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In this work, an analysis of thermoelastic, homogeneous, and isotropic microbeams was conducted in the context of the non-
Fourier heat conduction law. 'e first end of the microbeam was based on a graphene strip, which was connected to an electrical
voltage source. Under simple boundary conditions maintained by fixed side ratios, the Lord–Shulman model of generalized
thermoelasticity was applied. 'e microbeam was thermally loaded with a heat source due to the thermal effect of the electrical
current that ran through the strip of graphene. Laplace transformation of the time variable was utilized to solve controlled
differential equations. All the solutions were found in the Laplace transform domain. Tzou’s approximation approach, which relies
on an iteration formula, was used to numerically calculate the Laplace transform inversions. For different values of the electrical
voltage and the resistance of the graphene strip, different graphs were used to show the numerical results.'e electrical voltage and
the electrical resistance were reported to have significant influences on all the studied functions of the microbeam. 'us,
controlling a microbeam’s vibration and energy could be accomplished by tuning the electrical resistance and applied voltage.

1. Introduction

Fourier’s law of heat conduction is the basis for linked
thermoelasticity, which is a type of heat conduction based on
two partial differential equations, one for motion and an-
other for conserving energy [1–3]. In the case of an isotropic
body, Lord and Shulman amended Fourier’s rule of heat
conduction by incorporating the relaxation time into the
equation [4]. Specifically, Cattaneo’s heat conduction, which
is also known as non-Fourier heat conduction law, has been
modified to incorporate both the heat flux and its time
derivative, and it has been considered as a substitute for the
standard Fourier’s law of heat conduction. Accordingly,
there are no infinite propagation problems, as the heat
equation is hyperbolic [5–9].

'e most fundamental type of microbeam resonator is
the vibration microbeam.'ere have been numerous studies
on the vibration and heat transfer processes of microbeams
[10–19]. 'e Green functions and their properties were
utilized by Kidawa-Kulka to investigate the transversal

vibrations caused by a moving heat source and the effects of
internal and external dampening [15]. Manolis and Beskos
used a computational analysis approach to evaluate the
elastic dynamic response of a beam structure to heat loading
[16].

'e investigation of visco-thermoelastic materials, which
are known to often have relaxation properties, has become
increasingly important in mechanics. Biot has written about
the theory of visco-thermoelasticity, as well as vibrational
principles in thermodynamics, among other things [20, 21].
Drozdov developed a constitutive model of the visco-ther-
moelasticity behaviour of polymers when they are subjected
to finite strains [22]. Using a new visco-thermoelasticity
model for isotropic media, Ezzat and El-Karamany inves-
tigated the consequences of relaxation on the volume fea-
tures of viscoelastic materials to study the transversal
vibrations caused by a moving heat source and the effects of
internal and external dampening [23]. A numerical ap-
proach for wave simulations in elastic media was developed
by Carcione et al., and it was based on the Kelvin–Voigt
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mechanical model [24].'e resonance of a microscale visco-
thermoelastic beam and its transverse vibrations were
studied by Grover [25–27]. In addition, an analysis applying
closed-form equations for thermoelastic thin beam trans-
verse vibrations with micro or nanoscale vacancies was
carried out by Sharma and Grover [10]. Using a dual phase-
lagging model, Grover and Seth investigated visco-ther-
moelastic microscale beam resonators [28].

Since the ground-breaking observations of Novoselov
et al., graphene has continued to pique the interest of sci-
entists around the world [29]. 'e electronic properties of
graphene as a single-layer material are intriguing and in-
clude ballistic transport, a quantum Hall effect at ambient
temperature, and a size-dependent band gap, all of which
have the potential to enable new types of microscale elec-
tronic devices and sensors [30].

In this work, for the first time, an analysis for ther-
moelastic, homogeneous, and isotropic microbeams was
conducted in the context of the non-Fourier heat conduction
law when the first end of the microbeam was based on a
graphene strip connected to an electrical voltage. Because of
the thermal effect of the electrical current running on the
graphene strip, the microbeam was thermally loaded with a
heat source. 'e microbeam was electrically isolated using
an electrical isolator with high thermal conductivity, as
shown in Figure 1.

2. Problem Formulation

For a narrow thermoelastic microbeam with length of
ℓ(0≤x≤ ℓ), a width of b(− b/2≤y≤ b/2), and a thickness of
h(− h/2≤ z≤ h/2), we considered the flexural deflections to
be very small.

As shown in Figure 1, the x, y, and z axes of the beam are
specified as the longitudinal, width, and thickness directions
of the beam, respectively.

We considered there was no damping and no stress or
strain, and that the reference temperature T0 was constantly
in an equilibrium condition for the microbeam [5]. At first,
while any plane’s cross section is bent perpendicular to a
beam’s axis (the “neutral surface”), it will remain perpen-
dicular to the beam’s axis and plane, as determined by the
Euler–Bernoulli equation [25]. Consequently, displacement
elements are formed [25, 27, 28, 31]:

u(x, y, z, t) � − z
zw(x, t)

zx
, v(x, y, z, t)

� 0, w(x, y, z, t) � w(x, t).

(1)

'e flexural moment of the cross section and the
equation of motion are given by [25, 27, 28, 31]

M(x, t) � (λ + 2μ)I
z
2
w(x, t)

zx
2 + βMT(x, t). (2)

'e above equation contains the thermal moment MT

about the beam axis, the elastic term due to the vibration of
the beam z2w(x, t)/zx2, and the total flexural moment of the

cross section of the beam, where the equation of motion is in
the following form [25, 27, 28, 31]:

z
2
M(x, t)

zx
2 + ρA

z
2
w(x, t)

zt
2 � 0. (3)

'e thermal moment of the microbeam’s x-axis, MT, is
calculated using [25–28, 31, 32]

MT(x, t) � b 
h/2

− h/2
T(x, z, t)zdz, (4)

where I � bh3/12 denotes the cross-sectional moment of
inertia about the x-axis, λ and μ are the elastic constants, ρ is
the density, A is the cross-sectional area, and
β � (3λ + 2μ)αT.

'erefore, the equation of motion that results in lateral
vibrations of the microbeam due to thermally induced vi-
brations has the following form [25]:

(λ + 2μ)I
z
4
w(x, t)

zx
4 + ρA

z
2
w(x, t)

zt
2 + β

z
2
MT(x, t)

zx
2 � 0. (5)

'e cross-sectional area is given by A � hb.
'e heat conduction equation of Lord–Shulman has the

following form [25]:

z
2
T(x, z, t)

zx
2 +

z
2
T(x, z, t)

zz
2 �

z

zt
+ τ

z
2

zt
2 

ρCυ

K
T(x, z, t) +

βT0

K
e(x, z, t)  − 1 + τ

z

zt
 

Q(x, z, t)

K
,

(6)

where τ is the thermal relaxation time parameter, Cυ is the
specific heat at a constant strain, Q is the heat source, and K

is the thermal conductivity.
'e cubical dilatation (volumetric strain) has the fol-

lowing form:

e(x, z, t) �
zu(x, z, t)

zx
+

zv(x, z, t)

zy
+

zw(x, z, t)

zz
. (7)

'us, from (1), we have

e(x, z, t) � − z
z
2
w(x, t)

zx
2 . (8)

We then obtain

σxx(x, z, t) � (λ + 2μ)e(x, z, t) − βθ(x, z, t). (9)

Since there is no heat transfer at the upper and bottom
sides of the beam, zT(x, z, t)/zz|z�±h/2 � 0. As a result, we
may assume that the temperature relies on the function of
sin(pz) in the direction of the beam’s thickness, where
p � π/h, which yields [33]

θ(x, z, t) � T(x, z, t) − T0 � ϑ(x, t)sin(pz), (10)

Q(x, z, t) � q(x, t)sin(pz). (11)

'e temperature increment is maintained at θ(x, z, t).
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As a result of incorporating (4), (5), and (10), the fol-
lowing result was obtained:

z
4
w(x, t)

zx
4 +

12ρ
h
2
(λ + 2μ)

z
2
w(x, t)

zt
2 +

12β
h
3
(λ + 2μ)

z
2ϑ(x, t)

zx
2 

h

2
−
h

2

sin(pz)z dz � 0. (12)

By using (6) and (10), we obtained

z
2ϑ(x, t)

zx
2 − p

2ϑ(x, t) sin(pz) �
z

zt
+ τ

z
2

zt
2  εϑ(x, t)sin(pz) +

T0β
K

z
z
2
w(x, t)

zx
2  − 1 + τ

z

zt
 

q(x, t)

K
sin(pz), (13)

where ε � ρCυ/K.
(12) has the following form when the integrations have

been concluded:

z
4
w(x, t)

zx
4 +

12ρ
h
2
(λ + 2μ)

€w (x, t) +
24β

hπ2(λ + 2μ)

z
2ϑ(x, t)

zx
2 � 0.

(14)

After multiplying both sides by z and integrating z from
(− h/2)to(h/2) in (13), we obtained

z
2ϑ(x, t)

zx
2 − p

2ϑ(x, t) �
z

zt
+ τ

z
2

zt
2  εϑ(x, t) −

T0hπ
2β

24K

z
2
w(x, t)

zx
2  − 1 + τ

z

zt
 

q(x, t)

K
. (15)

(9) takes the following form:

σxx � (λ + 2μ)e − βϑ sin(pz). (16)

'e non-dimensional variables specified below were
utilized [21]:

x′, w′, h′(  � εc0(x, w, h), t′, τ′(  � εc20(t, τ), σ′ �
σ

λ + 2μ
, ϑ′ �

ϑ
T0

, q′ �
q

T0Kε2c20
, c

2
0 �

λ + 2μ
ρ

. (17)

Following that, we obtained

h/2

b/2 
ℓ

Graphene strip Electrical insulator with
high thermal conductivity

Rectangular thermoelastic
microbeam

V

x

Re

z

y

θ (0, t) = 0
w (0, t) = w'' (0, t) = 0

θ (ℓ, t) = 0
w (ℓ, t) = w'' (ℓ, t) = 0

Figure 1: Rectangular thermoelastic microbeam based on a strip of graphene.
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z
4
w(x, t)

zx
4 + ε1 €w (x, t) + ε2

z
2ϑ(x, t)

zx
2 � 0, (18)

z
2ϑ(x, t)

zx
2 − ε3ϑ(x, t) �

z

zt
+ τ

z
2

zt
2  ϑ(x, t) − ε4

z
2
w(x, t)

zx
2  − 1 + τ

z

zt
 q(x, t), (19)

σxx(x, z, t) � e(x, z, t) − ε5ϑ(x, t)sin(pz), (20)

where ε1 � 12/h2, ε2 � 24βT0/hπ2(λ + 2μ), ε3 � p2,

ε4 � π2hβ/24Kε, and ε5 � βT0/(λ + 2μ) (the primes have
been dropped for convenience).

Laplace transform with the following definition was
applied:

f(x, s) � 
∞

0
f(x, t)e

− st
dt . (21)

'e Laplace transform’s inverse is expressed as [34]

L
− 1

(f(s)) � f(t) ≈
e
κt

t

1
2

f(κ) + Re 
N

n�1
(− 1)

n
f κ +

inπ
t

 ⎡⎣ ⎤⎦.

(22)

Many investigations have verified that the value of the
parameter κ would fit the relationship κt ≈ 4.7 [34], to
ensure a faster convergence, where “Re” denotes the real
elements and “i” denotes the imaginary number unit.

Equations (18)–(20) then take the following forms:

d
4
w

dx
4 + ε1s

2
w + ε2

d
2ϑ

dx
2 � 0,

d
2ϑ

dx
2 − ε3ϑ � s + τs

2
  ϑ − ε4

d
2
w

dx
2  − (1 + τs)q,

σxx � e − ε5ϑ sin(pz),

(23)

e � − z
d
2
w

dx
2 . (24)

Consider an electrical current connected to the strip of
graphene, which has an electrical resistance Re(Ω), where
the graphene strip is attached at the starting end of the
microbeam, as shown in Figure 1. 'e beam is subjected to
specific heating resulting from the thermal effect caused by
the connection of the graphene strip to an electric voltage
source (Joule’s equation of electrical heating) V(V).

'e heat flux is then calculated using Joule’s equation of
electrical heating as follows [29]:

q(x, t) �
V

2

Re

t, (25)

where V is the voltage and Re is the electrical resistance.
'en, after using the Laplace transform, we have

q �
V

2

Res
2, (26)

which gives

d
2ϑ

dx
2 − ε3ϑ � s + τs

2
  ϑ − ε4

d
2
w

dx
2  −

(1 + τs)V
2

s
2
Re

. (27)

We can then rewrite equations (23) and (24) in the
following forms:

D
4

+ ε1s
2

 w + ε2D
2ϑ � 0, (28)

ε4 s + τs
2

 D
2
w + D

2
− ε3 + s + τs

2
  ϑ � −

(1 + τs)V
2

s
2
Re

,

(29)

where Dr � dr/dxr.
By elimination between (28) and (29), we obtain

D
6

− LD
4

+ MD
2

− N w � 0, (30)

D
6

− LD
4

+ MD
2

− N ϑ � − ψ, (31)

where L � ε2ε4(s + τs2) + (ε3+ s + τs2), M � ε1s2, N �

ε1s2(ε3 + s + τs2), and ψ � ε1(1 + τs)V2/Re.
'e general solution of (30) is as follows:

w � 
3

j�1
Aj sin h kj(ℓ − x) . (32)

'e general solution of equation (33) is as follows:

ϑ �
ψ
N

+ 
3

j�1
Bj sin h kj(ℓ − x) . (33)

To obtain the relationship between the parameters Aj

and Bj, we use the relationship in (28), which gives

K
4
j + ε1s

2
 Aj + ε2K

2
jBj � 0, j � 1, 2, 3. (34)

We then have

ϑ �
ψ
N

−
1
ε2



3

j�1

K
4
j + ε1s

2
 

K
2
j

Aj sin h kj(ℓ − x) . (35)

'e boundary conditions were
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3

j�1
Aj sinh kjℓ  � 0, (36)



3

j�1
k
2
jAj sinh kjℓ  � 0, (37)



3

j�1

K
4
j + ε1s

2
 

K
2
j

Aj sinh kjℓ  �
ε2ψ
N

. (38)

By solving equations (38)–(40), we obtained the pa-
rameters A1, A2, A3 as follows.

A1 � ε2ψ/ε1s2(k2
1 − k2

2)(k2
1 − k2

3)sinh(k1ℓ), A2 � ε2ψ/
ε1s2(k2

2 − k2
1)(k2

2 − k2
3)sinh(k2ℓ), and A3 � ε2ψ/ε1s2(k2

3 −

k2
1)(k23 − k2

2)sinh(k3ℓ).

'is completes the solution of the Laplace transform
domain.

'e lateral deflection function is as follows:

w(x, s) �
ε2ψ
ε1s

2

sinh k1(ℓ − x)( 

k
2
1 − k

2
2  k

2
1 − k

2
3 sinh k1ℓ( 

+

sinh k2(ℓ − x)( 

k
2
2 − k

2
1  k

2
2 − k

2
3 sinh k2ℓ( 

+

sinh k3(ℓ − x)( 

k
2
3 − k

2
1  k

2
3 − k

2
2 sinh k3ℓ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

'e temperature increment function is as follows:

θ(x, s) �
ψ sin(pz)

ε1s
2 ε3 + s + τs

2
 

+
ε2ψ sin(pz)

ε1s
2

K
4
1 + ε1s

2
 sinh k1(ℓ − x)( 

K
2
1 k

2
1 − k

2
2  k

2
1 − k

2
3 sinh k1ℓ( 

+

K
4
2 + ε1s

2
 sinh k2(ℓ − x)( 

K
2
2 k

2
2 − k

2
1  k

2
2 − k

2
3 sinh k2ℓ( 

+

K
4
3 + ε1s

2
 sinh k3(ℓ − x)( 

K
2
3 k

2
3 − k

2
1  k

2
3 − k

2
2 sinh k3ℓ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

From (24) and (39), we obtained the deformation in the
following form:

e(x, z, s) �
− zε2ψ
ε1s

2

k
2
1 sinh k1(ℓ − x)( 

k
2
1 − k

2
2  k

2
1 − k

2
3 sinh k1ℓ( 

+

k
2
2 sinh k2(ℓ − x)( 

k
2
2 − k

2
1  k

2
2 − k

2
3 sinh k2ℓ( 

+

k
2
3 sinh k3(ℓ − x)( 

k
2
3 − k

2
1  k

2
3 − k

2
2 sinh k3ℓ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

'e strain-energy density function through the micro-
beam is given by [35–37]

ϖ(x, z, t) � 
3

i,j

1
2
σij(x, z, t)eij(x, z, t) �

1
2
σ(x, z, t)e(x, z, t).

(42)

3. Numerical Results and Discussion

As copper is a thermoelastic material, the following physical
constants were utilized to describe the material [27, 38–40]:
ρ � 8954 kgm− 3, αT � 1.78 (10)− 5 K− 1, k � 386Wm− 1K− 1,

λ � 77.6 × 109 Nm− 2, τ0 � 4.32 × 10− 13s, Cυ � 383.1 Jkg− 1

K− 1, T0 � 300K, and μ � 38.6 × 109 Nm− 2.
'e resistance of the graphene at the microscale has the

value Re � 500Ω [30].
'e microbeam’s aspect ratios were set at ℓ/h � 8 and

b � h/2. However, a microbeam length range of
ℓ(1 − 100) × 10− 6m was used, while the original time t and
the relaxation time τ0 were on the scale of 10− 12 and 10− 14 s,
respectively.

'e dimensionless variables for microbeam length
ℓ � 1.0, θ0 � 1.0, z � h/4, and t � 1.0 were used to generate
the figures.

'e numerical results of the problem have been illus-
trated in two groups of figures. 'e first group shows the
distributions of the vibration (lateral deflection), cubical
deformation, temperature increment, stress, and strain-
energy density when the electrical resistance of strip of the
graphene was constant and had the value Re � 500Ω with
three different values of the electrical voltage
V � (10, 11, 12)V. 'e second group represents the dis-
tributions of the same functions when the value of the
electrical voltage was constant at a value of V � 10V but with
three different values of electrical resistance,
Re � (500, 600, 700)Ω.

Figure 2 shows that the value of the electrical voltage had
a considerable impact on the distributions of vibration
(lateral deflection), temperature increment, cubical
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deformation, stress, and strain-energy density. An increase
in the value of the electrical voltage led to an increase in the
temperature increment and the absolute values of vibration
(lateral deflection), cubical deformation, stress, and strain-
energy density.

In Figure 2(a), the three curves show that the value of the
temperature increment increased sharply for a distance of
not more than 0.1 due to the thermoelectrical effect at this

end; then, the curves entered a stage of stability until the end
but with different values, depending on the voltage value. In
Figures 2(b), 2(c), and 2(e), the value of the peak point in
each curve increased as the value of the voltage increased.
Along the x-axis, the values of the peak points decreased as
the distance x increased. In Figure 2(d), each curve of the
stress curves had only one peak point, and their absolute
values increased when the voltage value increased.
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Figure 3: (a) 'e distribution of the temperature increment with different values of resistance. (b) 'e distribution of the vibration with
different values of resistance. (c) 'e distribution of the cubical deformation with different values of resistance. (d) 'e distribution of the
stress with different values of resistance. (e) 'e distribution of the strain-energy density with different values of resistance.
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'e distributions of temperature increment, vibration
(lateral deflection), cubical deformation, stress, and strain-
energy density were all significantly affected by the electrical
resistance value, as shown in Figure 3. 'e temperature
increment and the absolute values of vibration (lateral de-
flection), cubical deformation, stress, and strain-energy
density decreased with an increase in the electrical
resistance.

Figure 3(a) shows that the value of temperature incre-
ment increased sharply for a distance of not more than 0.1
due to the thermoelectrical effect at this end; then, the curves
progressed to the stage of stability until the end, but with
different values depending on the value of electrical resis-
tance. Figures 3(b), 3(c), and 3(e) show that the value of the
peak point in each of the three curves decreased as the value
of electrical resistance increased. 'e values of the peak
points decreased with an increase in the distance x along the
x-axis. Figure 3(d) shows that the stress curves had one peak
point, and their absolute values reduced as the electrical
resistance increased.

'us, we can say that the electrical resistance could be
used to tune the vibration as well as the energy which has
been generated along the microbeam.

4. Conclusions

Non-Fourier heat conduction was used to analyse ther-
moelastic microbeams in this study. An electrical voltage
source was connected to the graphene strip at the initial end
of the microbeam. 'e Lord–Shulman model of generalized
thermoelasticity was applied. As a result of the electrical
current running in a strip of graphene, the microbeam was
thermally loaded.

In all the functions studied, electrical voltage and elec-
trical resistance were found to have a significant impact. 'e
temperature increment and the absolute values of the vi-
bration (lateral deflection), cubical deformation, stress, and
strain-energy density increased as the electrical voltage in-
creased. With increasing electrical resistance, the tempera-
ture and the absolute values of vibration (lateral deflection),
cubical deformation, stress, and strain-energy density in-
creased. 'us, the electrical voltage and resistance of the
graphene strip might be utilized as a tuner to control the
vibration and energy of a microbeam.

In general, the results agree with the results in other
papers such as references [10, 13, 16, 25, 28, 35]. In the future
work, electrical voltage as a heat source will be applied on
different types of beams and in the context of different types
of heat conduction laws.
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