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�e stock markets, exhibiting complex self-correlation or cross-correlation over a broad range of time scales, are correlated not
only in time but also in space. �e conventional spatial weight matrix in the econometric analysis is short of economic relation
between nonadjacent economic entities. �erefore, this paper applies the detrended cross-correlation analysis coe�cient and
partial correlation coe�cient to analyze the global spatial interaction. �is study computes the spatial Moran’s I value by the two
types of weight matrix for the 15 typical stock indices around the world, to explore the spatial agglomeration phenomenon. �en,
the Spatial Durbin Model is applied to investigate the transmission of the stock market. �e result from the Moran’s I value
indicates that the 15 typical stock indices are spatially correlated. �e result of the Spatial Durbin Model gives the relationship
among the closing price, the opening price, the highest price, and the lowest price.

1. Introduction

In recent years, there has been an increase in the concern
about questions related to methodology in Spatial Econo-
metrics, originated from the research of Paelinck, Klaassen
[1], and Anselin [2]. �e works of Anselin and Elhorst have
played a fundamental role in modelling the spatial econo-
metric models theoretically [2–5]. �e spatial model mainly
includes the spatial lag model (SLM), spatial error model
(SEM), and Spatial Durbin Model (SDM) [6, 7]. LeSage and
Pace proved that the spatial lag and spatial error model are
special cases of the Spatial Durbin Model [8]. Consequently,
the paper mainly uses the Spatial Durbin Model for research
and prediction.

�e theory of spatial weight matrix has been a key el-
ement of spatial analysis [9, 10]. A number of measurements
of spatial weight matrix were proposed so that we can in-
vestigate the spatial process of geographical evolution from
di�ering points of view. Today, the methods of SDM and
spatial weight matrix have been applied to many �elds.
Jeetoo applied the SDM to investigate the determinants of
renewable energy consumption using a balanced panel of 41
sub-Saharan Africa countries [11]. In this model, each el-
ement in the spatial weight matrix was equal to 1/dij, where

dij represents the distance between country i and country j.
Zhang, Ma, Yang, andWang used the SDM to investigate the
impact of HSR on consumption from a spatial perspective,
where each element in the spatial weight matrix was de�ned
as 1/(GDPi − GDPj)[12]. Hong, Liu, and Song applied the
spatial panel model to analyze the spatial e�ect of the new
economic momentum of China’s high-quality development,
where the spatial weight matrix is also calculated using the
“economic distance” of the GDP of each province and city
[13]. Wang, Zhang, Vilela, Liu, and Stanley constructed a
spatial econometric model to explore the relationship be-
tween the capital market and industrial structure upgrading
in China, where the spatial weight matrix is set based on the
equal weight of geographical adjacency [14]. Cheung, Wong,
Zhang, and Wu proposed a spatial panel model to explain
the airport capacities as a combination of geo-economic and
service-related factors, temporal correlation e�ects, and
spatial spillover e�ects, where each element of spatial weight
matrix is inverse square travel time between airport i and
airport j [15].

�e spatial correlation between stock markets may be
in«uenced by other factors besides the spatial factor. Hence,
we have to be alert to the possibilities of spurious correlation
while investigating the spatial correlation. In order to
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remove the spurious correlation and improve the estimation
performance for quantifying the intrinsic spatial correlation
between stock markets, this paper proposes methods of the
detrended cross-correlation analysis (DCCA) coefficient and
partial correlation coefficient to construct the spatial weight
matrix.

Podobnik and Stanley proposed the detrended cross-
correlation analysis [16], and subsequently, the DCCA co-
efficient was introduced by Zenbende [17]. A remarkable
characteristic of the DCCA coefficient is that it can inves-
tigate the cross-correlations between non-stationary time
series at different time scales [18–20]. Owing to the cross-
correlation between two variables may be affected by other
variables; the partial correlation coefficient was proposed to
measure the correlation between two random variables by
eliminating the influence of a set of controlling random
variables [21, 22].

.e rest of the paper is organized as follows. Section 2
introduces the Moran Index, the DCCA coefficient method,
and the partial correlation analysis. Section 3 shows the data
and the spatial econometric model. Section 4 discusses the
results obtained by the proposed methods. Finally, some
conclusions are drawn in Section 5.

2. Method for Spatial Interaction of the
Stock Market

2.1. Moran Index. Moran’s index (Moran’s I) method, as an
analytical method, is used to reflect the degree of spatial
connection on a spatial unit at a certain point in time. .e
Moran index is calculated as follows:

Moran’sI �
􏽐

N
i 􏽐

N
j wij yi − y( 􏼁 yj − y􏼐 􏼑

s
2

􏽐
j

i 􏽐
j

i wij

, (1)

where yi represents the observations of different spatial units
in the sample and wij is the element of spatial weight matrix.
.e mean and variance of the observations are
y � 1/n 􏽐

N
i�1 yi and s2 � 1/n 􏽐

N
i�1 (yi − y)2, respectively. N

denotes the total number of spatial units studied [23].
.e value of the Moran index is generally between −1

and 1. If the index is larger than zero, there is a positive
correlation in the research space; if the index is less than
zero, there is a spatial negative correlation; if the Moran
index is close to zero, it indicates that the variable has no
spatial correlation.

2.2. Spatial Weight Matrix. We construct and employ three
spatial weight matrices here. .e first matrix (WD) is based
on the distance between the stock markets, the elements
WD

ij � 1 when stock market i and stock market j are adja-
cent; otherwise, WD

ij � 0. .e distance matrix relates the
spatial location of the stock markets, reflecting the partial
correlation between stock markets in the absence of eco-
nomic relation between nonadjacent economic entity.
.erefore, this paper proposes DCCA coefficients matrix to
research essentially correlation between stock markets.

.en, we analyze the correlation between two series by
removing the effects of controlled variables, named
detrended partial cross-correlation coefficient (DPCC)
matrix. .e flowchart of three spatial weight matrices is
shown in Figure 1.

2.2.1. DCCA Coefficients Matrix. .e DCCA coefficients
weight matrix (WDCCA) is constructed based on the DCCA
coefficients between stock markets. For two simultaneous
observations x(i) and y(i), the DCCA coefficient algorithm
is as follows.

.e first step is to construct the profiles xt � 􏽐
t
k�1 x(k)

and yt � 􏽐
t
k�1 y(k) of two time series.

.en, two profiles are divided into Nn � [N/n] non-
overlapping boxes of equal length n (10≤ n≤N/4),
respectively.

For each box, local trends 􏽥xk and 􏽥yk are estimated on the
basis of a least-squares fit. .e corresponding detrended
covariance is then calculated as

f
2
DCCA(n, k) �

1
n

􏽘
n

i�1
x(k−1)n+i − 􏽥x(k−1)n+i􏼐 􏼑 y(k−1)n+i − 􏽥y(k−1)n+i􏼐 􏼑. (2)

.edetrended covariance fluctuation function for scale n

is given by

F
2
DCCA(n) �

1
Nn

􏽘

Nn

k�1
f
2
DCCA(n, k). (3)

.e DCCA coefficient is given as

ρDCCA(n) �
F
2
DCCA(n)

FDFA x{ }(n)FDFA y{ }(n)
, (4)

where DFA refers to the Detrended Fluctuation Analysis
[20, 24] and the range of DCCA coefficient is
−1≤ ρDCCA(n)≤ 1 [20, 25]. For measuring the correlated
characteristic between two time series, we apply the mean of
DCCA coefficients, ρDCCA � 〈ρDCCA(n)〉 in this paper.

.e elements WDCCA
ij of this matrix are calculated as

follows:

w
DCCA
ij �

1, i≠ j, ρij ≥φ,

0, i � j,
􏼨 (5)

where ρij is the DCCA coefficient of the units i and j in the
sample. .e threshold value φ is in the range of [0.7, 1].

2.2.2. Detrended Partial Correlation Coefficients Matrix.
.e third matrix WDPCC is constructed based on the
detrended partial cross-correlation coefficients (DPCC).

Partial correlation analyzes the correlation between X1′ �
X1 − L1(X3, . . . , Xp) and X2′ � X2 − L2(X3, . . . , Xp), ob-
tained by removing the effects of X3, X4, . . . , Xp from
X1, X2 , where the linear expressions are

L1 X3, . . . , Xp􏼐 􏼑 � c01 + c31X3 + · · · + cp1Xp,

L2 X3, . . . , Xp􏼐 􏼑 � c02 + c32X3 + · · · + cp2Xp.
(6)
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to minimize E[X1 − L1(X3, . . . , Xp)]2 and
E[X2 − L2(X3, . . . , Xp)]2.

.e partial correlation coefficient between Xi, Xj by
eliminating the influence of the controlling variable, denoted
by ρij(1,2,...,i−1,i+1,...,j−1,j+1,...,p), is defined as follows:

ρij(1,2,...,i−1,i+1,...,j−1,j+1,...,p) �
Pij
�����
PiiPjj

􏽱 ,

P �

ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p

⋮ ⋮ ⋮ ⋮

ρp1 ρp2 . . . ρpp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�

1 ρ12 . . . ρ1p

ρ21 1 . . . ρ2p

⋮ ⋮ ⋮ ⋮

ρp1 ρp2 . . . 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where matrix P is composed of p × p correlation coefficients
ρij, which is the DCCA correlation coefficient between Xi

and Xj. Pij is a subform of (i, j) element of matrix P. .e
mean of DCCA coefficients ise used to obtain the detrended
partial cross-correlation coefficient (DPCC) here.

.e elements WDPCC
ij of the weight matrix are con-

structed as follows:

w
DPCC
ij �

1, i≠ j, ρij(1,2,...,i−1,i+1,...,j−1,j+1,...,p) ≥φ,

0, i � j,
􏼨 (8)

where ρij(1,2,...,i−1,i+1,...,j−1,j+1,...,p) is the DPCC coefficient of
the units i and j in the sample. .e value φ is in the range of
[0.7, 1].

3. Materials and Methods

3.1. Data. In this paper, we adopt the daily opening price,
the highest price, the lowest price, and the closing price of
fifteen stock indices, including the São Paulo Index (IBOV),
the Dow Jones Index (DJI), the NASDAQ Index (NAS-
DAQ), the Standard and Poor 500 Composite Stock Price
Index (S&P 500), the FTSE Global Equity Index Series
(FTSE), the French CAC 40 (CAC 40), the German DAX
Index (DAX), the Nikkei 255 Index (N225), the Korea
Composite Index (KS11), the Hang Seng Index (HSI), the
Australian Standard & Poor’s 200 (AS51), theMumbai Index
(SENSEX), the Russian Index (RTS), the Shanghai Com-
posite Index (SSEC), and the Shenzhen Composite Index
(SZI) from January 04, 1993, to January 03, 2019, as financial
time series. We select 23 trading days’ data from January 04,
2018, to February 09, 2018 to make stock prediction using
spatial econometric models.

3.2. Spatial Econometric Model. .e Spatial Durbin Model
(SDM) takes the form [26]

yit � δ 􏽘

N

j�1
wijyjt + α0 + xitβ + 􏽘

N

j�1
wijxjt

⎛⎝ ⎞⎠θ + εit, (9)

where yit is the dependent variable of every unit in the
sample (i � 1, . . . , N) at time t(t � 1, . . . , T). .e spatially
lagged dependent variable reflecting the interdependence of
the unit i and the dependent variables of the unit j is
represented as 􏽐

N
j�1 wijyjt. wij is the element of a N × N

spatial weight matrix W, which describes whether the unit
pairs i and j are interdependent, and δ measures the in-
fluence of these spatially weighted dependent variables.
Commonly, the diagonal elements wii are set to zero because
the units cannot depend on each other. xit is a explanatory
variables, and 􏽐

N
j�1 wijyjt is the spatially lagged explanatory

variable that represents the interdependence of the unit i

with the explanatory variables of the units j in the sample. β

spatial
distance

DCCA
coefficient

DPCC
coefficient

input output spatial 
matrix

spatial
model

Figure 1: .e flowchart of the method.
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and θ are the corresponding K × 1 vectors of the parameters
to be estimated. εit is the independent and identically dis-
tributed random error term for all i and t with zero mean
and variance σ2. Finally, μit is a random error term, and its
distribution is constrained by the spatial dependence of the
Spatial Durbin Model.

4. Results

4.1. Result of Moran Index. In this section, the spatial dis-
tance matrix is applied to measure the Moran index for the
15 stock indices, as shown in Figure 2. It can be found that
the Moran indices based on the spatial distance matrix are
close to zero, which indicates the spatial independence of
stock markets. However, this result is questionable in the
absence of economic relation between nonadjacent eco-
nomic entities.

In order to reveal the spatial correlation of stockmarkets,
we propose the DCCA coefficient matrix, obtained by
equation (5) with ϕ � 0.75, to compute theMoran index. For
comparison, the Moran index results based on the DCCA
coefficient matrix are also shown with the spatial distance
matrix results together in Figure 2. It is clearly shown that for
stock markets, the Moran indices of DCCA coefficient
matrix method are larger than those of the spatial distance
matrix method, suggesting the existence of the spatial
correlation in stock markets.

4.2. Result of Spatial Econometric Model. .is paper deter-
mines that the dependent variable is the closing price of the
stock. For applying the spatial econometric model, we
calculated the DCCA coefficient between the closing price of
the stock and each influencing factor. .e results of the
DCCA coefficient between the closing price and the opening
price, the highest price, and the lowest price are 0.9971,
0.9982, and 0.9992, respectively. Consequently, we select
explanatory variables include the opening price, the highest
price, and the lowest price.

To further exemplify the potential utility of spatial
econometric model for predicting the stock closing prices,
we compare the prediction relative errors obtained by the
spatial econometric model and the nearest neighbor algo-
rithm (NN), where the relative error is as follows:

yprediction − ytruevalue

ytruevalue

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (10)

.is is due to the fact that the nearest neighbor algorithm
(NN) is one of the most essential and effective algorithms for
data segregation [27]. Figure 3 displays the relative errors of
the stock closing price of SZI. .e smallest value is 0.000479
and the largest value is 0.01394, obtained by SDM. For
comparison, the smallest value (0.001383) and the largest
value (0.036309), acquired by NN, are shown in Figure 3. It is
obvious that the relative error obtained by using SDM is
smaller, indicating that a spatial econometric model can
better predict the closing price of stocks.

Figure 4 displays the relative errors between the pre-
dicted results and the real data of the stock closing price, the

stock markets including GDAXI, SPX, IXIC, and DJI. We
can clearly find that the prediction results obtained by using
the Spatial Durbin Model are closer to the real data. .e
mean and variance of the relative error between the pre-
dicted result and the actual data of the stock closing price in
fifteen stock markets are shown in Figure 5. .e means,
calculated by the Spatial Durbin Model, is smaller than the
nearest neighbor algorithm. .erefore, compared with the
nearest neighbor algorithm, the prediction of the spatial
econometric model is more accurate. We notice that the
variances of SDM are smaller than that of NN, implying the
better robustness of SDM.

Next, the closing price of stocks is predicted by using the
Spatial Durbin Model based on spatial weight matrix
WDPCC

ij , where the elements of the weight matrix is WDPCC
ij

w
DPCC
ij �

1, i≠ j, ρij·(1,2,...,i−1,i+1,...,j−1,j+1,...,p) ≥ 0.75,

0, i � j.
􏼨 (11)

Figure 6 shows the relative errors for the prediction of
the stock closing price of SZI by using four different
methods; the Spatial Durbin Model based on three spatial
weight matrices (SDM (DCCA), SDM (DPCC), and SDM
(Distance)) and the nearest neighbor algorithm (NN). It can
be seen that the relative errors obtained by using SDM are
small, and the effect of the spatial weight matrix constructed
based on the DCCA coefficients and the DPCC coefficients is
similar. Moreover, we calculate the relative errors for other
stock markets such as GDAXI, SPX, IXIC, and DJI, as shown
in Figure 7. It can be seen that these results are entirely
consistent with the result in Figure 6. .erefore, the spatial
econometric model based on the DCCA coefficient matrix
and the DPCC coefficient matrix can better predict the
closing price of stocks than NN.
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For Moran index test, our results indicate that con-
cerning the stock index series, there exists a spatial corre-
lation between the 15 typical stock indices. For a spatial
model, our results give the relationship among the closing
price, the opening price, the highest price, and the lowest
price. In the following research, it is hoped that others can
consider more variables on the basis of this research and
choose a more suitable model for analysis.

5. Conclusion

DCCA is recently introduced to explore the correlation
structure of the time series. In this paper, based on DCCA
method, we use the Moran index to measure spatial in-
teraction for stock index series. We carefully compare the
spatial Moran’s I value by the DCCA weight matrix with that
of the spatial distance weight matrix. .e result indicates
that the DCCAweight matrix explores the economic relation
between nonadjacent economic entities more efficiently.

In order to study the global spatial transmission of the
stock market, the closing price, the opening price, the
highest price, and the lowest price in fifteen stock markets
are selected for analysis and modelling. .e result of the
Spatial Durbin Model gives the relationship among the
closing price, the opening price, the highest price, and the
lowest price. We compare the SDM with NN. .e result
indicates that the SDM is more accurate and robust.

For researching the spatial correlation between stock
markets, the spatial weight matrix is required further in-
vestigation, both experimental and theoretical. While
promising, the results of this paper should be considered as
preliminary and their general applicability. .erefore, we do
believe that our results may provide some help to research
the spatial correlation between stock markets.
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