, step
width is 20m–28m, slope angle is 65°, step area is 3168m2,
total volume is 47520m3, and step rock volume is
104664 tons. (e steps mainly include migmatites such as
gray-white or flesh-red gneiss-like structure, anisotropic
full-crystalline structure, and massive structure. (e blasting
type of the experimental blasting area is slag blasting, with a
total of 62 blastholes. (e rectangular hole arrangement is
adopted, the hole spacing is 7.5m, the row spacing is 6m,
and the blasting is carried out hole by hole. (e stage height
is 15m, the explosive types are emulsion explosives and
ammonium explosives, the maximum charge per hole is
650 kg, and the total designed charge is 37000 kg. (e filling
height is 8.5 meters, and the blasthole is filled with gravel.
(e length of the bus used for detonation is 600m, and the

Border

Class 1

Class 2

Figure 1: Basic idea of support vector machine.
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combination of series and parallel connection is adopted.
(ere are 130 detonating bombs, and 210 400ms detonators
are used in the hole, and 4 detonators of 25ms, 20 detonators
of 42ms, and 41 detonators of 65ms are used on the ground
to detonate the entire blasting area for connecting.

4.2. Experimental Equipment. In this study, a high-precision
MEMS inertial navigation sensor with automatic storage
function is selected. (e sensor size is
51.3mm∗ 36mm∗ 15m and has an SD card slot. When the
SD card is inserted, it will automatically turn on and work.
(ere is an independent power supply inside, which can
continuously, completely, and independently work for up to
5 hours, and the sensor records the acceleration and angular
velocity of the three axial directions, respectively, at a fre-
quency of 200Hz. Among them, the acceleration accuracy is
0.01 g, and the angular velocity accuracy is 0.05°/s. (e
details of the sensor are shown in Figure 3.

According to the actual size of the sensor and the hole
diameter of the blasthole, the design scheme of the special
protection device for the sensor is determined. According to
the design, the protection device is divided into two layers:
inner and outer layers. (e inner layer is a cuboid structure,
which chooses PE pearl cotton material for production and
uses soilworks software to carry out mechanical numerical
simulation of the design protection device before production
to determine its protection effect on the sensor, and the
design diagram of the protection device is shown in Figure 4.

(e protection device is made according to the design
plan. In order to facilitate recycling and weighting, a color
protection bag with better quality is equipped on the outside
of the protection device, and the weight is placed in the
protection bag to make its weight similar to the weight of the
rock. (e physical protection device is shown in Figure 5.

4.3. Experimental Process Design. In this paper, the support
vector machine is used to predict the blasting rock trajectory.
First, the rock pressure monitoring data sequence is nor-
malized, then the embedded parameters of the phase space
are determined, and then the phase space of the rock
pressure monitoring data sequence is reconstructed. (en,
the training sample set is established, then the test sample is
set, and the prediction model is trained with the training
sample set, and finally, the validity of the trained prediction
model is verified with the test sample set. In order to avoid
the too different magnitudes of each variable in the input
variables affecting the training effect, the training data
samples of the support vector machine should be normal-
ized. When using the support vector machine to predict the
mine pressure monitoring data, the radial basis function is
used with the kernel function, and the cross-validation

Input layer
Hidden layer

Output layer

x1

x2

xn-1

xn

K (x,x1)

K (x,x2)

K (x,x3)

K (x,xm-1)

K (x,xm)

Figure 2: Structure diagram of the improved support machine.

Figure 3: Inertial sensor for the experiment.
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method is used to optimize the parameters of the penalty
parameter Xi and the kernel function yi as

Xi � xi +  X
2
(x)dx, (6)

yi � f Xi( 

� xi+1+(m−1)τ .
(7)

(e data collected on-site are analyzed and divided into
training set and test set. (e training set that needs to be
trained is input into the neural network prediction model,
the network is trained, and then the test set is input into the
neural network prediction model. (e effects are compared,
and a more appropriate method is selected to predict the
blasting effect. In the mining area, six blastholes were se-
lected as experimental blastholes, and inertial sensors were
embedded near the surface of each blasthole (not embedded
in the blasthole packing). (e sensors were placed hori-
zontally, and the positive direction of the X axis was in the
vertical slope in outward direction, and the sensor numbers
are 1-1, 1-2, 2-1, 2-2, 3-1, and 3-2. According to the blasting

design, the blasting sequence of the blastholes where each
sensor is located is from morning to night: 2-2 (149ms), 3–2
(157ms), 3–1 (237ms), 2–1 (298ms), 1–2 (42ms), and 1–1
(592ms). (e layout of the sensor is shown in Figure 6.

(e main idea of the experimental method design is to
embed the high-precision inertial sensor in the open stope
according to the blasting site layout plan under the condition
of special protection devices. In the end, recover the sensor
and extract the sensor data, and then finally study the rel-
evant data analysis to analyze the movement data of the ore
rock during the blasting process so as to obtain the
movement speed, kinetic energy, and trajectory of the ore
rock, and study the movement law of the ore rock and
technical process as shown in Figure 7.

(e specific process of the experiment is as follows: (1)
Insert the SD card into the inertial navigation sensor (au-
tomatically turn on after insertion); (2) place the sensor
horizontally in the protection device according to the cal-
ibration direction of the protection device; (3) use the
computer to communicate with the inertial navigation de-
vice through the data cable connecting the sensors, and then
calibrate and adjust the sensor parameters; (4) embed the

PE pearl cotton outer buffer
protective layer cover

PLA chip protection device
cov based on 3D prin

Chip

Built-in PE pearl cotton
protection device

PLA chip protection device base
on 3D printing

PE pearl cotton outer buffer
protective layer bottom

240 mm

220 mm

Figure 4: Design of the protection device.

Outer protective device

Intermediate protection device

Infilling

Color protective bag

Figure 5: Entity diagram of the protection device.
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protection devices in the blasting site according to the design
plan; and (5) after the blasting, recover the inertial navi-
gation sensor, take out the SD card, and extract the data.

During the blasting process of the mine, there are many
factors that affect the blasting effect. All the known influ-
encing elements are screened through the support vector
machine algorithm, and the important influencing param-
eters are obtained as the input parameters of the support
vector machine model. Support the use of the feature at-
tributes in the support vector machine algorithm model to
filter the main influencing factors, randomly give each
feature a random weight, and select a certain number of
features each time, with the previous intersection for

training and learning, after continuous cycles, finally. (e
degree of influence of the remaining factor features on the
classification task can be determined.

4.4. PredictionBasedon the ImprovedSupportVectorMachine
Model. (e reasons that affect the blasting rock trajectory
mainly include four categories: one is blasting parameters,
the second is explosive blasting parameters, the third is rock
mass structure characteristics, and the fourth is physical and
mechanical properties of intact rock and discontinuity.
Among them, the blasting parameters include diameter of
blasthole, blasthole depth, blasthole spacing, charge length,

1-1

1-2
2-1

2-2

3-1

3-2

Explosive
remnants

The location of the chip in
the explosion area

Figure 6: Sensor arrangement scheme.

Study on characteristics and laws of rock
movement in open pit blasting

Numerical Simulation
of protection device

Inertial navigation
technology

Experimental scheme
design

Velocity change curve

Analysis of movement
law of blasting rock

Ore-rock trajectory Kinetic energy change
curve

Field experiment

Analysis algorithm design of
rock movement data

Design and development of
blasting sensor protection device

Figure 7: Experimental technical process.
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blasthole angle, blasthole filling length, minimum resistance
line, and step height. (e above indicators are all control-
lable, while blasthole diameter is the most important indi-
cator of the above parameters. Explosion parameters of
explosives include type of explosive, density of explosives,
power, and intensity. (e physical and mechanical prop-
erties of intact rock and discontinuity include rock mass
density, dynamic compressive strength, dynamic tensile
strength, shear strength, dynamic elastic modulus, hardness,
and mineral composition. (e influence of the above factors
on the distribution characteristics of the blasting rock tra-
jectory is nonlinear, and it is difficult to obtain a universal
empirical formula that includes all parameters. For the es-
tablishment of the ore rock trajectory prediction model for
ore blasting, on the basis of fully considering the above four
types of influencing factors, seven important indicators are
selected, which are the ratio of blasthole spacing to resistance
line, the ratio of step height to resistance line, the resistance
line to shot, the ratio of hole diameter, the ratio of blasthole
filling length to resistance line, the unit consumption of
explosive, and in-situ block size and elastic modulus.

(e data collected at the mine blasting site is analyzed
and divided into training set and test set. (e training set
that needs to be trained is input into the neural network
prediction model, the network is trained, and then the test
set is input into the neural network predictionmodel.(en it
is compared with the actual effect, and a more appropriate
method is chosen to predict the blasting effect. (e effective
blasting data are obtained by selecting 10 groups of ore
rocks, as shown in Table 1. Among them, 0 means that the
blasting effect is good, 1 means that the blasting effect is
good, and 2 means that the blasting effect is average.

When evaluating the blasting rock trajectory prediction
model, two indicators, root mean square error (RMSE) and
mean absolute error (MAE), are selected. Among them,
RMSE is used tomeasure the deviation between the observed
value of the model and the true value. (e MAE can better
reflect the actual situation of the predicted value error.
Generally speaking, the smaller the value of the two, the
more robust the model, and the better the performance. (e
calculation formulas of the two evaluation indicators are (9)

RMSE �

�������������


n
i�1 xi − x

⌢

i 
2

n
,



(8)

MAE �


n
i�1 xi − x

⌢

i




n
. (9)

4.5. Analysis of Experimental Results. Put the data in the
inertial sensor SD card on the computer, read the data
through the sensor host computer and save it in txt text
format, then convert the txt format data into Excel format
and then perform data interception, and remove a large
amount of useless data recorded before and after blasting
and keep blasting. Useful motion data during the period
contains the data content which includes the acceleration of
the three axes (ax, ay, az), the angular velocity of the three

axes (ωx, ωy, ωz), and the inertial navigation trajectory
solution written in MATLAB software. (e algorithm
program performs data calculation, and the motion tra-
jectory of each sensor is shown in Figures 8, 9, 10, 11, 12, and
13.

Since the experimental stope is blasting with loose slag,
sensors 1-1 and 1-2 are located near the outermost row of
blastholes, that is, near the slope, and there is no blasting pile
left from the previous blasting outside the slope, which is a
normal slope; sensor 2-1 and 2-2 are located near the side
slope but compared with the first group, and there are
explosive piles left from the previous blasting outside the
slope; sensors 3-2 and 3-2 are located near the middle
blasthole of the stope, and the slope is far away.

Figure 14 and 15 show the distribution diagrams of the
root mean square error and the mean absolute error gen-
erated by different kernel functions in the prediction process
through multiple experiments.

It can be seen from Figures 14 and 15 that the radial basis
kernel function is the kernel function with the highest
recognition rate and the best performance, and the mean
value of the root mean square error and the mean absolute
error of the blasting rock trajectory prediction model is the
lowest, which are 0.102 and 0.0674, respectively. (e eval-
uation indexes of linear kernel function and radial basis
kernel function are relatively similar. In the fifth experiment,
the performance of the linear kernel function is slightly
higher than that of the radial basis kernel function, but the
other nine experiments have proved the superiority of the
radial basis kernel function. (is shows that the optimal
model is determined by only one random experiment, and
the random error is large, and it is more scientific and
reasonable to use the mean value of the evaluation pa-
rameters as the criterion for the optimal model through
multiple random experiments.

(e motion trajectory of each sensor as a whole shows
that it is thrown up and then dropped. During this period,
there is a certain horizontal displacement. (e direction and
size of the horizontal displacement of each sensor are dif-
ferent. (e direction of the horizontal displacement shows a
certain randomness, and the horizontal displacement is the
largest. (e sensor 1-2 is about 11.5m, the direction is along

Table 1: Sample data sheet.

Minimum
blasting
resistance
line/m

Unit explosive
consumption/

(kg/m3)

Blasting
funnel
angle/(°)

Working
face width/

m

Real
effect

3.927 1.256 125.37 32.5 0
3.476 0.894 140.24 34.6 0
4.569 0.884 135.36 29.5 1
4.326 1.324 134.63 30.6 0
3.326 1.136 142.58 33.5 0
2.969 0.836 125.51 33.3 2
2.453 0.967 123.36 38.5 0
3.656 1.013 133.85 36.6 0
3.337 0.804 137.93 29.9 1
2.969 0.934 129.81 30.9 0
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the positive direction of the X-axis, the horizontal dis-
placement of other sensors is about 3m, and the direction is
random, indicating that when the X-axis; in the vertical
direction, the largest upward displacement is sensor 3-1,
which is about 5.3m, and the smallest upward displacement
is sensor 1-1, which is about 2m; the largest downward
displacement is sensor 2-2, which is about 4.8m, and the
smallest downward displacement is sensor 2-1, which is
about 0.2m. By comparing the three-dimensional models
before and after the stope blasting, the placement of all
sensors conforms to the actual situation on-site.

By analyzing the direction and size of the horizontal
displacement of the sensor, it is shown that the movement
direction of the sensor near the slope position is mainly
along the direction perpendicular to the nearest free surface,
and the smaller the distance from the free surface, the greater
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Figure 8: Movement track of sensor 1-1.
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the horizontal displacement of the sensor. Among them,
when the sensor is located at the edge and corner of the
stope, such as sensor 1-1, its movement direction will be
affected by the nearby blastholes and shifted to the direction
without blastholes; for sensors 2-1 and 2-2, the free surface
with the shortest distance will be changed by the influence of

the residual explosion, and the movement direction will
show randomness. By analyzing the uplift height of the
sensor, it is found that the uplift height of the sensor at the
slope position is lower than that of the sensor in the middle
of the stope and the uplift height of the sensor near the slope,
where there is an external explosion that is greater than that
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Figure 12: Sensor 3-1 motion track diagram.
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of the sensor without the external explosion, indicating that
the farther the blasting hole is from the free surface during
the blasting process, the higher the energy acting on the
vertical direction.

5. Conclusions

(e main conclusions are as follows:

(i) (is paper innovatively proposes a research method
that uses high-precision MEMS inertial navigation
sensors to monitor the movement characteristics of
ore and rocks during stope blasting. (e results

obtained through field experiments show that this
method can recordmore realistically and accurately.
(e movement state and characteristics of ore rock
during blasting.

(ii) (e change process of the movement speed of ore
rock is divided into five stages, and each stage has a
different shape; many collisions will occur during
the initial acceleration process, and few collisions
occur in other stages.

(iii) (e movement trajectory of the ore rock shows that
it is thrown up and then dropped; accompanied by a
certain horizontal displacement during the period,
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Figure 14: Root mean square error distribution of different kernel functions.
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the ore rock at the slope position generally moves in
the direction of the vertical nearest free surface, and
the movement direction of the ore rock in the
middle of the stope has a certain movement di-
rection and randomness.

(iv) During the blasting process, the energy generated by
the explosive mainly acts on the vertical direction,
and the farther the blasthole is from the free surface
position, the more energy acts on the vertical di-
rection. (e action efficiency of blasting energy is
higher than that of the slope, and the action effi-
ciency of blasting energy is higher than that of the
ordinary slope.

(v) Under the full consideration of various influencing
factors of ore rock blasting trajectory, the ratio of
blasthole spacing to resistance line, the ratio of step
height to resistance line, the ratio of resistance line
to blasthole diameter, and the length of blasthole
filling and resistance are selected. (e ratio of the
line, the unit consumption of explosives, the size of
the in-situ block, and the elastic modulus, and a
total of seven types of important indicators carry out
research on the prediction model of the ore-rock
trajectory for ore-rock blasting.Based on the cross-
validation method, through the support vector
machine model parameter optimization and com-
parative evaluation parameters, the optimal pre-
diction model of the blasting ore and rock trajectory
is obtained as the support vector machine model
based on the radial basis kernel function. (e mean
value of root mean square error and mean absolute
error of this model are 0.102 and 0.0674, respec-
tively, and the performance is the most robust
among the three types of models.

(e field experiment results show that according to the
characteristics of inertial sensors that can work completely
independently, it is feasible to use high-precision inertial
sensors to monitor the movement characteristics of ore and
rock during stope blasting and the state and characteristics
of rock movement during blasting. However, since the in-
ertial sensor needs to use the medianmethod to integrate the
data once or twice with respect to time in the solution
process, there is a certain error in this method, and the error
will gradually accumulate with the increase of time.
(erefore, in the future, in the process of research, the
calculation method of the inertial sensor should be further
optimized so as to make the obtained experimental data
more real and reliable [20].
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