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�is paper considers the emergency ordering strategy for the classical economic ordering quantity inventory system with a supply
disruption. For situations where the ending time of supply disruption is stochastic and the purchase price increases over time
during that period, we develop an emergency ordering optimization model based on maximizing retailer’s pro�ts. �rough
modeling analysis in various situations, the closed-form solution of the model is obtained, and the optimal emergency ordering
strategy is provided for retailers. Numerical experiments verify the e�ectiveness of the model and the in�uence of related
parameters on the optimal ordering strategy.

1. Introduction

With the development of global market economy, enterprises
will face various risks such as capital chain rupture, demand
disruption, supply disruption, and legal risk. Among these,
supply disruption is a common risk which may bring larger
loss to enterprises [1, 2]. It is reported that Renesas Electronics
Co., for example, is likely to suspend production for at least
three months after a �re on March 19, 2021, at its semi-
conductor plant [3]. As a supplier of automotive chips, the
Renesas Electronics Co. has a global market share of about
30% in microcontrol unit chips for vehicles. �is means that
the original car chip shortage will be intensi�ed after the �re
chip shortage due to the new energy vehicle production
capacity increase. Recently, the global supply chain was
disrupted during the COVID-19 pandemic, and by the time it
subsided, it had su�ered a shock and remained vulnerable [4].
Due to the large loss caused by the supply disruption to each
member in the supply chain especially the downstream en-
terprises, the supply disruption received much attentions of
researchers’ [5–14].

In order to reduce the risk of supply interruption,
Hendricks et al. [15] put forward some risk reduction sug-
gestions, such as improving prediction accuracy, synchronous
planning and implementation, shortening delivery cycle,

working with partners, and related investments. Hopp et al.
[16] elaborated on a measure that focuses on the risks that
may occur throughout the supply chain structure and planned
for potential disruptions from the recovery process. Skipper
and Hanna [17] examined the relationship between some
attributes and �exibility of the emergency response planning
process and investigated a strategic approach to emergency
response planning to reduce the risk of the supply disruption.
Xu et al. [18] introduced the CVaR measure to hedge against
the risks for the loss-averse newsvendor. Huang et al. [19]
considered centralized and decentralized dual-channel supply
chains in the case of demand disruptions to guarantee the
robustness of optimal output in the event of demand dis-
ruptions. Sawik and Tadeusz [20] studied the supply chain
with the risk of the optimal selection and protection under
supply disruption, established a mixed integer programming
method by combining risk neutral with risk avoidance or
average risk supply, and obtained a risk conditional value to
control the loss caused by supply disruption risk.

To reduce the losses caused by the supply disruption, as a
remedial measure, the emergency order is taken into con-
sideration. For an inventory system with random demand
and with stochastic product supply disruption, Risa and
Croix [6] o�ered retailers the best rush order strategy. When
the occurrence time of supply interruption is subject to a
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certain probability distribution and the ending time of
supply interruption is determined, Xu et al. [21] studied the
optimal order quantity in the loss-averse newsvendor model
with backordering. Huang et al. [22] established an emer-
gency order optimization model based on minimizing the
inventory cost. Xu et al. [23] studied the optimal option
purchase of a loss-averse retailer under emergent replen-
ishment. Xia et al. [24] considered the supply interruption
management problem of inventory model with a loss
function and provided the retailer with the optimal emer-
gency replenishment strategy.

�is paper considers the retailer’s emergency ordering
strategy during supply interruption such that the recovery
time of supply interruption is stochastic and the purchasing
price rises with the time during the period. For this problem,
if the retailer places a larger rush order, the retailer would be
su�ered certain loss of pro�ts if the supply disruption is
ended at an earlier time; if the retailer makes a small
emergency procurement, then the retailer would make a
second emergency order with a higher purchase price when
the supply disruption is ended at a later time. �erefore, the
retailer should determine the best time to order urgent
orders and the number of urgent orders to maximize his
pro�ts during supply disruption period.

�e problem considered in this paper happens in reality.
For instance, on March 23, 2021, an accident occurred when
a super large gold class container ship named “Ever Given”
passed through the Suez Canal which resulted in the total
paralysis of the transportation of the Suez Canal. As the
canal is the main channel between Asia, Europe, and Africa,
the accident led to the supply interruption in many parts of
the world. As for the time of channel restoration, it ranges
from one or two days to one month from outside news. Six
days later, the “Ever Given” was still in a single channel,
blocked obliquely. Fortunately, on March 29, the shallowing
operation of the container ship was successful, and the
blockage of the Suez Canal was solved [25].

�e rest of this paper is arranged as follows. Section 2
gives relevant symbols and assumptions on the problems
considered in this paper. Section 3 establishes an optimization
model based on retailer’s pro�t maximization. Section 4
solves the optimization model and gives the retailer’s optimal
emergency order strategy. Section 5 conducts some numerical
analyses and veri�es the in�uence of relevant parameters on
the model. �e last section draws some conclusions.

2. Notation and Assumptions

For the concerned problem, we assume that the planning
horizon of the mechanism is in�nite and the demand is stable.
As for the supply interruption, we assume that the end time te
is random, but the cut o� time for the end of the event is
deterministic. �at is, the event end time obeys a certain
probability distribution within [0, T]. Further, we assume that
shortage is not allowed during the supply disruption and the
retailer’s purchasing price increases with the time during the
period. For the inventory system, when the supply disruption
happens, the remaining inventory Q0 will be depleted after
certain period. �e time is denoted by t0. Due to the supply

disruption, the retailer may place one or two emergency
orders during the supply disruption period, see Figures 1 and
2. Certainly, when the event is ended, then the ordering policy
would turn into the classical economic ordering quantity
policy when the emergency order is depleted. In order to
maximize the retailer’s expected pro�ts, the retailer should
determine the optimal timing and volume of emergency
replenishment. To do this, we need the following notation and
associated assumptions in Table 1.

For this model, we have the following assumptions:

(1) �e demand is stable throughout the planning pe-
riod, and no shortage is allowed;

(2) �e leading time of each emergency order is zero;
(3) At most two emergency orders are made during the

supply disruption period;
(4) �e ending time of the supply interruption follows

the uniform distribution with probability density
function ϕ(te) � 2(te − t0)/(T − t0)

2 for te ∈ [t0, T];
(5) �e retailer’s purchasing price of the items linearly

increases with time during the event period, i.e., the
purchasing price is C(t) � c0 + τt where c0 > c, τ > 0
and t ∈ [0, te].

3. Mathematical Formulation

For a related inventory system, due to the demand rate of
t ∈ [0, te]λ, the retailer’s remaining inventory Q0 at the

Qd
Q0

td t0 te T

λ

O

Figure 1: Make one emergency order.

Qd1

td1
t0 td2

te T

Qd2 λ

Q0

O

Figure 2: Second emergency order before te.
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beginning will be exhausted at t0 � Q0/λ. As a remedy to the
supply disruption, the retailer would make emergency orders
during the period. Hence, we break the discussion into two
cases.

Case 1. �e retailer makes one emergency order.
In this case, since the shortage is not allowed and the

deadline time of supply disruption is T, and the retailer should
place a rush order at or before t0 with quantity Qd � λT − Q0;
see Figure 1. Because the end time of this event is stochastic in
[t0, T], then the retailer’s inventory pro�t in [0, T] is as follows:

f1 td( ) �(b − c)Q0 + b − C td( )( )Qd −
hQ2

0
2λ

− K − hQd
Q0

λ
− td( ) −

h λ T − Q0/λ( )( )2

2λ
.

(1)

where the �rst two terms are gross pro�ts, the third item is
the holding cost of the remaining inventory Q0, and the
remaining three items are the inventory cost of emergency
replenishment [26].

For this emergency ordering policy, as the recovery time
of the events obeys uniform distribution, that is, the
probability density function ϕ(te) � 2(te − t0)/(T − t0)

2 for
te ∈ [t0, T], so the retailer’s expected inventory pro�ts in
[0, T] are as follows:

F1 td( ) �∫
T

t0
f1 td( )ϕ te( )dte

�(b − c)Q0 + b − c0 − τtd( ) λT − Q0( )

−
hQ2

0
2λ

− K − h λT − Q0( )
Q0

λ
− td( ) −

h λT − Q0( )2

2λ
.

(2)

Case 2. �e retailer makes two emergency orders.
For this strategy, if the supply interruption ending time te

ends after td2, i.e., td2 < te, and the retailer would make the
�rst emergency replenishment at td1 with size Qd1 and make
the second emergency order at td2 with size Qd2, see Figure 2.
According to the assumptions imposed on the model, it holds
that Qd1 + Qd2 � λT − Q0 and t0 + Qd1/λ � td2. �us, the
retailer’s inventory pro�t in [0, T] for this case is as follows:

f21 td1, Qd1( ) �(b − c)Q0 + b − C td1( )( )Qd1

+ b − C t0 +
Qd1
λ

( )( ) λT − Q0 − Qd1( )

−
hQ2

0
2λ

− 2K − hQd1 t0 − td1( ) −
hQ2

d1
2λ

−
h λT − Q0 − Qd1( )2

2λ
,

(3)

where the �rst three terms are the gross pro�ts, the fourth
item is the holding cost of remaining inventory Q0, and
remaining items are inventory cost of emergency
replenishment.

For the emergency ordering policy, if the supply dis-
ruption is ended after td1 but before td2, i.e., td1 < te < td2,
then one emergency order su¬ces and the inventory system
returns to the classical EOQ model when the emergency
order is depleted; see Figure 3. �us, the retailer’s inventory
pro�t in [0, T] for this case is as follows:

f22 td1, Qd1( ) �(b − c)Q0 + b − C td1( )( )Qd1

+(b − c)λ T − t0 −
Qd1
λ

( ) − K

−
hQ2

0
2λ

− hQd1 t0 − td1( ) −
hQ2

d1
2λ

−
�����
2λKh

√ T − t0 − Qd1/λ
λ

.

(4)

For this emergency ordering policy, as the recovery time
of the events obeys uniform distribution, that is, the
probability density function ϕ(te) � 2(te − t0)/(T − t0)

2 for
te ∈ [t0, T], so the retailer’s expected inventory pro�t in
[0, T] is as follows:

Table 1: Notations.

Symbol Description
K Fixed order cost
λ Demand rate
h Holding cost per unit time per unit
b Selling price
c Normal purchase price
Q0 Remaining inventory when supply disruption occurs
t0 �e time when remaining inventory Q0 is depleted
te Ending time of supply interruption
T �e deadline of ending time of supply interruption

td
�e emergency ordering time under one-emergency-

order policy

Qd
�e emergency ordering quantity under one-emergency-

order policy

td1
�e �rst emergency ordering time under two-

emergency-order policy
td2 �e second emergency ordering time

Qd1
�e �rst emergency ordering quantity under two-

emergency-order policy

Qd2
�e second emergency ordering quantity under two-

emergency-order policy
∗ Indicates the optimal value

Qd1

td1
t0 td2

te T

QEOQ
λ

Q0

O

Figure 3: Second emergency order after te.
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F2 td1, Qd1( 􏼁 � 􏽚
td2

t0

f22 td1, Qd1( 􏼁ϕ te( 􏼁dte + 􏽚
T

td2

f21 td1, Qd1( 􏼁ϕ te( 􏼁dte

� (b − c)Q0 + b − c0 − τtd1( 􏼁Qd1 −
hQ

2
0

2λ
− hQd1 t0 − td1( 􏼁 −

hQ
2
d1

2λ
􏼢 􏼣

+
Q

2
d1

λ2 T − t0( 􏼁
2 (b − c)λ T − t0 −

Qd1

λ
􏼒 􏼓 − K −

�����
2λKh

√ T − t0 − Qd1/λ( 􏼁

λ
􏼢 􏼣

+
λT − Q0 − Qd1( 􏼁 λT − Q0 + Qd1( 􏼁

λ2 T − t0( 􏼁
2 − 2K −

h λT − Q0 − Qd1( 􏼁
2

2λ
􏼢

+ b − c0 − τ t0 +
Qd1

λ
􏼒 􏼓􏼒 􏼓 λT − Q0 − Qd1( 􏼁􏼣.

(5)

According to the above discussion, we can obtain the
following optimization model of the concerned problem:

max F1 td( 􏼁, F2 td1, Qd1( 􏼁􏼈 􏼉,

s.t.0≤ td ≤ t0,

0≤ td1 ≤ t0,

t0 < td2 <T,

Qd1 + Qd2 � λT − Q0,

0≤Qd1 ≤ λT − Q0.

(6)

In the next section, we will find the closed-form solution
for the model and provide the retailer with the optimal
emergency ordering policy.

4. Model Solution

For optimization problem (1), from the formation of the
objective function, we know that the problem can be divided
into the following two optimization problems:

maxF1 td( 􏼁

s.t. 0≤ td ≤ t0
(7)

maxF2 td1, Qd1( 􏼁,

s.t.0≤ td1 ≤ t0,

t0 < td2 <T,

Qd1 + Qd2 � λT − Q0,

0≤Qd1 ≤ λT − Q0,

(8)

which, respectively, correspond to the ordering policy with
one emergency order and that with two emergency orders.

For the ordering policy with one emergency order, for
optimization model (2), we have the following conclusions.

Theorem 1. For the emergency ordering policy with one
emergency order, the optimal emergency ordering time is t∗d �

0 or t∗d � t0.

Proof. From the assumptions on the model and the dis-
cussion in Section 3, if one emergency order is made be-
tween the event period, then the retailer’s expected inventory
profits are as follows:

F1 td( 􏼁 � (b − c)Q0 + b − c0 − τtd( 􏼁 λT − Q0( 􏼁 −
hQ

2
0

2λ

− K − h λT − Q0( 􏼁
Q0

λ
− td􏼒 􏼓 −

h λT − Q0( 􏼁
2

2λ
.

(9)

which is a linear function with respect to td. (us, the
maximum of the profit is reached at the end points of interval
[0, t0]. (at is, if (h − τ)(λT − Q0)> 0, the objective function
is monotonically increasing with respect to td in [0, t0], and
the maximum of function is reached at t0; otherwise, the
maximum of function F1(td) in [0, t0] is reached at 0.

For the ordering policy with two emergency orders, for
optimization model (3), we have the following
conclusions. □

Theorem 2. For the emergency ordering policy with two
emergency orders, the first emergency order is either placed at
td1 � 0 with quantity

Q
∗
d1 �

−
p

s
, if A � B � 0, −

p

s
> 0, F2 0, −

p

s
􏼒 􏼓>max F2(0, 0), F2 0, λT − Q0( 􏼁( 􏼁;

Qd1, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2(0, 0)<F2 0, Qd1( 􏼁;

Q12, if Δ< 0, 0<Q12 ≤ λT − Q0, F2 0, Q12( 􏼁>max F2(0, 0), F2 0, λT − Q0( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

4 Mathematical Problems in Engineering



and the second emergency order is placed at td2 � t0 +

Q∗d1/λ with quantity Qd2 � λT − Q0 − Q∗d1, or the first
emergency order is placed at td1 � t0 with quantity.

Q
∗
d1 �

−
p

s
, if A � B � 0, −

p

s
> 0, F2 t0, −

p

s
􏼒 􏼓>max F2 t0, 0( 􏼁, F2 t0, λT − Q0( 􏼁( 􏼁;

Qd1, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2 t0, 0( 􏼁<F2 t0, Qd1( 􏼁;

Q12, if Δ< 0, 0<Q12 ≤ λT − Q0, F2 t0, Q12( 􏼁>max F2 t0, 0( 􏼁, F2 t0, λT − Q0( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Moreover, the second emergency order is placed at td2 �

t0 + Q∗d1/λ with quantity Qd2 � λT − Q0 − Q∗d1. Here,
Qd1 � − s − (

��
Y3

√
1 +

���
Y2

3
􏽰

)/3r,
Q12 � 1/3r(− s +

��
A

√
(cos θ/3 −

�
3

√
sin θ/3)),

r �
2h

λ3 T − t0( 􏼁
2, s � −

3 b − c0( 􏼁λ −
�����
2λKh

√
− h λT − Q0( 􏼁( 􏼁

λ3 T − t0( 􏼁
2 ,

p �
4K

λ2 T − t0( 􏼁
2 +

2 b − c0( 􏼁λ −
�����
2λKh

√
( 􏼁

λ2 T − t0( 􏼁
+
2τ
λ

, q �
h λT − Q0( 􏼁

3

λ3
T − t0( 􏼁

2
+
2τQ0

λ
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A � s
2

− 3rp,

B � sp − 9rq,

C � p
2

− 3sq,

Δ � B
2

− 4AC,

θ � arccos
2As − 3rB

2
���
A

3
􏽰􏼠 􏼡,

Y1 � As +
3r

2
− B +

��������

B
2

− 4AC

􏽱

􏼠 􏼡,

Y2 � As +
3r

2
− B −

��������

B
2

− 4AC

􏽱

􏼠 􏼡.

(12)

To show the conclusion, we need the Shengjin formula for
to univariate cubic equation [27].

Lemma 1. For cubic equation a3x
3 + a2x

2 + a1x + a0 � 0
with a3 > 0, set A1 � a2

2 − 3a3a1, A2 � a2a1 − 9a3a0,
A3 � a2

1 − 3a2a0. If A1 � A2 � 0, the equation has a triple real
root: x1 � x2 � x3 � − a1/a2; if Δ � A2

2 − 4A1A3 > 0, the
equation has one real root: x � − a2 − (

���
X1

3
􏽰

+
���
X2

3
􏽰

)/3a3,

where X1 � A1a2 + 3a3/2(− A2 +

����������

A2
2 − 4A1A3

􏽱

), X2 �

A1a2 + 3a3/2(− A2 −

����������

A2
2 − 4A1A3

􏽱

); if Δ � A2
2 − 4A1A3 � 0,

it has two real roots x1 � − a2/a3 + A2/A1, x2 � x3 �

− A2/2A1; and if Δ � A2
2 − 4A1A3 < 0, it has three real

roots x1 � − 1/3a3(a2 + 2
���
A1

􏽰
cos θ/3), x2 � 1/3a3(− a2 +

���
A1

􏽰
(cos θ/3 +

�
3

√
sin θ/3)), x3 � 1/3a3(− a2 +

���
A1

􏽰
(cos θ/3 −

�
3

√
sin θ/3)), where θ � arccos(2A1a2 −

3a3A2/2
���

A3
1

􏽱

).

Proof. From the assumptions on the model and the dis-
cussion above, then the retailer’s expected inventory profits
in [0, T] are as follows:
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F2 td1, Qd1( 􏼁 � 􏽚
td2

t0

f22 td1, Qd1( 􏼁ϕ te( 􏼁dte + 􏽚
T

td2

f21 td1, Qd1( 􏼁ϕ te( 􏼁dte

� (b − c)Q0 + b − c0 − τtd1( 􏼁Qd1 −
hQ

2
0

2λ
− hQd1 t0 − td1( 􏼁 −

hQ
2
d1

2λ
􏼢 􏼣

+
Q

2
d1

λ2 T − t0( 􏼁
2 (b − c)λ T − t0 −

Qd1

λ
􏼒 􏼓 − K −

�����
2λKh

√ T − t0 − Qd1/λ( 􏼁

λ
􏼢 􏼣

+
λT − Q0 − Qd1( 􏼁 λT − Q0 + Qd1( 􏼁

λ2 T − t0( 􏼁
2 − 2K −

h λT − Q0 − Qd1( 􏼁
2

2λ
+ b − c0 − τ t0 +

Qd1

λ
􏼒 􏼓􏼒 􏼓 λT − Q0 − Qd1( 􏼁􏼢 􏼣.

(13)

(en, the optimization problem (3) can be written as
follows:

maxF2 td1, Qd1( 􏼁,

s.t.0≤ td1 ≤ t0,

0≤Qd1 ≤ λT − Q0.

(14)

To solve the problem, we first consider the following
optimization problem with respect to td1

maxF2 td1, Qd1( 􏼁,

s.t.0≤ td1 ≤ t0,

t0 < td2 <T.

(15)

And then solve the optimization problem with respect to
Qd1

maxF2 td1, Qd1( 􏼁,

s.t.0≤Qd1 ≤ λT − Q0,

Qd1 + Qd2 � λT − Q0.

(16)

For problem (4), since the objective is a linear function
with respect to td1, we discuss it in two cases.

Case I. If zF2(td1, Qd1)/ztd1 > 0, then the objective
function F2(td1, Qd1) is monotonically increasing with
respect to td1 in [0, t0], so the maximum of the objective
function in [0, t0] is reached at t0.
Case II. If zF2(td1, Qd1)/ztd1 < 0, then the objective
function F2(td1, Qd1) is monotonically decreasing in
[0, t0], and the maximum of the objective function is
reached at 0.

Now, consider optimization problem (5). Computing the
derivative of the objective function yields the following:

zF2 td1, Qd1( 􏼁

zQd1
�

2h

λ3 T − t0( 􏼁
2Q

3
d1 −

3 b − c0( 􏼁λ −
�����
2λKh

√
− h λT − Q0( 􏼁( 􏼁

λ3 T − t0( 􏼁
2 Q

2
d1

+
4K

λ2 T − t0( 􏼁
2 +

2 b − c0( 􏼁λ −
�����
2λKh

√
( 􏼁

λ2 T − t0( 􏼁
+
2τ
λ

⎛⎝ ⎞⎠Qd1 +
h λT − Q0( 􏼁

3

λ3
T − t0( 􏼁

2
+
2τQ0

λ

� rQ
3
d1 − sQ

2
d1 + pQd1 + q,

(17)

which is a cubic function of Qd1. In order to solve the root of
the univariate cubic equation zF2(td1, Qd1)/zQd1 � 0, that is,
the derivative zero of the objective function, we discuss the
following cases.

Case 1. A�B� 0. In this case, the equation zF2(td1,

Qd1)/zQd1 � 0 has a triple real root Qd1 � − p/s. Fur-
ther, if r> 0 and − p/s< 0, then function F2(td1, Qd1)

increases with the increase of Qd1 in [0, +∞), and the
maximum of the objective function F2(td1, Qd1) is

reached at λT − Q0; if r> 0 and − p/s> 0, then the
objective function F2(td1, Qd1) decreases with the de-
crease of Qd1 in (− ∞, − p/s) and increases with the
increase of Qd1 in (− p/s, +∞), and themaximum of the
objective function F2(td1, Qd1) can be obtained at 0 or
λT − Q0.
Case 2. Δ � B2 − 4AC> 0. In this case, equation zF2(td1,

Qd1)/zQd1 � 0 has only one real root Qd1 � − s−

(
���
Y1

3
􏽰

+
��
Y3

√
2)/3r, where Y1 � As + 3r/2(− B +
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��������
B2 − 4AC

√
) and Y2 � As + 3r/2(− B −

��������
B2 − 4AC

√
).

Further, if Qd1 < 0, then the objective function
F2(td1, Qd1) decreases with the decrease of Qd1 in
(− ∞, Qd1] and increases with the increase of Qd1 in
[Qd1, +∞). Hence, the maximum of the objective
function is reached at λT − Q0; if Qd1 > 0, then
F2(td1, Qd1) decreases with the decrease of Qd1 in
[0, Qd1) and increases with the increase of Qd1 in
[Qd1, +∞), the maximum of the objective function is be
reached at 0 or − s − (

���
Y1

3
􏽰

+
��
Y3

√
2)/3r.

Case 3. Δ � B2 − 4AC � 0. In this case, the equation
zF2(td1, Qd1)/zQd1 � 0 has two real roots Q11 �

− s/r + B/A, Q12 � Q13 � − B/2A. If r> 0 and Q11 < 0,
the objective function F2(td1, Qd1) decreases with the
decrease of Qd1 in (− ∞, Q11] and increases with the
increase of Qd1 in [Q11, +∞). Hence, the maximum of
the objective function can be reached at λT − Q0; if r> 0
and Q11 > 0, then F2(td1, Qd1) decreases with the de-
crease of Qd1 in [0, Q11] and increases with the increase

of Qd1 in [Q11, +∞). Hence, the maximum of
F2(td1, Qd1) can be obtained at 0 or λT − Q0.
Case 4. Δ � B2 − 4AC< 0. In this case, the equation
zF2(td1, Qd1)/zQd1 � 0 has three real roots Q11 �

− 1/3r(s + 2
��
A

√
cos θ/3), Q12 � 1/3r(− s +

��
A

√
(cosθ/

3 −
�
3

√
sin θ/3)), Q13 � 1/3r(− s +

��
A

√
(cos θ/3+�

3
√

sin θ/3)), where θ � arccos(2A − 3rB/2
���
A3

√
). If

Q12 < 0, then function F2(td1, Qd1) decreases with the
decrease of Qd1 in (− ∞, Q11] and [Q12, Q13], and in-
creases with the increase of Qd1 in [Q11, Q12] and
[Q13, +∞). (us, function F2(td1, Qd1) in [0, +∞]

reaches the maximum at 0 or λT − Q0; if Q12 > 0, then
function F2(td1, Qd1) decreases with the decrease of
Qd1 in (− ∞, Q11] and [Q12, Q13], and increases with the
increase of Qd1 in [Q11, Q12] and [Q13, +∞). Hence,
F2(td1, Qd1) in [0, +∞) reaches the maximum at Q12.

Combining the discussions mentioned above, we can
obtain the optimization problem of optimization problem
(3) if the first emergency order is placed at td1 � 0,

Q
∗
d1 �

λT − Q0, if A � B � 0, −
p

s
< 0, F2 0, λT − Q0( 􏼁>F2(0, 0);

0, if A � B � 0, −
p

s
> 0, F2(0, 0)≥F2 0, λT − Q0( 􏼁;

λT − Q0, if A � B � 0, −
p

s
> 0, F2(0, 0)<F2 0, λT − Q0( 􏼁;

−
p

s
, if A � B � 0, −

p

s
> 0, F2 0, −

p

s
􏼒 􏼓>max F2(0, 0), F2 0, λT − Q0( 􏼁( 􏼁;

λT − Q0, if Δ> 0, Qd1 < 0, F2 0, λT − Q0( 􏼁>F2(0, 0);

0, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2(0, 0)≥F2 0, Qd1( 􏼁;

Qd1, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2(0, 0)<F2 0, Qd1( 􏼁;

λT − Q0, if Δ � 0, Q11 < 0, F2(0, 0)<F2 0, λT − Q0( 􏼁;

0, if Δ � 0, 0<Q11 ≤ λT − Q0, F2(0, 0)≥F2 0, λT − Q0( 􏼁;

λT − Q0, if Δ � 0, 0<Q11 ≤ λT − Q0, F2(0, 0)<F2 0, λT − Q0( 􏼁;

0, if Δ< 0, Q12 < 0, F2(0, 0)≥F2 0, λT − Q0( 􏼁;

λT − Q0, if Δ< 0, Q12 < 0, F2(0, 0)<F2 0, λT − Q0( 􏼁;

Q12, if Δ< 0, 0<Q12 ≤ λT − Q0, F2 0, Q12( 􏼁>max F2(0, 0), F2 0, λT − Q0( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)
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Or if the retailer’s first emergency replenishment time is
td1 � t0,

Q
∗
d1 �

λT − Q0, if A � B � 0, −
p

s
< 0, F2 t0, λT − Q0( 􏼁>F2 t0, 0( 􏼁;

0, if A � B � 0, −
p

s
> 0, F2 t0, 0( 􏼁≥F2 t0, λT − Q0( 􏼁;

λT − Q0, if A � B � 0, −
p

s
> 0, F2 t0, 0( 􏼁<F2 t0, λT − Q0( 􏼁;

−
p

s
, if A � B � 0, −

p

s
> 0, F2 t0, −

p

s
􏼒 􏼓>max F2 t0, 0( 􏼁, F2 t0, λT − Q0( 􏼁( 􏼁;

λT − Q0, if Δ> 0, Qd1 < 0, F2 t0, λT − Q0( 􏼁>F2 t0, 0( 􏼁;

0, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2 t0, 0( 􏼁≥F2 t0, Qd1( 􏼁;

Qd1, if Δ> 0, 0<Qd1 ≤ λT − Q0, F2 t0, 0( 􏼁<F2 t0, Qd1( 􏼁;

λT − Q0, if Δ � 0, Q11 < 0, F2 t0, 0( 􏼁<F2 t0, λT − Q0( 􏼁;

0, if Δ � 0, 0<Q11 ≤ λT − Q0, F2 t0, 0( 􏼁≥F2 t0, λT − Q0( 􏼁;

λT − Q0, if Δ � 0, 0<Q11 ≤ λT − Q0, F2 t0, 0( 􏼁<F2 t0, λT − Q0( 􏼁;

0, if Δ< 0, Q12 < 0, F2 t0, 0( 􏼁≥F2 t0, λT − Q0( 􏼁;

λT − Q0, if Δ< 0, Q12 < 0, F2 t0, 0( 􏼁<F2 t0, λT − Q0( 􏼁;

Q12, if Δ< 0, 0<Q12 ≤ λT − Q0, F2 t0, Q12( 􏼁>max F2 t0, 0( 􏼁, F2 t0, λT − Q0( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

For the optimal solution to problem (3), if Qd1 � 0 or
Qd1 � λT − Q0, then the retailer would place one emergency
order; this does not satisfy the assumption of the model.
Further, substituting td1 � 0 or td1 � t0 into the expression
of Qd1 yields the optimal order quantity of emergency order.
(e following optimal solutions are obtained under the
condition of satisfying the constraints. □

5. Numerical Experiments

To verify the theoretical results given in the previous section,
the following numerical experiments are carried out.

Example 1. Consider the inventory system with c � 8,
c0 � 10, b � 48, Q0 � 40, τ � 3, λ � 6, T � 20, h � 2, K � 20,
and the retailer makes one emergency order.

By algorithm, when the retailer makes one emergency
replenishment, the retailer’s best emergency ordering time at
the initial moment with size 80, then the retailer’s expected
inventory profits is 2220. If the retailer’s best emergency
ordering time is 6.67 with size 80, then the retailer’s expected
inventory profits is 1687. (erefore, the retailer’s best rush
order strategy is to place 80 rush orders at the initial mo-
ment. (e detailed numerical results are listed in Table 2, in

which we use strategies I and II to represent replenishment
strategies at two different times.

Example 2. According to the inventory system considered in
Example 1, we continue to consider the case where the
retailer makes two emergency orders, leaving the other
parameters unchanged.

By algorithm, when the retailer makes two emergency
orders, and if the retailer makes the first emergency re-
plenishment at the initial time with quantity 31, the second
emergency replenishment time is 5.17 with quantity 49,
then the retailer’s expected inventory profits under the
given strategy is 3211. If the first replenishment is at the
emergency time of 6.67 with quantity 31, and make the
second replenishment at 11.8 with quantity 49, then the
retailer’s expected inventory profits is 3773. (erefore, the
retailer’s best replenishment strategy in this case is that the
first emergency replenishment time is t0 � 6.67, the
emergency replenishment quantity is 31, the second
emergency replenishment time is 11.84, and the emergency
replenishment quantity is 49. (e detailed numerical re-
sults of this example are shown in Table 3, in which we use
strategies I and II to represent replenishment strategies at
two different times.
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By comparing Examples 1 with 2, we �nd that when the
retailer chooses to make two emergency orders, their in-
ventory pro�ts are greater.

We conduct sensitivity analysis on the in�uence of
relevant parameters on the model. First, the e�ect of the
demand rate λ on retailers’ expected inventory pro�ts is

Table 2: Numerical results for Example 1.

Strategy t∗d Q∗d Pro�ts I Pro�ts II

I 0 80 2220 —
II 6.67 80 — 1687

Table 3: Numerical results for Example 2.

Strategy t∗d1 t∗d2 Q∗d1 Q∗d2 Pro�ts I Pro�ts II

I 0 5.17 31 49 3211 —
II 6.67 11.8 31 49 — 3773
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Figure 4: E�ect of λ on emergency ordering time at 0 for retailer’s
expected inventory pro�ts under one-emergency order.
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Figure 5: E�ect of λ on emergency ordering time at 0 for retailer’s
expected inventory pro�ts under two-emergency order.
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Figure 8: E�ect of h on emergency ordering time at 0 for retailer’s
expected inventory pro�ts under one-emergency order.
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Figure 6: E�ect of λ on emergency ordering time at t0 for retailer’s
expected inventory pro�ts under one-emergency order.
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Figure 7: E�ect of λ on emergency ordering time at t0 for retailer’s
expected inventory pro�ts under two-emergency order.
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analyzed. For the inventory system of Example 1 and
Example 2, we let λ increase from 1 to 10, and other
parameters remain unchanged. �e numerical results are
shown in Figures 4–7 from which we can see that com-
pared with just making one emergency order, as the
demand rate λ increases, the retailer chooses to make two
emergency orders and place the �rst order at the initial
time has a great impact on retailers’ expected inventory
pro�ts.

�en, we analyze the e�ect of the holding cost h on
retailer’s expected inventory pro�ts. For the emergency
replenishment system given in Example 1 and Example 2,
increase h from 1.5 to 5.5, leaving the other parameters
unchanged. As can be seen from Figures 8–11, from which
we can see that with the increase of the holding cost h has a
great impact on the expected inventory pro�t of retailers
who choose to make two emergency orders and place the
�rst emergency order at t0.

According to the abovementioned numerical analysis,
it can be seen that the changes of the demand rate λ and
holding cost h have a great impact on the expected in-
ventory pro�ts of the retailer. Among them, the increase
of the demand rate λ will have a positive impact on the
retailer’s pro�ts, and the increase of holding cost h will
have a negative impact on the retailer’s pro�ts, which
shows that holding cost h and demand rate λ are the key
factors for the retailer to choose emergency replenishment
strategy. When supply interruption occurs, managers
need to pay more attention to the e�ect of these factors on
the whole inventory system.

6. Conclusions

�is paper mainly studies the emergency ordering
problems with the supply disruption whose ending time is
random. Based on inventory pro�ts maximization, we
established an inventory model, and the optimal emer-
gency procurement strategy of retailers was given
through model analysis. Finally, the e�ectiveness of the
optimal strategy was veri�ed through numerical experi-
ments. [28].

Certainly, this paper considers the emergency ordering
problem of the retailer in the case of supply disruption. As a
next step, we can expand on the fact that supply disruptions
occur at random times, and taking into account the retailer’s
risk appetite, which could make the overall study more
realistic.
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Figure 9: E�ect of h on emergency ordering time at 0 for retailer’s
expected inventory pro�ts under two-emergency order.
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