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*e cross-regional spread of COVID-19 had a huge impact on the normal global social order. *is paper aims to build an
improved dynamic transmission rate model based on the conjugate gradient neural network predicting and analyzing the global
COVID-19 epidemic. First, we conduct an exploratory analysis of the COVID-19 epidemic from Canada, Germany, France, the
United States, South Korea, Iran, Spain, and Italy. Second, a two-parameter power function is used for the nonlinear fitting of the
dynamic transmission rate on account of data-driven approaches. *ird, we correct the residual error and construct an improved
nonlinear dynamic transmission rate model utilizing the conjugate gradient neural network. Finally, the inflection points of the
global COVID-19 epidemic and new outbreaks, as well as the corresponding existing cases are predicted under the optimal sliding
window period. *e experimental results show that the model presented in this paper has higher prediction accuracy and
robustness than some other existing methods.

1. Introduction

With the acceleration of globalization and the development
of science and technology, the population is moving rapidly,
and the world has become interdependent and inter-
connected, making it possible for infectious diseases to
spread rapidly. In early December 2019, the first case of a
new type of coronavirus was reported in Wuhan, China, and
it was named corona virus disease 2019 (COVID-19) on
February 11, 2020. Subsequently, the COVID-19 epidemic
spread rapidly from Hubei Province to many provinces
across China and brought serious harm to the lives and
health of Chinese, as well as to social and economic de-
velopment. Until late February 2020, the COVID-19 epi-
demic prevention and control work in China had achieved a
phased victory. Unfortunately, due to the lack of awareness
regarding the COVID-19 epidemic in many overseas
countries and inadequate prevention and control measures,
the COVID-19 epidemic began to spread rapidly in Asia, the

Middle East, Europe, and North America in late February
and early March of 2020. In particular, the introduction of
the concept of “herd immunity” by the British government
has exacerbated the spread of the COVID-19 epidemic in
Europe. Ferguson et al. [1] pointed out that if the British
government does not change the current situation with
respect to “herd immunity” approach, this wave of the
COVID-19 epidemic will even cause 510,000 British deaths,
and the number of deaths in the United States will be even
greater, with possibly 2.2 million deaths. According to a
report from Johns Hopkins University, as of January 24,
2022 (Beijing time), there were 351,983,072 confirmed cases
and 5,614,569 deaths from the COVID-19 worldwide. More
than 200 countries and regions in the world have confirmed
the presence of the COVID-19 epidemic. More seriously,
there have been 71,925,931 confirmed cases and 889197
deaths in the United States (USA). *e top ten countries in
terms of cumulative confirmed cases and deaths are shown
in Figure 1.
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Figure 1 shows that the United States is the country with
the largest cumulative number of confirmed cases and
deaths, accounting for approximately 20.4% and 15.9% of
the global totals, respectively.

Statistics from Johns Hopkins University show that the
cumulative number of confirmed cases worldwide exceeded
100 million cases on January 26, 2021, more than 200 million
cases on August 4, 2021, more than 300 million cases on
January 7, 2022. It is notable that it took 370 days from January
20, 2020 to reached 100 million cases. However, the increase
rate of cumulative confirmed cases of the global COVID-19
epidemic has accelerated since Octobers 2020. It took 190 days
to increase from 100 million to 200 million cases. More se-
riously, it only took 156days to go from 200 million cases to
300 million cases. *e details is displayed in Figure 2.

From Figure 2, it takes about 10–25 days for every 10
million increase from October 18, 2020, to December 12,
2021. Recently, with the newOmicron variant of COVID-19,
the global spread of the COVID-19 epidemic has once again
set a new record. It only took 14 days to increase from 270
million to 280 million cases, 7 days to increase from 280
million to 290 million cases, 4 days to increase from 290
million to 300 million cases, 4 days to increase from 300
million to 310 million cases, 3 days to increase from 310
million to 320 million cases, 4 days to increase from 320
million to 330 million cases, 3 days to increase from 330
million to 340 million cases, and 3 days to increase from 340
million to 350 million cases. However, there is no sign of
improvement at present.

*ere are a lot of work have been studied on the
transmission mechanism and prediction models of the
COVID-19 epidemic, with the aim revealing the governing
law of the epidemic, predicting changes and developmental
trends, analyzing the causes and key factors of the epidemic,
and seeking the best strategy for prevention and control. In
particular, the SEIRmodel and its extensions are favoured by
researchers. Wu et al. [2] used the SEIR model to predict the
domestic and international spread of the COVID-19 epi-
demic in the short-term and long-term. *e numerical re-
sults show that in order to avoid outbreaks in large cities
with strong transport links in China, a large number of

public health interventions must be implemented imme-
diately at the population and individual levels. Caetano et al.
[3] used an age-structured SEIR model to determine the
impact of the implementation of past non-pharmaceutical
interventions on the COVID-19 epidemic. Ghostine et al. [4]
achieved encouraging results in small-scale short-term
predictions by an extended SEIR model.

Based on the SEIR model, Wang et al. [5] constructed a
complex network model for the spread of the COVID-19
epidemic in 15 cities with severe epidemics inWuhan and the
surrounding areas, focusing on the analysis of the possible
time points at which the resumption of work in Wuhan and
the surrounding areas could occur and the impact of re-
sumption on the risk of secondary outbreaks. Yang et al. [6]
used a modified SEIR model to predict the trend of the
COVID-19 epidemic in China under public health inter-
ventions. Li et al. [7] studied the estimation of the scale of the
COVID-19 epidemic in the United States based on air travel
data fromWuhan. Liu et al. [8] used mathematical models to
analyze the developmental trends of the COVID-19 epidemic
in South Korea, Italy, France, and Germany. Hermanowicz
[9] used a logistic model to conduct a systematic evaluation
for predicting the growth of the COVID-19 epidemic in the
United States based on 87-day data from China as of March
13, 2020 and 70-day data from the United States as of March
31, 2020. In the meantime, models based on data-driven
statistics have also been widely used for the prediction and
analysis of the COVID-19 epidemic, including function fitting
[10, 11], machine learning [12–15], deep learning [16–18] and
time series models [19, 20].

In particular, in view of the difficulty of accurately es-
timating the basic infection number R0 in traditional in-
fectious disease epidemiology, Huang et al. [21] proposed a
data-driven concise and practical method for calculating the
dynamic transmission rate of an epidemic to replace the
basic infection number. Subsequently, Hu et al. [22, 23] used
dynamic transmission rate model (DTRM) and dynamic
growth rate model (DGRM) to predict and empirically
analyze the domestic and global COVID-19 epidemics,
respectively, and the experimental results show that the
prediction accuracies of both models were greatly improved.
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Figure 1: Top ten countries with cumulative confirmed cases and deaths.
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Compared with the SIR model [24], the SEIR model [2] and
their extensions [5, 6], the DTRM based on a data-driven
approach has a wider application range, higher prediction
accuracy and stronger robustness. Xie et al. [25] used an
nonlinear combinational DTRM (NCDTRM) based on
support vector regression (SVR) to predict the COVID-19
epidemic in China. *e experimental results demonstrate
that NCDTRM effectively overcomes the shortcomings of
insufficient information extraction and insufficient predic-
tion accuracy of the single model. Xie et al. [26] presented an
improved NCDTRM (INCDTRM) based on forecasting
effective measure and SVR for analyzing and predicting the
COVID-19 pandemic in eight countries. *e experimental
results reveal that INCDTRM has smaller prediction error
and stronger generalization ability than the single prediction
models, DGRM and NCDTRM that have been used
previously.

Undoubtedly, the COVID-19 epidemic is a major public
health emergency, that poses major challenge to the medical
and health systems of all countries in the world and has a
major impact on the global economic order. However,
people are only concerned about the source, host, and spread
of the COVID-19 epidemic, but themethod of spreading, the
pathogenic mechanism, the harmfulness, the lethality, the
diagnosis and treatment plan, the treatment drugs, whether a
given patient has sequelae after recovery, etc. have not been
fully understood [27]. *erefore, in the face of the global
COVID-19 epidemic, how to construct an effective and
reasonable mathematical model for quickly, accurately and
quantitatively evaluating the current stage of the epidemic,
determining the effects of control measures, predicting fu-
ture trends, and controlling the spread of the epidemic to
avoid the collapse of the medical system has become a major

issue and an urgent task for the government, the scientific
community, and the public.

Existing research results show that when the sample size
is not large enough, the DTRM model estimation parameter
method has a large deviation [28]. *erefore, the paper aims
to build an improved DTRM based on the conjugate gra-
dient neural network (CGNN) (abbreviated as IDTRM-
CGNN) to predict the inflection point of the COVID-19
epidemic in Canada, Germany, France, the United States,
South Korea, Iran, Spain and Italy. *e corresponding
existing confirmed cases are also reported. *e core idea of
the IDTRM-CGNN is to use the CGNN to correct the re-
siduals for improving the prediction accuracy.*e empirical
results show that our model has higher prediction accuracy
and robustness than some other existing methods, and can
provide scientific decision-making for the prevention and
control of the global COVID-19 epidemic. Furthermore,
these results can also provide a study and judgement of the
effects of the epidemic control measures employed in dif-
ferent countries.

*e rest of this paper is organized as follows: Section 2
briefly recalls some well-known results on the dynamic
transmission rate, the inflection point of the COVID-19
epidemic, and the neural network based on the conjugate
gradient method. Section 3, the IDTRM-CGNN is proposed
to predict and analyze the global COVID-19 epidemic.
Conclusions and remarks are made in Section 4.

2. Preliminary Knowledge

2.1. Dynamic Transmission Rate. In this subsection, we in-
troduce the basic idea of the dynamic transmission rate,
which plays an important role in the COVID-19 epidemic
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Figure 2: Global COVID-19 epidemic.
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predictions and analysis. For the details can be referred to
[21–23, 25, 26].

Let N(t) be the number of existing confirmed cases at
time t. *en,

N(t) � L(t) − K(t) − D(t), (1)

where L(t), K(t), and D(t) are the numbers of cumulative
confirmed cases, cumulative deaths and cumulative cures at
time t, respectively.

It is well-known that the natural growth model is defined
by

dN(t)

dt
� q(t)N(t), (2)

where q(t)≥ 0 is the growth rate of the number of existing
confirmed cases at time t.

Let

q(t) � g(t) − 1. (3)

It follows from (2) and (3) that

lnN(t) − lnN t0(  � 
t

t0

g(x)dx − t − t0( . (4)

*en, the number of existing confirmed cases is obtained
by

N(t) � N t0( exp at t − t0(  , (5)

where

at �


t

t0
g(x)dx

t − t0(  − 1
. (6)

For the sake of analysis, we introduce the dynamic
transmission rate, i.e.,

ct � 1 + at, (7)

which was first studied in [21]. *en, we have

ct � 1 +
1

t − t0
ln

N(t)

N t0( 
. (8)

*is implies that

ct � 1 +
1
k
ln

N(t)

N(t − k)
, (9)

where k � t − t0 represents the sliding window period, see
[22, 23, 25, 26] or Section 3.3 for details.

2.2. Inflection Point of the COVID-19 Epidemic. *e inflec-
tion point of the COVID-19 epidemic in this paper refers to
the moment when the number of existing confirmed cases
reaches a peak within a certain period of time [22]. *erefore,
the inflection point of the COVID-19 epidemic is the key
point for the prevention and control of the COVID-19 epi-
demic, so it is an important factor for measuring whether the
COVID-19 epidemic is under control. *e following are the
trend charts of the numbers of existing confirmed cases in

Canada, Germany, France, the United States, South Korea,
Iran, Spain and Italy from the outbreak of the COVID-19
epidemic to April 7, 2020, as shown in Figure 3.

Figure 3 shows that the first wave of the COVID-19
epidemic inflection point in South Korea arrived on March
12, 2020. *is means that South Korea has achieved good
momentum with regard to the prevention and control of the
first wave of the COVID-19 epidemic. However, the
numbers of existing confirmed cases in other countries are
still increasing, and the first wave of the COVID-19 epidemic
was not effectively controlled before April 7, 2020; that is,
there was no inflection point in the COVID-19 epidemic.

2.3. Neural Network Based on Conjugate Gradient Method.
Artificial neural networks (ANNs), also known as neural
networks, are mathematical models that imitate the be-
haviour characteristics of animal neural networks and
perform distributed parallel information processing. *ey
are widely used in pattern recognition, signal processing,
knowledge engineering, expert systems, robot control and
other fields [29]. In view of the local convergence of neural
networks and the difficulty of slow convergence speeds, the
study of the CGNN has attracted the attention of many
scholars [30]. In what follows, we briefly introduce the basic
idea of the CGNN, which updates the weight and bias values
according to the scaled conjugate gradient method.

Considering the neural networks were composed of an
input layer, (L − 1) hidden layers, and an output layer. Let
x ∈ Rn and y ∈ Rm be the input and output of the given
neural network, respectively. Furthermore, we denote
x(0) ∈ Rn be the initial input of the neural network. *en the
output of the k-th hidden layer of the neural network is
obtained from

u
(k)

� W
(k)

x
(k− 1)

+ b
(k)

,

x
(k)

� fk u
(k)

 , k � 1, 2, . . . , L,

⎧⎨

⎩ (10)

where fk(·) is the activation function of the k-th hidden
layer, x(k− 1) ∈ RNk− 1 is the output of the (k − 1)-th hidden
layer, also is the input of the k-th hidden layer, W(k) �

(w
(k)
ij ) ∈ RNj×Ni is the weight matrix between the (k − 1)-th

hidden layer and the k-th hidden layer, in whose w
(k)
ij is the

weight from the j-th neuron in the (k − 1)-th hidden layer to
the i-th neuron in the k-th hidden layer and Nk is the
number of the neurons in the k-th hidden layers, b(k) is the
bias vector of the k-th hidden layer.

*e basic block diagram of the neural network is shown
in Figure 4.

Suppose there are n train samples (xi, yi), where xi ∈ Rn

and yi ∈ Rm are the input vector and the label vector, re-
spectively. For the given neural network, the global error
function, i.e., the sum of the squared differences of all the
training samples, is defined by

E(w) ≔ E W
(k)

, b
(k)

  �
1
2n



n

i�1
x

(L)
i − yi

�����

�����
2
, (11)
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Figure 3: Trends of the numbers of existing confirmed cases in eight countries. (a) Canada (b) Germany (c) France (d)*e United States (e)
South Korea (f ) Iran (g) Spain and (h) Italy.
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where w is the set of all parameters of the neural network,
including the weight matrix W(k) and biases b(k) are
attached to the neural network, x

(L)
i is the actual output in

the output layer associated with the input vector xi.
Mathematically, the problem of training a neural net-

work can be expressed as finding the minimum w∗ to
minimize the global error function E(w), that is,

minE(w) � E W
(k)

, b
(k)

 . (12)

Unfortunately, there is no guarantee that the objective
function E(w) is convex function with respect to W(k) and
b(k). *is easily leads to the risk of falling into local minima.

In general, one can apply the gradient descent method or
other optimization methods to minimize the objective
function. *e conjugate gradient method is an efficient
gradient descent algorithm for solving large-scale linear
equations and nonlinear optimization problems [31]. It not
only uses the first derivative information, but also overcomes
the slow convergence of the steepest descent method and
avoids the need to store and calculate the Hesse matrix for
the Newton method for calculating its inverse matrix.

In this paper, we consider the neural network based on
the scaled conjugate gradient method [30]. For the given
neural network, the scaled conjugate gradient method
generates a sequence of weights wk  from the following
iterative formula, i.e.,

wk+1 � wk + ηkdk, k � 0, 1, . . . , (13)

wherew0 is a given initial weight vector, ηk > 0 is the learning
rate, and dk is the descent search direction of the k th it-
eration defined by

dk �
− gk, k � 0,

− gk + βk− 1dk− 1, k≥ 1,
 (14)

where gk � ∇E(wk) and βk− 1 ∈ R. In the literature, there
have been proposed several choices for βk which give rise to
distinct conjugate gradient methods with quite different
computational efficiency and theoretical properties [31].

*e search direction of each iteration of the CGNN is the
conjugate combination of the negative gradient direction
and the search direction of the previous iteration, and it
therefore has the advantages of low storage, few calculations,

and high stability. *e choice for βk used in the scaled
conjugate gradient is given by

βk− 1 �
− gk



2

− gkgk− 1

d
T
k− 1gk− 1

. (15)

For a more detailed discussion of the CGNN, we refer to
[30, 32–35] and the references within.

3. Global COVID-19 Epidemic Prediction
and Analysis

*e algorithms and models used in this paper are developed
inWindows 10 with Python 3.6.0 and MATLAB R2018a, the
SVR regression model, and Least Absolute Shrinkage and
Selection Operator (LASSO) model are imported from the
SVM class of sklearn python library and LASSO class of
sklearn python library, respectively. *e fitting methods and
CGNN model are developed in MATLAB.

3.1. Optimal Fitting Function. It is well-known that the
fitting function plays an important role in the accuracy of
prediction. Some well-known fitting functions have been
considered in the literature, including the four-parameter
polynomial function, the normal distribution function, the
three-parameter exponential function, the three-parameter
hyperbolic function, the two-parameter power function and
the four-parameter logical function [11, 22, 23, 25]. *e
details can be found in Table 1.

*rough observation and experimentation, we finally
choose the two-parameter power function f5(t) as the
fitting function for fitting ct. It is the same fitting function to
the fitting function considered in [22].

3.2.Dataset. *eCOVID-19 data repository (https://github.
com/CSSEGISandData/COVID-19, accessed on 24 January
2022) used in the study was obtained from the Johns
Hopkins University Center for Systems Science and Engi-
neering. In this paper, we consider the COVID-19 epidemic
data from eight countries including Canada, Germany,
France, the United States, South Korea, Iran, Spain and Italy.
*e starting and ending dates are shown in Table 2.
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Figure 4: Diagram of the neural network.
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3.3. Optimal Sliding Window Period. To avoid inflection
point prediction lag due to an excessively large sliding
window period, we choose the optimal sliding window
period from the integer set 1, . . . , 7{ }, i.e., the maximum
sliding window period does not exceed one week [22]. Based
on the available global COVID-19 epidemic data, we cal-
culate the dynamic transmission rate every k days, and use
this value to replace the dynamic transmission rate for these
k days. *is strategy can reduce the volatility of the data, and
overcome the lack of training data.

In this paper, we use the MAE and RMSE as the eval-
uation indicators for selecting the best sliding window pe-
riod, and they are defined by

MAE �
1
N



N

t�1
ct − ct


. (16)

and

RMSE �
1
N



N

t�1
ct − ct( 

2⎡⎣ ⎤⎦

(1/2)

, (17)

respectively, where ct is the predictive value of the dynamic
transmission rate at time t, and N is the length of the time
series of the predictive value.

*e steps for selecting the optimal sliding window period
are provided as follows:

Input: numbers of cumulative confirmed cases L(t),
cumulative deaths D(t), and cumulative cures K(t),
t � 1, 2, . . . , N

Output: optimal sliding window period k

Step 1: calculate the number of existing cases from
Equation (1), t � 1, . . . , N.
Step 2: calculate the dynamic transmission rate ct using

ct � 1 +
1
k
ln

N(T)

N(T − k)
, (18)

under different values of k, where t ∈ [T − k, T − 1],
T � sk, s � 1, 2, . . . , k ∈ 1, 2, . . . , 7{ }.
Step 3: divide the data set ct into the training data set
and the testing data set, and the ratio of the training set
to the testing set is 7 : 3.
Step 4: fit the training data set based on f5(t) under
different sliding window periods k, k � 1, 2, . . . , 7.
Step 5: calculate the predicted values obtained different
sliding window periods k, k � 1, 2, . . . , 7.
Step 6: calculate the MAE and RMSE of each predicted
value under different sliding window periods
k, k � 1, 2, . . . , 7.
Step 7: calculate the average MAE and RMSE under
different sliding window periods, and then select the
optimal sliding window period k. Connect the training
set and testing set to make it a fitting set, and refit the
fitting set under the selected optimal sliding window
period.

In what follows, we list the optimal fitting parameters of
the fitting function f5(t), the optimal sliding window period
and its evaluation indicators in eight countries as shown in
Table 3.

3.4. Global COVID-19 Epidemic Prediction and Analysis
Based on IDTRM. In order to better reveal the trend of ct

crossing the sliding window period, we consider the so-
called IDTRM proposed in [22]. *e calculation method of
ct in this paper is improved, as shown in (18). *e value of
the fitting parameter of the two-parameter power function
f5(t) can reflect the severity of the epidemic in a given
country to a certain extent, and can reflect the effect of the
development and control of the COVID-19 epidemic [22].
According to the fitting curve expression obtained based on
the optimal sliding window period, the solution of f5(t) � 1
is the inflection point of the COVID-19 epidemic.

*e estimated inflection points of the global COVID-19
epidemic based on IDTRM with the improved dynamic
transmission rate ct calculated from (18) is shown in Table 4.

From Table 4, through a comparison with the actual
inflection point, the predicted result shows that the calcu-
lated dynamic transmission rate in this paper is suitable for
the real situation, but the accuracy rate still needs to be
improved.

For this purpose, we will use the CGNN to correct the
residuals for improving the predictions accuracy, and to
make the model more practical and instructive for the
prediction of the global COVID-19 epidemic and new waves
of the outbreaks. *e details see the below.

3.5. Global COVID-19 Epidemic Prediction and Analysis
Based on IDTRM_CGNN. To improve the prediction ac-
curacy of IDTRM, we use IDTRM_CGNN to predict the
global COVID-19 epidemic. In view of the good self-
learning abilities of neural networks, we choose the CGNN
to train the early residual set for obtaining the calibrated and
predicted residual sets.

Table 2: Date of COVID-19 outbreak data start and end.

Country Start of dataset End of dataset
Canada 2020/01/28 2020/04/07
Germany 2020/01/28 2020/04/07
France 2020/01/28 2020/04/07
*e United States 2020/01/28 2020/04/07
South Korea 2020/01/28 2020/04/07
Iran 2020/02/19 2020/04/07
Spain 2020/02/01 2020/04/07
Italy 2020/01/31 2020/04/07

Table 1: Fitting functions.

Fitting function References
f1(t) � α1 + α2t + α3t2 + α4t3 [23]
f2(t) � (1/

���
2π

√
σ)exp(− ((t − μ)2/2σ2)) New

f3(t) � α1 exp(α2t) + α3 [23]
f4(t) � (α1 + t/α2 + α3t) [25]
f5(t) � utv− 1 [22]
f6(t) � (α1/(1 − α2 exp(− α3t)) + α4) [11]
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*e main steps of IDTRM_CGNN are as follows:

Input: numbers of cumulative confirmed cases L(t),
cumulative deaths D(t), and cumulative cures K(t),
t � 1, 2, . . . , N

Output: estimated inflection points and their corre-
sponding existing confirmed cases
Step 1: calculate the number of existing confirmed cases
N(t) from equation (1), t � 1, . . . , N.
Step 2: choose f5(t) as the optimal fitting function, see
Section 3.1.
Step 3: calculate the dynamic transmission rate ct using
equation (18)
Step 4: choose the optimal sliding window period k∗,
see Section 3.3.
Step 5: calculate the dynamic transmission rate ct by
means of f5(t).
Step 6: calculate the residual of the dynamic trans-
mission rate ct from

δt � ct − ct, t � 1, 2, . . . , N. (19)

Step 7: predict the residual of the dynamic transmission
rate δt
′ by means of the CGNN.

*e residual sequence δt  of the dynamic transmis-
sion rate is divided into the training set and the test set
as the input layer variables of the neural network
according to a ratio of 7 : 3; the hidden layer contains 2
layers in our experiments; the initial weight vector w0
in the scaled conjugate gradient method is randomly
initialized; the hidden layer activation function of the
neural network selects the double curve tangent
function, i.e.,

tan hx �
sin hx

cos hx
�

e
x

− e
− x

e
x

+ e
− x , (20)

*e activation function of the output layer is an
identity; the modified residual sequence δt

′  and the
predicted residual sequence of the dynamic transmis-
sion rate are output. All the experiments are repeated
100 times to demonstrate the robustness of the method.
Step 8: calculate the corrected dynamic transmission
rate using

ct
′ � ct + δt

′, (21)

which is equivalents to
f5′(t) � f5(t) + δt

′. (22)

Step 9: predict the inflection point t∗ using f5′(t) � 1.
Step 10: predict the number of existing confirmed cases
at time t(t � N + 1, N + 2, . . .) using

N(t) �
1
k



k

i�1

N(t − i)exp i ct
′ − 1(  , (23)

where N(t) represents the estimated numbers of
existing confirmed cases at time t. When N(t − i) is
unknown, N(t − i) is used to instead of it [22].

To verify the robustness and generalization ability of the
model, the residuals of the fitted curve and the dynamic
transmission rate obtained are used to correct and predict
the residuals in combination with the CGNN.*e prediction
results of the inflection point of the global COVID-19 ep-
idemic based on IDTRM_CGNN are shown in Figure 5.

Figure 5 compares the prediction results regarding the
inflection point of the COVID-19 epidemic before and after

Table 4: Actual and estimated inflection points.

Country Actual inflection point (A.I.P) Estimated inflection point (E.I.P)
Canada 2020/05/31 2020/08/01
Germany 2020/04/08 2020/04/17
France 2020/04/16 2020/04/26
*e United States 2020/05/31 2020/05/27
South Korea 2020/03/12 2020/03/19
Iran 2020/04/05 2020/04/16
Spain 2020/04/26 2020/04/08
Italy 2020/04/20 2020/04/07

Table 3: Fitting parameters, optimal sliding window period and evaluation indicators.

Country u v k MAE RMSE
Canada 1.3241 0.941 3 0.0241 0.0246
Germany 1.9939 0.8325 2 0.0450 0.0526
France 1.8440 0.8519 6 0.0115 0.0138
*e United States 1.4116 0.926 4 5 0.0363 0.0376
South Korea 1.8040 0.8288 4 0.0220 0.0239
Iran 1.8880 0.8426 5 0.0228 0.0255
Spain 2.3148 0.7770 1 0.0150 0.0201
Italy 2.1015 0.8060 5 0.0182 0.0195
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using the CGNN in Canada, Germany, France, the United
States, South Korea, Iran, Spain and Italy. *e overall
prediction effect of the new model is better than those of
some other existing methods, and it can effectively capture
the fitting curve with smaller errors while maintaining the
original trend. In order to demonstrate the advantages of the
model, we use LASSO [36], SVR [37] and DTRM [22] to

process the residuals, In addition, we also add the sliding
window period steps to DTRM considered in [22], other
unchanged, and the date of inflection point is calculated.

Table 5 provides the predictive inflection point of the
COVID-19 epidemic based on LASSO, SVR, DTRM and
IDTRM_CGNN. As can be seen from Table 5, our model has a
good correction effect on the original curve which deviates
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Figure 5: Prediction results based on IDTRM_CGNN. (a) Canada (b) Germany (c) France (d)*eUnited States (e) South Korea (f ) Iran (g)
Spain and (h) Italy.
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greatly. For example, the error of the inflection point of the
COVID-19 epidemic in Canada has been corrected by half a
month. In addition, other curves that deviated less sharply were
also corrected to varying degrees, most of which were closer to
the true inflection point. Compared with those of DTRM and
other statistical models, the predicted inflection points of the
COVID-19 epidemic based on IDTRM_CGNN in most
countries are closer to reality, indicating that IDTRM after
residual correction has higher accuracy and robustness.

In the meantime, IDTRM_CGNN is used to predict the
daily number of confirmed cases for 7 days after April 7,
2020 (2020/04/08–2020/04/15), and the mean absolute
percentage error (MAPE) is used as the performance index,
which is defined by

MAPE �
1
N



N

t�1

|N(t) − N(t)|

N(t)
× 100%. (24)

In general, we can divide the predictive ability of the
model into four levels: high prediction (the error rate is
between 0%–10%), good prediction (the error rate is be-
tween 10%–20%), feasible prediction (the error rate is be-
tween 20%–50%) and poor prediction accuracy (the error
rate > 50%).

*e real number of existing confirmed cases accu-
mulated (ALL(RECC)) in 7 days, the predicted value of
the number of existing confirmed cases (ALL(PECC)) in
7 days and the corresponding MAPE are shown in
Table 6.

Table 6 shows that all MAPEs are within a suitable ac-
curacy range. It is worth mentioning that our model achieves
high prediction accuracies for Canada, the United States,
Spain and Italy, in which their MAPEs are 8.62%, 7.11%,
0.99% and 8.40%, respectively. In addition, the averageMAPE
for the epidemic prediction in all countries is 10.81 %. *is
further validates the effectiveness of IDTRM_CGNN.

4. Conclusions and remarks

Aiming at the shortcomings of the traditional SIR and SEIR
models in which the basic infection number is difficult to
accurately estimate, this paper constructs IDTRM_CGNN to
predict the inflection points and the corresponding number
of existing confirmed cases of the COVID-19 epidemic in
eight countries. *e numerical results show that the model
proposed in this paper has higher prediction accuracy and
robustness. Furthermore, our model can also provide a
certain reference value for countries around the world to
effectively predict and grasp the development trend of the
upcoming wave of the global COVID-19 epidemic.

However, the treatment of various complex influencing
factors in this paper is relatively weak, and it is only ap-
plicable to countries with a monotonically decreasing trend
of the dynamic transmission rate. Due to the characteristics
of the fitting function, in cases with few data,
IDTRM_CGNN is prone to overfitting.

*e future research direction of this paper: Whether
IDTRM_CGNN is universal for other infectious diseases is a
topic worthy of continuing research. In addition, studying the
use of rolling prediction technology to characterize the epidemic
in real time, and performing online correction and updating of
the dynamic transmission rate with the help of data assimilation
methods are also future research directions of this article.
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Table 5: *e inflection point.

Country A.I.P IDTRM_CGNN LASSO SVR DTRM [22]
Canada 2020/05/31 2020/07/16 2020/08/04 2020/07/26 2020/06/14
Germany 2020/04/08 2020/04/14 2020/04/17 2020/04/17 2020/04/21
France 2020/04/16 2020/04/22 2020/04/25 2020/04/24 2020/05/29
*e United States 2020/05/31 2020/05/17 2020/05/27 2020/05/21 2020/05/08
South Korea 2020/03/12 2020/03/14 2020/03/18 2020/03/14 2020/03/20
Iran 2020/04/05 2020/04/16 2020/04/09 2020/04/17 2020/04/15
Spain 2020/04/26 2020/04/11 2020/04/13 2020/04/09 2020/04/16
Italy 2020/04/20 2020/04/10 2020/04/07 2020/04/07 2020/04/20

Table 6: Existing confirmed cases accumulated in 7 days.

Country ALL(RECC) ALL(PECC) MAPE
Canada 108211 117414 8.62 %
Germany 451867 501200 11.42 %
France 608544 522295 14.06 %
*e United States 3123671 2902818 7.11 %
South Korea 21416 18928 11.58 %
Iran 183693 247453 37.85 %
Spain 601975 599185 0.99 %
Italy 690617 631831 8.40 %
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